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A rigorous formulation of time-dependent current density functional theory (TDCDFT) on a
lattice is presented. The density-to-potential mapping and the V-representability problems are
reduced to a solution of a certain nonlinear lattice Schrödinger equation, to which the standard
existence and uniqueness results for nonliner differential equations are applicable. For two versions of
the lattice TDCDFT we prove that any continuous in time current density is locally V-representable
(both interacting and noninteracting), provided in the initial state the local kinetic energy is nonzero
everywhere. In most cases of physical interest the V-representability should also hold globally in
time. These results put the application of TDCDFT to any lattice model on a firm ground, and
open a way for studying exact properties of exchange correlation potentials.

I. INTRODUCTION

To interpret most experimental results in condensed
matter physics, it is sufficient to know the dynamics of
a few reduced collective variables, such as the density of
particles n(r, t) and/or the density of the current j(r, t).
Indeed, in a typical experiment the behavior of a sys-
tem is controlled/probed by applying external classical
electro-magnetic fields, while the density and the cur-
rent are the physical observables conjugated the scalar
v(r, t) and the vector A(r, t) potentials, respectively. On
the theoretical side this observation does not seem to be
really helpful if the problem is approached with the stan-
dard tools of the many-body theory. In any case, one first
has to solve the full many-body problem, and only then
the required reduced variables are extracted by tracing
out all experimentally irrelevant degrees of freedom. Ob-
viously the accurate solution of a nonequilibrium quan-
tum many-body problem for more or less realistic inter-
acting systems is practically impossible. Therefore we
have either to rely on some, mostly uncontrollable, ap-
proximations within the standard many-body approach,
or to look for alternative theoretical schemes.

One of the most popular alternatives is offered by the
time-dependent density functional theory (TDDFT)1,
which actually states that it is possible, at least in prin-
ciple, to trace out the irrelevant microscopic degrees of
freedom at the very beginning, and to formulate a closed
theory that operates only with the observable of inter-
est – the density n(r, t). A theory which considers the
current j(r, t) as a basic collective variable is known
as the time-dependent current density functional the-
ory (TDCDFT)2,3. Apparently a practical application of
TDDFT/TDCDFT inevitably involves approximations,
but since we are aiming at the reduced description of
a system there is a hope that a sensitivity to the accu-
racy of approximations is somewhat lessened. Unfortu-
nately, in spite of an impressive number of applications,
we still do not have a clear methodology for constructing
and improving approximations in TDDFT. In fact, we

even do not understand why common ad hoc construc-
tions, like the adiabatic local density approximation, fre-
quently give good results (it is much easier to understand
why they fail). Probably one of the reasons for this sit-
uation is that the formal mathematical justification of
TDDFT/TDCDFT, as well as the understanding of fun-
damental limitations of this approach, if there are any, is
still far from being complete.
Presently the justification of TDDFT relies on the

Runge-Gross mapping theorem4, which states that for
a given initial many-body state ψ0, there is a one-to-
one correspondence between the density n(r, t) and the
external potential v(r, t) driving the dynamics. This im-
plies that the external potential, the many-body wave
function, and thus any observable are unique functionals
of the density, which indicates a possibility to formu-
late a closed theory of a single collective variable, n(r, t).
However, Runge and Gross have proved the above map-
ping only for potentials which are analytic in time t (t-
analytic) around the initial point t0. Therefore many
physically eligible potentials are formally excluded from
the scope of TDDFT. There are indications that the t-
analyticity is not a fundamental limitation of the the-
ory as in the linear response regime the mapping can be
proved for a much wider class of Laplace transformable
potentials5. Nonetheless, beyond the linear response, a
confirmation of the Runge-Gross theorem for a more gen-
eral class of potentials is still lacking. The situation with
the current-to-vector potential mapping in TDCDFT2 is
exactly the same.
A more serious point is that the mapping theorem,

in its standard form, is not sufficient to formally justify
most of the practical applications of TDDFT/TDCDFT.
The unique density-to-potential mapping is proved only
for v-representable densities, i. e. for the densities gen-
erated by the Schrödinger dynamics in the presence of
some external potential. On the other hand, the ap-
plications almost always employ the Kohn-Sham (KS)
formalism. The KS construction assumes that, by prop-
erly adjusting a potential (so called KS potential) in a
fictitious system of noninteracting KS particles, one can
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exactly reproduce the physical density n(r, t) of the inter-
acting system. In other words, the applicability of the KS
formalism requires that the “interacting v-representable”
density is also a “noninteracting v-representable”. This
is not guaranteed by the Runge-Gross theorem even for
t-analytic potentials. The generalization of the TDDFT
mapping theorem by van Leeuwen6 (later extended by
Vignale to the TDCDFT case3) is aimed at solving the v-
representability problem. Van Leeuwen has shown6 that,
assuming the t-analyticity both for the potential v(r, t)
and for the density n(r, t) in the interacting system, one
can uniquely construct all coefficients in the t-power se-
ries expansion of the KS potential7 around the initial
time t0. Note that the t-analyticity of the density is a
much more severe restriction than the t-analyticity of the
potential employed by Runge and Gross. One can easily
find many explicit examples where the density, evolving
under an absolutely physical, t-analytic, and infinitely
smooth in space potential, is not t-analytic, and can,
therefore, not be represented by a uniformly convergent
Taylor series8. A closely related drawback is that the ex-
istence of all coefficients in the power series expansion9

for the KS potential does not imply that this series con-
verges, a situation well known in the theory of differen-
tial equations. Probably, under some, most likely very
strong, restrictions the power series approach is valid,
but the range of validity remains unclear.

In general the state-of-the-art situation in the field of
foundations of TDDFT/TDCDFT can be viewed as fol-
lows. From a mathematical purist point of view, the
general validity of this theory is a plausible and useful
conjecture, still waiting for a rigorous justification. From
the more soft and practical point of view of a physicist,
one of the main problems is that the common way of
stating and proving the theorems in TDDFT/TDCDFT
is not really helpful in understanding the general proper-
ties of the theory and the key functionals that we have to
approximate in practice. The Runge-Gross theorem only
says that the functional v[n] is unique, but it does not
give any idea of where it comes from and how it may look
like. The van Leeuwen procedure is more constructive,
but the power series structure, together with a highly im-
plicit and complicated form of the coefficients, makes the
analysis of a solution practically impossible. Hence both
mathematical and, to some extent, physical problems are
eventually connected to the fact that the power series ex-
pansion is internally built in the very idea of all existing
proofs2–4,6. Therefore, to make further progress, it is de-
sirable to find an alternative statement of the problem.

Recently it has been realized that the problem of
the existence of TDDFT/TDCDFT can be indeed for-
mulated differently. Namely, the density-to-potential
mapping and the v-reprsentability problems can be re-
stated in the form of the existence and uniqueness of
solutions to a certain universal nonlinear Schrödinger
equation (NLSE). In brief, the appearance of NLSE in
TDDFT/TDCDFT can be described as follows. Given
the initial state ψ0 and the external (scalar or vector)

potential V(t), the standard Schrödinger equation deter-
mines the wave function ψ(t) and the corresponding den-
sity N (t) as unique functionals of ψ0 and V(t). TDDFT
does exist if the inverse problem of reconstructing the
wave function and the potential from a given density
has a unique solution. It turns out that this inverse
problem corresponds to the solution of a special time-
dependent NLSE, which, for a given initial state ψ0 and
the density N (t), returns the functionals ψ[ψ0,N ](t) and
V [ψ0,N ](t). This approach has been first formulated in
the context of the time-dependent deformation functional
theory (TDDefFT)10,11, and, more recently, a similar
formulation has been proposed for TDDFT8. The re-
statement of the problem in the form of NLSE clearly
demonstrates the origin of the universal functionals in
TDDFT – they come about naturally as solutions to a
well defined differential equation. It also does not rely
on the power series expansion, although the latter can
be used as the simplest tool for proving the uniqueness
of a solution if the t-analyticity is taken for granted10,11.
It should be noted that up to now the new setup has
been analyzed only within the standard assumptions of
t-analyticity. However, because of a more general and
clear statement of the problem, there is hope that on
this way a proper mathematical rigor and better physi-
cal understanding can be achieved.

In the present paper I demonstrate how the above ideas
may work in practice. The main result of this work is a
generalization of the NLSE approach to a lattice many-
body theory, and a rigorous formulation of the corre-
sponding lattice TDCDFT. While preserving all essential
physics, the lattice version is substantially simpler tech-
nically. In this case the universal NLSE reduces to a sys-
tem of nonlinear ordinary differential equations (ODE),
for which many general uniqueness and existence results
are known (see, e. g., Ref. 12). I will show that the dis-
crete NLSE for the lattice TDCDFT can be brought to
the form which guaranties that the Picard iterations do
converge to a unique solution, provided the current is
a continuous function of t, and the initial state satisfies
certain well defined conditions. It is known that on a
lattice not all time-dependent densities/currents are V-
representable13–15. In the present formalism the origin
of such potentially dangerous situations becomes espe-
cially clear, and we will see that they do not lead to
any serious complication in the theory. It is worth not-
ing that standard power series construction, being ap-
plied to the TDCDFT on a lattice16, suffers all common
problems with the assumption of t-analyticity and un-
proved convergence of the series (in fact, we know that
in a lattice theory the series should not converge in some
cases13–15). In contrast, using the NLSE setup we will
rigorously solve the V-representability problem, and thus
proveing the existence of TDCDFT for all lattice many-
body systems, e. g., for various versions of the Hubbard
model. Therefore the situation with the time-dependent
V-representability on a lattice turns out to be qualita-
tively similar to that in the ground state lattice DFT17.
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The structure of the paper is the following. In Sec. II
the general many-body theory on a lattice is reviewed.
The aim of this section is to fix the notations, and to
introduce basic equations and the physical observables
of interest. In Sec. III I formulate a “generalized lattice
TDCDFT” which, being very simple conceptually, clearly
illustrates main ideas of the NLSE approach. Here the
complex hopping parameter plays a role of the external
driving one-body potential, while the conjugated “com-
plex current” is considered as a basic collective variable.
Despite this theory may look a bit unusual physically, it
is actually more close mathematically to the TDCDFT
in a continuum as it does not have specific lattice non-V-
representabilities discussed in Refs. 13–15. In Sec. IV the
direct, physical lattice analog of the standard continuum
TDCDFT is considered. In this section I formulate and
prove the existence and uniqueness theorem for the lat-

tice TDCDFT (Theorem 2), which is probably of main
interest for practical applications. The general discussion
of the results is given in the Conclusion.

II. MANY-BODY THEORY ON A LATTICE

Let us consider a system of N quantum particles liv-
ing on a lattice that consists of M discrete sites with
the nearest-neighbor hopping. The state of the system
at time t is described by a many-body wave function
ψ(r1, r2 . . . rN ; t), where rj (j = 1 . . .N) are the discrete
coordinates of particles, which take values on the lattice
sites. The dynamics of the system is governed by the fol-
lowing discrete (tight binding) version of the Schrödinger
equation

i∂tψ(r1 . . . rN ; t) = −
N
∑

j=1

∑

a

T0e
iA(rj ,rj+a;t)ψ(. . . rj+a . . . ; t)+

N
∑

j=1

ε(rj ; t)ψ(r1 . . . rN ; t)+
∑

i>j

Vri−rj
ψ(r1 . . . rN ; t) (1)

where a are vectors connecting a given site with its near-
est neighbors, T0 is the modulus of the hopping param-
eter, ε(r; t) is the time-dependent on-site energy (the
scalar potential on a lattice), A(r, r + a; t) is the vector
potential (the so called Peierls phase) on a link {r, r+a},
and Vr−r

′ is the potential of a pairwise interaction be-
tween particles. The first term in the right hand side
in Eq. (1) can be viewed as a finite difference represen-
tation of the Laplace operator. It contains summation
over all configurations obtained from N particles occupy-
ing sites r1 . . . rN after a hopping of one of the particles
to all possible nearest sites. The modulus of the hop-
ping parameter controls the rate of these hops, while its
phase (the vector potential) describes a phase accumu-
lated when a particle is transported along the link. Note
that the vector potential should be a skew-symmetric ma-
trix A(r, r′) = −A(r′, r) to ensure the hermiticity of the
Hamiltonian in Eq. (1). Everywhere below we assume
that this condition is fulfilled. Equation (1) has to be
supplemented with the initial condition

ψ(r1 . . . rN ; t0) = ψ0(r1 . . . rN ) (2)

The initial state is assumed to be normalized to unity.
Since the Hamiltonian in Eq. (1) is Hermitian the nor-
malization is preserved during the evolution, i. e. at any
instant t the following normalization condition is fulfilled

∑

r1...rN

|ψ(r1 . . . rN ; t)|2 = 1 (3)

It is convenient to eliminate the on-site energies by the
gauge transformation

ψ(r1 . . . rN ; t) → ψ(r1 . . . rN ; t)e
−i

∑
N
j=1

∫
t

t0
ε(rj ;t

′)dt′
, (4)

and to redefine the vector potential on a link as follows

A(r, r+a) → A(r, r+a)−

∫ t

t0

[ε(r; t′)−ε(r+a; t′)]dt′, (5)

which corresponds to the description of the external driv-
ing field in a temporal gauge. As a result Eq. (1) reduces
to the form

i∂tψ(r1 . . . rN ; t) = −
N
∑

j=1

∑

a

T (rj, rj + a; t)ψ(. . . rj + a . . . ; t) +
∑

i>j

Vri−rj
ψ(r1 . . . rN ; t), (6)

where the complex hopping parameter T (r, r + a; t) is
defined as follows

T (r, r+ a; t) = T0e
iA(r,r+a;t). (7)

In the latice theory the vector potential A(r, r + a) on
a link is defined modulo 2π. All vector potential of the
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form A(r, r + a) + 2πl with integer l, being physically
identical, belong to the same equivalence class. Below all
statements regarding the uniqueness and/or existence of
vector potentials always refer to the corresponding equiv-
alence classes.
In general Eq. (6) corresponds to a system of MN or-

dinary differential equations (ODE) for MN functions of
t. In fact, NH = MN is a dimension of a Hilbert space
for N particles on M sites. If the particles are iden-
tical the number of independent equations/functions is
reduced. For example, for spinless fermions the number
of independent equations equals to M !

(M−N)!N ! , while for

N bosons it is (M+N−1)!
(M−1)!N ! . To simplify some notations,

in the following I assume that the particles are identical,
but all results are valid without any restriction on the
permutation symmetry of the wave functions.
To identify basic physical variables of the lattice TD-

CDFT we consider the equation of motion for the density
n(r; t) that is the number of particles on site r

n(r; t) = N
∑

r2...rN

|ψ(r, r2 . . . rN ; t)|2 (8)

By differentiating Eq. (8) with respect to time, and using
Eq. (6) we find

∂tn(r; t) = i
∑

a

[Q(r, r+ a; t)−Q∗(r, r+ a; t)]. (9)

Here the summation is over all links connected to the site
r, and Q(r, r+ a; t) is defined as follows

Q(r, r+ a; t) = T (r, r+ a; t)ρ(r, r + a; t), (10)

where ρ(r, r + a; t) is a “link density” (a density matrix
on the link {r, r+ a} of the lattice):

ρ(r, r + a) = N
∑

r2...rN

ψ∗(r, r2 . . . rN )ψ(r+ a, r2 . . . rN ).

(11)
Equation (9) is a lattice version of the usual continuity
equation. The quantity Q(r, r+a; t) defined on each link
of the lattice will play a key role in the formulation of
the lattice TDCDFT. It is natural to call Q(r, r+ a; t) a
“complex link current”. The imaginary part of Q(r, r +
a; t), entering the continuity equation (9), is equal to the
physical current J(r, r + a; t) on a link,

J(r, r+ a; t) = 2ImQ(r, r+ a; t), (12)

which is a flow of particles from the site r to the site r+a.
The real part of the complex link current determines the
local kinetic energy K(r, r+ a; t) on the link

K(r, r+ a; t) = 2ReQ(r, r+ a; t) (13)

Apparently the physical link current is antisymmetric,
J(r, r′) = −J(r′, r), the link kinetic energy is symmetric,
K(r, r′) = K(r′, r), and the complex current is Hermi-
tian, Q(r, r′) = Q∗(r′, r), under interchanging the link’s

end points (reversal of the link direction). Finally, using
the definition of the physical link current, Eq. (12), we
can represent the continuity equation (9) in the form

∂tn(r; t) = −
∑

a

J(r, r + a; t), (14)

which shows that the sum of link currents flowing away
from site r equals to the rate of the density decrease on
that site.

III. GENERALIZED TDCDFT

In this section I formulate a “generalized TDCDFT”.
That is the theory in which the complex link current
Q(r, r+ a; t) plays a role of the basic collective variable.
Our starting point is the Schrödinger equation (6) sup-
plemented with the initial condition of Eq. (2). We con-
sider quantum many-body dynamics driven by a most
general one-body external “potential” on a latice – a
full complex hopping parameter T (r, r+ a; t) with time-
dependent modulus and phase. Obviously, the complex
link current is an observable conjugated to the hoping
parameter, i. e. Q(r, r + a) is the variational derivative
of the Hamiltonian with respect to T (r, r+ a).
The standard statement of the problem in quantum

mechanics is the following. For a given set T = {T (r, r+
a; t)} of continuous in time (t-continuous) complex hop-
ping parameters, the initial value problem of Eqs. (6) and
(2) uniquely determines the many-body wave function
ψ[T, ψ0](t) at all t > t0 as a functional of T and ψ0. Us-
ing this wave function we can calculate any observable, in
particular, the complex link currents Q[T, ψ0](r, r+a; t).
The currents obtained via this procedure we call T -
representable.
The generalized TDCDFT exists if the inverse problem

possesses a unique solution. Assume that we are given
a set of link currents Q = {Q(r, r + a; t)} and the ini-
tial state ψ0. Is it sufficient to uniquely determine the
wave function ψ[Q,ψ0](t), and to reconstruct the hop-
ping parameters T [Q,ψ0](r, r + a; t) which give rise to
the prescribed currents? If yes, are there any restrictions
on the currents which guarantee such a reconstruction
(i. e. guarantee that the set Q is T -representable)? In
the standard TDDFT terminology the former question
is commonly referred to as the mapping problem, while
the latter is the essence of the V-representability prob-
lem. For the generalized lattice TDCDFT the rigorous
answers to the above questions can be formulated in a
form of the following theorem.
Theorem 1. (Generalized TDCDFT) — Let the com-

plex link currents Q(r, r + a; t) be continuous functions
of t, and the initial state ψ0 is such that for all links
|ρ(r, r+ a; t0)| 6= 0. Then,
(i) The time-dependent many-body wave function ψ(t) is
a unique, retarded functional of Q(r, r+ a; t) and ψ0;
(ii) There is a bijective mapping Q ↔ T between the
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complex link currents Q = {Q(r, r+ a; t)} and the com-
plex hoping integrals T = {T (r, r+ a; t)};
(iii) The statements (i) and (ii) either hold infinitely long
in time, or break down at some finite t∗ > t0 if and
only if at least one link density vanishes as t → t∗, i. e.,
|ρ(r, r+a; t∗)| = 0, which coresponds to |T (r, r+a; t∗)| →
∞.
Proof — For given complex link currents, we invert

Eq. (10) to express the hopping parameters T (r, r+ a; t)

in terms ofQ(r, r+a; t) and the many-body wave function
ψ(r1 . . . rN ; t) as follows

T (r, r+ a; t) =
Q(r, r+ a; t)

ρ(r, r + a; t)
, (15)

where ρ(r, r + a; t) is defined by Eq. (11). Inserting
Eq. (15) into Eq. (6) we get the following nonlinear lattice
Schrödinger equation (NLSE)

i∂tψ(r1 . . . rN ; t) = −
N
∑

j=1

∑

a

Q(rj , rj + a; t)

ρ(rj , rj + a; t)
ψ(. . . rj + a . . . ; t) +

∑

i>j

Vri−rj
ψ(r1 . . . rN ; t). (16)

To clearly see the structure of the nonlinearity we substitute the definition of the link density, Eq. (11), into the above
NLSE, and rewrite it in the following, more explicit form:

i∂tψ(r1 . . . rN ; t) = −
N
∑

j=1

∑

a

Q(rj , rj + a; t)ψ(. . . rj + a . . . ; t)

N
∑

r
′

2
...r′

N
ψ∗(rj , r′2 . . . rN ; t)ψ(rj + a, r′2 . . . r

′
N ; t)

+
∑

i>j

Vri−rj
ψ(r1 . . . rN ; t). (17)

Equation (17) and the initial condition (2) constitute
a universal problem, which determines the many-body
wave function ψ(t) for a given set of complex link cur-
rents. Formally we have a Cauchy problem for a system
of NH nonliner ODE of the following general form

ψ̇ = F(ψ, t), ψ(t0) = ψ0, (18)

where ψ ∈ H is a NH-dimensional vector, and the right
hand side is a nonlinear function of ψ-variables and time,
with the explicit t-dependence determined solely by the
complex link currents [see Eqs. (16) or (17)].
Let Ω be a subset ofH, which is defined by the inequal-

ities |ρ(r, r+a)| > 0 for all links. In other words, for any
state ψ ∈ Ω the link densities on all links are nonzero,
which ensures nonvanishing denominators in Eq. (16).
Hence if ψ ∈ Ω, then the right hand side in Eq. (16) is
a continuously differentiable function of ψ-variables, and
therefore, it is locally Lipshitz in Ω. Since by the assump-
tion of the theorem the initial state ψ0 ∈ Ω, the standard
uniqueness and existence results for first order ODE are
directly applicable. In particular, by the Picard-Lindelöf
theorem (see, e.g., Ref. 12) there exists a finite interval
t0 − δ < t < t0 + δ, with δ > 0, where Eq. (16) has a
unique solution, which defines the many-body wave func-
tion ψ[Q,ψ0](t) as a unique functional of the complex
link currents and the initial state. Inserting this solution
into Eq. (15) we construct a unique map Q 7→ T . The
existence and uniqueness of the inverse map T 7→ Q is
a trivial consequence of the standard linear Schrödinger
dynamics governed by Eq. (6) with given hopping pa-
rameters. This proves statements (i) and (ii) locally in
time.
The existence and uniqueness theorem for the first or-

der ODE also implies that the local solution can be ex-
tended to its maximal existence time which can be in-
finite (i. e. the solution is global) or finite. In general,
if the maximal existence time t∗ is finite, there are only
two possible types of behavior at t→ t∗. First, the solu-
tion becomes unbounded ‖ψ‖ → ∞ as t→ t∗ or, second,
it reaches the boundary of the subset Ω where the right
hand side of the equation is defined. In our case the first
possibility is excluded as the wave function is normalized
and thus always bounded. Hence the maximal existence
and uniqueness time can be finite only if at t → t∗ at
least one link density vanishes, |ρ(r, r+ a; t∗)| = 0. Oth-
erwise the solution is necessarily global. This proves the
statement (iii) and completes the proof of the theorem.

It is instructive to illustrate the statements of Theo-
rem 1 for a simple explicit example of one particle on a
lattice. In the one-particle case the wave function ψ(r; t)
depends only on one coordinate, while the link density
reduses to a simple product ρ(r, r+ a) = ψ∗(r)ψ(r + a).
Therefore Eq. (16) takes the following exactly solvable
form

i∂tψ(r; t) = −
∑

a

Q(r, r+ a; t)

ψ∗(r; t)ψ(r+ a; t)
ψ(r+ a; t)

≡ −

∑

a
Q(r, r+ a; t)

ψ∗(r; t)
. (19)

By integrating this equation with the initial condition
ψ(r; t0) = |ψ0(r)|e

iχ0(r) we get the following result for
the modulus and the phase of the time-dependent wave
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function, ψ(r; t) = |ψ(r, t)|eiχ(r,t),

|ψ(r, t)| =

√

|ψ0(r)|2 −

∫ t

t0

∑

a

J(r, r+ a; t′)dt′,(20)

χ(r, t) = χ0(r) +

∫ t

t0

∑

a
K(r, r+ a; t′)

2|ψ(r, t′)|2
dt′, (21)

where J(r, r + a; t) and K(r, r + a; t) are defined by
Eqs. (12) and (13).
Equation (20) explicitly demonstrates two possibilities

indicated in the Theorem 1. The interval of existence is
finite if, at least for one site, there is a solution t∗ to the
equation

|ψ0(r)|
2 −

∫ t∗

t0

∑

a

J(r, r+ a; t′)dt′ = 0. (22)

This equation means that the number of particles which
have left the site r by the time t∗ (the second term) is
equal to the initial occupation of this site (the first term).
In other words, at time t∗ the site r becomes empty and
the dynamics stops because it is not anymore possible
to support the prescribed link current by adjusting the
hopping parameter. If Eq. (22) is never fulfilled, the oc-
cupation numbers are always finite and the solution of
Eqs. (20), (21) is global. According to the Theorem 1
this behavior is generic for an arbitrary many-body sys-
tem. It should be emphasized that the finite interval of
existence is guarantied for any set of continuous complex
link currents, i. e. any complex link current is locally
T -representable.
Obviously, all statements of the above theorem do not

depend on a form of the interaction potential. Therefore
it is possible to reproduce the same set of complex link
currents in different many-body systems with different
particle-particle interactions. In particular, this implies
the existence of the KS system. Given a physical inter-
acting system, one can always construct a fictitious sys-
tem of noninteracting KS particles with exactly the same
complex current. The only requirement is that the ini-
tial states of the interacting and the KS systems should
be in the “T -representability subset” Ω of the Hilbert
space H. If this requirement is fulfilled, then any set
of t-continuous complex link currents is both interacting
and noninteracting T -representable.

IV. LATTICE TDCDFT

A practically unconditional T -representability is the
main technical advantage of considering the complex link
current as the basic variable. In the generalized TD-
CDFT the prescribed values of Q(r, r + a; t) are repro-
duced by varying both the phases (the vector potential)
and the moduli (the hopping rate) of the hopping pa-
rameters T (r, r+a; t). Because in the generalized setting
the hopping rate is allowed to vary, there are no physi-
cal restrictions on the time derivative of the density, and
therefore the non-V-representable situations discussed in
Refs. 13–15 are absent by construction.

Let us now analyze a more restricted formulation of the
lattice TDCDFT, which is a direct lattice analog of the
usual TDCDFT in the continuum. Namely, I consider the
physical link current J(r, r+a; t) as the basic variable and
require the hopping parameters T (r, r+a; t) to be of the
general “physical” form, Eq. (7). That is, the modulus
of the hopping parameter is the same for all links, and
fixed as follows

|T (r, r+ a; t)| = T0. (23)

Only its phase, describing the external vector potential, is
allowed to vary in time and from link to link. In this case
the link vector potential and the physical link current
constitute a pair of conjugated variables – the current
J(r, r+ a) is a variational derivative of the Hamiltonian
with respect to the vector potential A(r, r+ a).

Given a set of vector potentials A = {A(r, r + a; t)},
one can solve the initial value problem of Eqs. (6), (7),
and (2) to get the many-body wave function ψ[A,ψ0](t)
and to construct a unique map A 7→ J from A to the link
currents J = {J(r, r + a; t)}. Such currents we will call
A-representable.

The lattice TDCDFT does exist if the inverse prob-
lem is well posed. This means that a given current J
uniquely determines the wave function ψ[J, ψ0](t) and
the vector potential A which produces that current. To
derive NLSE corresponding to this inverse problem, we
use Eq. (15) together with the constraint of Eq. (23).
This allows us to represent the hopping parameter in the
folowing form

T (r, r+ a; t) ≡ T0e
iA(r,r+a;t) =

√

4T 2
0 |ρ(r, r + a; t)|2 − J2(r, r+ a; t) + iJ(r, r+ a; t)

2ρ(r, r+ a; t)
, (24)

where the first term (the square root) in the enumerator is the real part of the complex link current, which is required
to satisfy the constraint of Eq. (23). Equation (24) uniquely (mod 2π) relates the link vector potential A(r, r+a; t) to
the given physical link current J(r, r+ a; t) and the many-body wave function ψ(t). Inserting the hopping parameter
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of Eq. (24) into Eq. (6) we obtain the following universal lattice NLSE

i∂tψ(r1 . . . rN ) = −
∑

j,a

√

4T 2
0 |ρ(rj , rj + a)|2 − J2(rj , rj + a) + iJ(rj , rj + a)

ρ(rj , rj + a)
ψ(. . . rj + a . . . ) +

∑

i>j

Vri−rj
ψ(r1 . . . rN )

(25)

that has to be solved with the initial condition of Eq. (2)
[we remind that the link density ρ(r, r+a; t) is defined by
Eq. (11)]. The main existence and uniqueness results for
the initial value problem of Eqs. (25) and (2), which con-
trol the existence of the lattice TDCDFT, are combined
in the following theorem.
Theorem 2. (Lattice TDCDFT) — Let the link cur-

rents J(r, r+a; t) be continuous functions of t, such that
in the extended phase space H×R there exists a subset
Ω′ ⊂ (H×R) defined by the inequalities

2T0|ρ(r, r+ a)| > |J(r, r+ a; t)|. (26)

If the initial point (ψ0, t0) ∈ Ω′, then
(i) There is a neighborhood of the initial point where
the many-body wave function ψ(t) is a unique retarded
functional of J(r, r + a; t) and ψ0, and the map J ↔ A
from the current to the vector potential is unique and
invertible;
(ii) The statement (i) can not be extended beyond some
maximal existence time t∗, i. e. the solution to Eqs. (25)
and (2) is not global, if and only if at time t∗ the bound-
ary of Ω′ is reached. The latter means that at least for
one link the local kinetic energy |K(r, r + a; t)| → 0 as
t→ t∗.
Proof — The proof of this theorem closely follows the

proof of the Theorem 1 above. Indeed, the NLSE (25) is
formally a system of NH first order ODE of the general
form (18). The condition of Eq. (26) guarantees that in
Eq. (25) the expressions under all square roots are posi-
tive, and no one denominator vanishes. Therefore for all

points (ψ, t) ∈ Ω′ the right hand side in Eq. (25) is a con-
tinuously differentiable function of ψ-variables with an
explicit time dependence determined by the t-continuous
link currents J(r, r + a; t). Hence if the initial point
(ψ0, t0) ∈ Ω′, the Picard-Lindelöf theorem guarantees the
local existence and uniqueness of a solution ψ[J, ψ0](t),
which, in turn, implies the existence of the bijective map
J ↔ A. Because the wave function, being normalized, is
bounded, the only possibility for the solution ψ[J, ψ0](t)
to be not global is that at some time t∗ it reaches the
boundary of the subset Ω′ where the right hand side of
Eq. (25) is defined. In physical terms this means that at
t = t∗ the local kinetic energy K(r, r+ a; t∗) [the square
root in Eq. (25)] vanishes at least for one link. Other-
wise the unique functional ψ[J, ψ0](t) and the bijective
map J ↔ A exist globally in time. End of the proof.

Apparently the conditions of the Theorem 2 are more
restrictive than those in the Theorem 1. Because
the left hand side of the inequality (26) is bounded,
not all currents can be A-representable even locally,
which should be contrasted to the unconditional local T -
representability in the generalized TDCDFT. The physi-
cal reason for this is that the constraint of Eq. (23) fixes
the hopping rate and thus does not allow for arbitrary
large link currents. In virtue of the continuity equation
(14) this also forbids arbitrary fast variations of the den-
sity, as has been noticed in Refs. 13–15. From Eq. (26)
one can easily estimate an upper bound on the admissi-
ble link currents. Indeed, by analogy with Ref. 15, we
can use the Cauchy-Schwarz inequality to find that

|ρ(r, r + a)|2 ≤ N2
∑

r2...rN

|ψ(r, r2 . . . rN )|2
∑

r2...rN

|ψ(r+ a, r2 . . . rN )|2 = n(r)n(r + a), (27)

which leads to the folowing upper bound for A-
representable link currents

|J(r, r+ a)| < 2T0
√

n(r)n(r+ a) ≤

{

NT0, bosons
2T0, fermions

(28)
In spite of the additional restrictions on the currents,

the main outcome of the Theorem 2 is basically the
same as for the generalized TDCDFT. If the condition
(26) is satisfied at the initial time t0, then any continu-
ous link current is locally A-representable and the wave
function is a unique functional of that current, which

holds both for interacting and for noninteracting sys-
tems. Physically the condition (26) simply means that
in the initial state the local link kinetic energy should
be nonzero everywhere. In practice one almost always
starts with the equilibrium/ground state with zero initial
current. In this case the local uniqueness and existence
(A-representability) are guaranteed. In fact, the stan-
dard setup for practical KS-based applications of TD-
CDFT is even less restrictive. What we actually need is
a possibility to reproduce in the KS system the physi-
cal current J flowing in the interacting system, where it
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is produced by some external potential Aext. Hence by
construction J is interacting A-representable. Theorem 2
states that at least locally (i. e. during some finite inter-
val of time) one can always find a selfconsistent potential
AS = Aext + Axc[J ] which will do the required job, pro-
vided we choose the initial state of the KS system with
nonzero link kinetic energies. In general one can not ex-
clude a situation when the physical for the interacting
system current J will eventually drive the noninteracting
KS system to the boundary of the A-representability do-
main Ω′. However this would mean that there is a link
with exactly zero KS kinetic energy, which looks quite
exotic. Therefore it is plausible to assume that in most
physical situations the KS system should exist globally.
According to the Theorem 2 the possibility of having

the same current in two different systems (say interacting
and noninteracting) does not require any special relation
between the initial states, except for nonvanishing local
kinetic energies. However, the identical currents imply
automatically only that the time-dependent parts of the
densities in two systems are the same. If we want to
guarantee the completely identical densities, we should
impose an additional restriction on the admissible initial
states. The initial states for two systems should yield
the same initial density. If the dynamics starts from the
ground state the best choice for the noninteracting initial
state is, apparently, the KS ground state.
I conclude this section by noting that, similarly to the

case of the generalized TDCDFT considered in Sec. III,
the NLSE of Eq. (25) is exactly integrable for a one-
particle system (N = 1). The corresponding solution is
given by Eqs. (20) and (21) with the local kinetic energy
K(r, r+ a; t) of the following form

K(r, r+ a; t)

=
√

4T 2
0 |ψ(r; t)|

2|ψ(r + a; t)|2 − J2(r, r + a; t)(29)

On can check by a direct substitution that the wave func-
tion ψ(r; t) = |ψ(r, t)|eiχ(r,t), where |ψ(r, t)| and χ(r, t)
are determined by Eqs. (20), (21), and (29), indeed solves
Eq. (25) for N = 1. The explicit form of the functional
A[J, ψ0](r, r + a; t) is obtained by inserting this solution
into Eq. (24).
The exact solution provides us with a useful illustra-

tion of the Theorem 2. Because of the presence of the
square root in Eq. (29) the solution makes sense only if
4T 2

0n(r)n(r + a) > J2(r, r + a) for all links. These are
exactly the inequalities, which determine the subset Ω′

in the theorem. If the prescribed current and the ini-
tial state are such that the above inequalities are never
violated, the solution is global and given explicitly by
Eqs. (20), (21), and (29). The only alternative is that
the solution, and thus the mapping, exists up to some
finite time t∗, when at least for one link the local kinetic
energy of Eq. (29) turns into zero, i. e. the presupposed
current becomes too large to be supported by adjust-
ing only phases of the hopping parameters. The N = 1
example also explicitly shows that if at t = t0 the A-

representability inequalities are fulfilled (the expression
under the square root in Eq. (29 is initially positive for
all links), then for any t-continuous current the solution
always exists, at least for some finite interval of time.
The Theorem 2 states that for all interacting many-body
systems the behavior, in a sense of the current-to-vector
potential mapping and the A-representability, is qualita-
tively similar to the exactly solvable case of one particle.

V. CONCLUSION

In this work I have proved the existence of TDCDFT
for lattice many-body systems. The proof is based on the
observation that the density-to-potential mapping and
the V-representability problems can be reformulated in
terms of a solution of a universal NLSE. For lattice sys-
tems the existence and the uniqueness of solutions to this
NLSE can be proved by employing a well developed the-
ory of nonliner ODE.
To make the presentation more transparent I consid-

ered only lattices with nearest neighbor hopping, and
ignored possible internal degrees of freedom, such as
spin or the presence of more than one orbital on each
site. These effects, as well as the spin-orbit interaction,
can be included straightforwardly as they do not change
the general mathematical structure of the many-body
Schrödinger equation, which is essential for the present
proof. Therefore the main statements of the Theorems 1
and 2 should be valid for all lattice many-body systems.
From the practical point of view, the results of this

work are also sufficient to justify the applications of TD-
CDFT, which rely on solving the Schrödinger equation
on a real space grid. If we believe that the finite differ-
ence representation of the quantum many-body problem
is an adequate approximation to the physical reality, then
the TDCDFT is valid to the same level of accuracy. Of
course, conceptually this solution of the problem is not
satisfactory and an independent proof for the continuum
version of the theory is need. The present work strongly
suggests that the NLSE approach is the right way to go.
One of the key features of the present approach to

TDCDFT is that it offers a direct access to the univer-
sal functional A[J ] via the solution of an explicit and
well posed initial value problem. This may be helpful in
studying the exact properties of the exchange-correlation
potential in TDCDFT. In particular, it provides us with
a straightforward procedure for a “reverse engineering”
of the KS vector potential. For example, if for some sim-
ple/model interacting system we are able to solve exactly
the interacting problem, then, using the corresponding
current J(t) as the input, we can almost immediately re-
construct the exact KS vector potential by solving the
noninteracting version of Eq. (25), which is of the same
level of computational complexity as solving the standard
time-dependent KS equations.
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