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Beyond the Random Phase Approximation for the Electron Correlation Energy: The

Importance of Single Excitations
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Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany

The random phase approximation (RPA) for the electron correlation energy, combined with
the exact-exchange energy, represents the state-of-the-art exchange-correlation functional within
density-functional theory (DFT). However, the standard RPA practice – evaluating both the exact-
exchange and the RPA correlation energy using local or semilocal Kohn-Sham (KS) orbitals – leads
to a systematic underbinding of molecules and solids. Here we demonstrate that this behavior is
largely corrected by adding a “single excitation” (SE) contribution, so far not included in the stan-
dard RPA scheme. A similar improvement can also be achieved by replacing the non-self-consistent
exact-exchange total energy by the corresponding self-consistent Hartree-Fock total energy, while
retaining the RPA correlation energy evaluated using Kohn-Sham orbitals. Both schemes achieve
chemical accuracy for a standard benchmark set of non-covalent intermolecular interactions.

In the quest for finding an “optimal” electronic struc-
ture method, that combines accuracy and tractability
with transferability across different chemical environ-
ments and dimensionalities (e.g. molecules, wires/tubes,
surfaces, solids), the treatment of exchange and correla-
tion in terms of “exact-exchange plus correlation in the
random-phase approximation (EX+cRPA)” [1, 2] offers
a promising avenue [3–18]. In this approach, part of the
exact-exchange (EX) energy cancels exactly the spurious
self-interaction error present in the Hartree energy. And
the RPA correlation (cRPA) energy is fully non-local,
whereby long-range van der Waals (vdW) interactions
are included automatically and accurately [19]). Mor-
ever, dynamical electronic screening is taken into account
by summing up a sequence of “ring” diagrams to infi-
nite order, making EX+cRPA applicable to small-gap or
metallic systems where, for example, Hartree-Fock (HF)
plus 2nd-order Møller-Plesset (MP2) perturbation theory
[20] breaks down.

The concept of cRPA dates back to the many-body
treatment of the uniform electron gas in the 1950s
[1, 2], and was later formulated within the context of
density-functional theory (DFT) [21] via the adiabatic-
connection fluctuation-dissipation theorem [22]. Recent
years have witnessed a revived interest in EX+cRPA and
its variants in quantum chemistry [3–9, 23], solid state
physics [10–13], and surface science [14–17]. Within the
framework of Kohn-Sham (KS) DFT, EX+cRPA em-
bodies an orbital-dependent functional that can in prin-
ciple be solved self-consistently via the optimized ef-
fective potential (OEP) approach [24]. Exploiting this
variational principle of the energy functional, practi-
cal EX+cRPA calculations are commonly performed in
a post-processing fashion, where eigenvalues and or-
bitals from a self-consistent DFT calculation in the local-
density approximation (LDA), generalized gradient ap-
proximations (GGAs), or alike, are used to evaluate both
the EX and cRPA terms. Alternatively, one can formu-

late cRPA in terms of many-body perturbation theory
(MBPT) based on a Hartree-Fock (HF) reference state.

Throughout this Letter we will adopt the following
nomenclature: EF@SC is the total energy of the func-
tional F , evaluated with the orbitals of a self-consistent
(SC) scheme, e.g., HF, or the Perdew-Burke-Ernzerhof
(PBE) [25] GGA. The corresponding theoretical scheme
is then labeled F@SC. We also use the letter “x” or “c”
in front of F or as a subscript of EF to refer to the ex-
change or correlation part of the scheme explicitly. The
functional F can be exact exchange (EX), or additionally
contain RPA correlation (EX+cRPA), etc. For exam-
ple, EEX@HF is the self-consistent Hartree-Fock energy,
whereas the conventional RPA scheme based on PBE or-
bitals is referred to as (EX+cRPA)@PBE.

The original schemes (EX+cRPA)@HF and
(EX+cRPA)@PBE both exhibit systematic under-
binding for different types of systems, including covalent
molecules [3], weakly bonded molecules [7, 8], solids
[11, 12], and molecules adsorbed on surfaces [15, 16, 26].
Several attempts have been made to improve the accu-
racy of EX+cRPA. The earliest is the so-called RPA+
scheme [27] where a local correction at the LDA/GGA
level is added to cRPA. More recent attempts add
second-order screened exchange (SOSEX) [9, 28]) to
make the entire approach self-correlation free, or invoke
cRPA in a range-separated framework where only the
long-range part of cRPA is incorporated [7, 8] Among
these, RPA+ improves total correlation energies consid-
erably [29], but not binding energies [3]. The SOSEX
correction performs well [9, 28] with considerable addi-
tional numerical effort. Range-separated RPA schemes
also improve upon the standard EX+cRPA scheme
[7, 8, 18], however, at the price of introducing empirical
parameters in the approach.

In this Letter, we offer a new perspective for go-
ing beyond cRPA, and show that a simple modification
of the standard EX+cRPA scheme leads to a signifi-
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FIG. 1: (Color online) Panel (a): Binding energy curve
for Ar2 computed with four RPA-based approaches, in
comparison to the accurate reference curve by Tang
and Toennies [30]. Panel (b): Decomposition of the
E

EX+cRPA@HF (EEX+cRPA@PBE) binding energy of Ar2
into individual contributions: E

EX@HF (EEX@PBE) and
E

RPA
c @HF (ERPA

c @PBE). The difference between E
EX@HF

and E
EX@PBE, and the E

SE
c term are also plotted. The ver-

tical dashed line marks the equilibrium distance. Calculations
are done with FHI-aims [31, 32] and Dunning’s aug-cc-pV6Z
basis [33]. The basis set superposition error (BSSE) is cor-
rected using the counterpoise scheme here and in the follow-
ing.

cant accuracy increase for molecular binding energies.
We first illustrate our essential idea using the example
of Ar2. The (EX+cRPA)@PBE and (EX+cRPA)@HF
binding energy curves for Ar2 are plotted in Fig. 1(a).
Both schemes show a significant underbinding behav-
ior compared to the reference curve modeled by Tang
and Toennies [30] based on experimental data. To
gain more insight into the origin of the underbind-
ing, the EX+cRPA binding energies are decomposed
into two contributions in Fig. 1(b): exact-exchange and
the remaining cRPA part. An inspection of the indi-
vidual components reveals that EcRPA

c @HF is (much)
more repulsive than EcRPA

c @PBE, whereas at the exact-
exchange level EEX@PBE is (much) more repulsive than
EEX@HF. The fact that EcRPA

c @PBE is more attrac-
tive than EcRPA

c @HF is easy to rationalize by inspect-
ing the frequency-dependent polarizabilities. Extensive
benchmark calculations for 1225 molecular pairs [34]
show that asymptotic C6 dispersion coefficients derived
from EcRPA

c @HF are systematically too small by approx-
imately 40% [32], while this error is only ∼ 10% for
EcRPA

c @PBE. Adding ∆vdW corrections in an attempt
to reduce the remaining error in cRPA@PBE [35] only
leads to minor changes in the binding energy at the equi-
librium distance. What is more striking, however, is the
considerable difference in binding energies at the exact-
exchange level, EHF@HF−EEX@PBE (plotted also in
Fig. 1(b) (red stars)). It amounts to ∼6 meV at the
equilibrium distance and is thus close to the deviation of

the EX+cRPA@PBE binding energy from the reference
value.
From the viewpoint of MBPT, EEX@HF and

EEX@PBE correspond to the first-order in a perturbative
expansion of the respective HF or PBE reference state.
The difference between EEX@HF and EEX@PBE must
therefore be compensated by higher-order terms in the
perturbation since the final result should be independent
of the reference state, if all terms were summed up. The
next term in the series is the 2nd-order correlation energy

E
(2)
c , the significance of which is illustrated by the fact

that 2E
(2)
c gives the initial slope in the adiabatic connec-

tion of the exact DFT correlation energy [36]. In this
work we examine the contribution of single excitations

(SE) to E
(2)
c , which can be expressed [37] as

ESE
c =

occ
∑

i

unocc
∑

a

|〈ψi|f̂ |ψa〉|
2

ǫi − ǫa
. (1)

Here ψi and ǫi are the single particle orbitals and orbital
energies of the reference state, and f̂ is the single-particle
HF Hamiltonian – the Fock operator. A more detailed
derivation of Eq. (1) is given in the supplementary ma-
terial. As a consequence of the Brillouin theorem [37],
ESE

c trivially vanishes for HF orbitals, but is in general
non-zero for KS orbitals. The contribution of ESE

c eval-
uated with PBE orbitals (referred to as cSE@PBE) to
the binding energy of Ar2 is plotted in Fig. 1(b) (vio-
let crosses). It amounts to 50% of the binding energy
at the equilibrium distance and is close in magnitude
to the contribution from EEX@HF−EEX@PBE. It ac-
counts almost fully for the underbinding in the origi-
nal (EX+cRPA)@PBE scheme. We therefore propose
the addition of ESE

c to EEX+cRPA (subsequently referred
to as EX+cRPA+cSE) as new scheme. The resultant
(EX+cRPA+cSE)@PBE binding energy curve for Ar2
is also plotted in Fig. 1(a). One can see that it im-
proves considerably over the (EX+cRPA)@PBE results,
and is in close agreement with the Tang-Toennies refer-
ence curve.
It appears that the quantitative agreement between

ESE
c defined in Eq. (1) and EEX@HF−EEX@PBE is a

general feature. We found for a set of 50 atoms and
molecules that the agreement typically ranges between
70% and 100%. This suggests that replacing EEX@PBE
by EEX@HF is an effective way to account for the SE
contributions. A “hybrid-RPA” scheme, whose total en-
ergy is given by

Ehybrid-RPA = EEX@HF+ EcRPA
c @PBE. (2)

is therefore an alternative to boost the accuracy of RPA.
Fig. 1(a) shows that the resultant binding energy curve
is in almost perfect agreement with the reference curve.
At this point, it is illustrative to take a closer look at

the individual contributions to EEX@HF−EEX@PBE. In
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FIG. 2: (Color online) Decomposition of the E
EX@HF and

E
EX@PBE binding energies for Ar2 into their kinetic, elec-

trostatic, and exchange components.

Fig. 2 we further decompose the EX@HF and EX@PBE
binding energies into their kinetic (Ts), electrostatic
(Eelec, external potential energy and Hartree energy com-
bined), and exact-exchange components (EEX

x ) for Ar2.
All three energy components behave quite differently for
HF and PBE orbitals. The HF kinetic energy is purely
repulsive, whereas the PBE one exhibits spurious attrac-
tion at intermediate and large distances. The HF elec-
trostatic and exact-exchange energies, on the other hand,
are purely attractive and decay to zero from below, while
the corresponding PBE ones become repulsive in the in-
termediate range and decay to zero from above at large
distances. Since the PBE orbitals are less localized than
their HF counterparts all three energy components de-
cay much slower in PBE than in HF. The overall ef-
fect is that EEX@PBE becomes significantly more re-
pulsive than EEX@HF, resulting in the underbinding be-
havior of (EX+cRPA)@PBE. This explains why the SE
term, which would change the PBE orbitals if applied
to the orbitals directly, corrects the unphysical behav-
ior of the components in EEX@PBE and counteracts its
too-repulsive nature.
The exceptional performance of the

(EX+cRPA+cSE)@PBE and hybrid-RPA schemes
for rare-gas dimers carries over to many other molecular
systems. Here we show results for the N2 molecule
adsorbed on benzene (N2@benzene), which is an impor-
tant model system for studying molecular adsorption
on graphene and graphite surfaces [38]. We consider
two possible configurations: N2 placed parallel or
perpendicular to the benzene plane. A successful
theoretical approach for this system must be able to
describe the delicate balance between electrostatic and
dispersion interactions. We use FHI-aims’ [31, 32]
numeric atom-centered orbital basis (6s5p4d3f2g for
C, O, N, and 5s3p2d1f for H ) [31] augmented with
gaussian aug-cc-pV5Z diffuse functions to achieve con-
vergence of the binding energy to within 1 meV. The
results shown in Fig. 3 are very similar to the rare-gas
dimers: (EX+cRPA)@HF and (EX+cRPA)@PBE
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FIG. 3: (Color online) Binding energies of the parallel and
perpendicular configuration of N2@benzene as a function of
the N2-C6H6 center-of-mass distance, calculated by different
RPA-based approaches as well as MP2 compared to reference
CCSD(T) calculations from Ref. [38].

TABLE I: Mean absolute error (in meV) and mean absolute
percentage error (in parenthesis) of different RPA-based ap-
proaches for the S22 database [39]. CCSD(T) extrapolated to
the complete basis set limit [40] is taken as reference.

H-bond Dispersion Mixed

(EX+cRPA)@HF 45 ( 8.5%) 70 (43.9%) 34 (20.9%)
(EX+cRPA)@PBE 57 (11.2%) 36 (21.8%) 24 (15.0%)
(EX+cRPA+cSE)@PBE 30 ( 6.0%) 18 (12.0%) 8 ( 5.5%)
hybrid-RPA 18 ( 3.0%) 17 (10.0%) 8 ( 5.1%)

underbind significantly at the equilibrium distance,
while hybrid-RPA and (EX+cRPA+cSE)@PBE bring
the binding energy into much closer agreement with
the reference curve computed with the coupled cluster
method including single, double and perturbative triple
excitations (CCSD(T)) [38].

Finally we examine the performance of
(EX+cRPA+cSE)@PBE and hybrid-RPA for the
S22 database of Jurečka et al. [39], which represents a
balanced benchmark set for non-covalent interactions.
The molecular dimers in this database can be divided
into three groups of different bonding types: hydrogen-
bonded, dispersion-bonded, and mixed complexes. We
note that RPA in a range-separated framework has
been applied to the S22 database very recently [18]. In
Fig. 4 we plot the deviation from the CCSD(T) reference
values [40] for the binding energies in the S22 database
[39] for (EX+cRPA)@HF, (EX+cRPA)@PBE, MP2,
(EX+cRPA+cSE)@PBE, and hybrid-RPA. The basis
set type and quality is the same as for N2@benzene. A
detailed error analysis is presented in Table I.

We observe that the standard (EX+cRPA)@PBE
scheme systematically underbinds all complexes.
(EX+cRPA)@HF performs even worse for dispersion
and mixed bonding, but better for hydrogen bonding.
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FIG. 4: (Color online) Deviation from the CCSD(T) reference
values [40] for the binding energies of the S22 database [39]
for RPA-based approaches as well as MP2. Positive errors
correspond to overbinding and negative ones to underbinding.

The latter case can be explained by the fact that the
better performance of EX@HF dominates over the bad
performance of cRPA@HF for hydrogen bonded systems.
Again (EX+cRPA+cSE)@PBE and hybrid-RPA correct
the underbinding behavior of the standard EX+cRPA
schemes, and improve the accuracy considerably. The
hybrid-RPA scheme yields a mean absolute error (MAE)
of 14 meV. The performance of (EX+cRPA+cSE)@PBE
is very similar for dispersion and mixed bonding, albeit
somewhat worse for hydrogen bonding. However, the
mean absolute percentage error for hydrogen bond-
ing (6%) is still quite small. Finally we note that
atomization energies of covalent molecules are also
improved considerably by (EX+cRPA+cSE)@PBE and
hybrid-RPA. However, for a more detailed analysis we
refer to future work [32].

To summarize, we have unraveled the origin of the un-
derbinding in the standard (EX+cRPA)@PBE scheme,
which is mainly due to the too-repulsive nature of
EEX@PBE rather than the underestimation of the long-
range dispersion coefficients by EcRPA

c @PBE. This prob-
lem can be largely solved either by replacing EEX@PBE
by the self-consistent HF energy EEX@HF, or by adding
a SE correction to the standard (EX+cRPA)@PBE ap-
proach. Particularly (EX+cRPA+cSE)@PBE is a well-
defined parameter-free scheme in which the cSE term
is much cheaper to compute than the cRPA term, and
hence does not add any significant computational cost
to the approach. Encouraged by its remarkable perfor-
mance for weak interactions, we therefore propose the
EX+cRPA+cSE scheme as a new starting point for fu-
ture developments of RPA-based approaches. Moreover
one can easily generalize the cSE contributions at the
2nd-order by summing up a geometrical series of higher-
order diagrams involving single excitations (in the spirit
of cRPA). This generalization will make EX+cRPA+cSE
more robust, and allow it to be applied to systems with

vanishing gaps. The details of this generalized scheme
will be presented elsewhere [32]. In addition, the SE cor-
rection is compatible with other beyond-RPA schemes
like RPA+ or SOSEX [41].
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[39] P. Jurečka et al., Phys. Chem. Chem.Phys. 8, 1985

(2006).
[40] T. Takatani et al., J. Chem. Phys. 132, 144104 (2010).
[41] J. Paier et al., in preparation.



ar
X

iv
:1

01
1.

27
24

v1
  [

co
nd

-m
at

.o
th

er
]  

11
 N

ov
 2

01
0

Derivation of the single excitation contribution to the 2nd order correlation energy

In this supplementary material we derive Eq. (1) that
is presented in the main part of this Letter – the sin-
gle excitation contribution to the 2nd-order correlation
energy – from Rayleigh-Schrödinger perturbation theory
(RSPT). The interacting N -electron system at hand is
governed by the Hamiltonian

Ĥ =

N
∑

i=1

[

−
1

2
∇2

i + v̂ext(ri)

]

+

N
∑

i<j

1

|ri − rj |
,

where v̂ext(r) is a local, multiplicative external potential.
In RSPT, Ĥ is partitioned into a non-interacting mean-
field Hamiltonian Ĥ0 and an interacting perturbation Ĥ ′,

Ĥ = Ĥ0 + Ĥ ′

Ĥ0 =

N
∑

i=1

ĥ0(i) =

N
∑

i=1

[

−
1

2
∇2

i + v̂ext(ri) + v̂MF
i

]

Ĥ ′ =
N
∑

i<j

1

|ri − rj |
−

N
∑

i=1

v̂MF
i .

Here v̂MF is any mean-field potential, which can be non-
local, as in the case of Hartree-Fock (HF) theory, or local,
as in the case of Kohn-Sham (KS) theory.
Suppose the solution of the single-particle Hamiltonian

ĥ0 is known

ĥ0|ψp〉 = ǫp|ψp〉, (1)

then the solution of the non-interacting many-body
Hamiltonian H0 follows

Ĥ0|Φn〉 = E(0)
n |Φn〉.

The |Φn〉 are single Slater determinants formed from N

of the spin orbitals |p〉 = |ψp〉 determined in Eq. (1).
These Slater determinants can be distinguished accord-
ing to their excitation level: the ground-state configu-
ration |Φ0〉, singly excited configurations |Φa

i 〉, doubly
excited configurations |Φab

ij 〉, etc., where i, j, . . . denotes
occupied orbitals and a, b, . . . unoccupied ones. Follow-
ing standard perturbation theory, the single-excitation
contribution to the 2nd-order correlation energy is given
by

ESE
c =

occ
∑

i

unocc
∑

a

|〈Φ0|Ĥ
′|Φa

i 〉|
2

|E
(0)
0 − E

(0)
i,a |

=

occ
∑

i

unocc
∑

a

|〈Φ0|
∑N

i<j
1

|ri−rj |
−
∑N

i=1 v
MF
i |Φa

i 〉|
2

|ǫi − ǫa|

(2)

where we have used the fact E
(0)
0 − E

(0)
i,a = ǫi − ǫa.

To proceed, the numerator of Eq. (2) needs to be
evaluated. This can most easily be done using second-

quantization

N
∑

i<j

1

|ri − rj |
→

1

2

∑

pqrs

〈pq|rs〉c†pc
†
qcscr,

N
∑

i=1

vMF
i →

∑

pq

〈p|vMF|q〉c†pcq,

where p, q, r, s are arbitrary spin-orbitals from Eq. (1), c†p
and cq, etc. are the electron creation and annihilation op-
erators, and 〈pq|rs〉 the two-electron Coulomb integrals

〈pq|rs〉 =

∫

drdr′
ψ∗
p(r)ψr(r)ψ

∗
q (r

′)ψs(r
′)

|r− r
′|

.

The expectation value of the two-particle Coulomb oper-
ator between the ground-state configuration Φ0 and the
single excitation Φa

i is given by

〈Φ0|
1

2

∑

pqrs

〈pq|rs〉c†pc
†
qcscr|Φ

a
i 〉 =

occ
∑

p

[〈ip|ap〉 − 〈ip|pa〉]

= 〈ψi|v
HF|ψa〉 (3)

where vHF is the HF single-particle potential.
The expectation value of the mean-field single-particle

operator vMF, on the other hand, is given by

〈Φ0|
∑

pq

〈p|vMF|q〉c†pcq|Φ
a
i 〉 = 〈ψi|v

MF|ψa〉

= −〈ψi| −
1

2
∇2 + v̂ext|ψa〉. (4)

To arrive at Eq. (4), we have used the fact that the ψ’s

are eigenstates of ĥ0 = − 1
2∇

2+vext+v
MF, and hence all

non-diagonal elements 〈ψi|ĥ
0|ψa〉 are zero. Combining

Eqs. (2), (3), and (4), yields

ESE
c =

occ
∑

i

unocc
∑

a

|〈ψi| −
1
2∇

2 + v̂ext + v̂HF|ψa〉|
2

|ǫi − ǫa|

=

occ
∑

i

unocc
∑

a

|〈ψi|f̂ |ψa〉|
2

|ǫi − ǫa|

where f̂ is the single-particle HF Hamiltonian, or simply
Fock operator.
For the HF reference state, i.e., when vMF = vHF,

the ψ’s are eigenstates of the Fock operator, and hence
Eq. (2) is zero. For any other reference state, e.g., the KS
reference state, the ψ’s are no longer eigenstates of the
Fock operator, and Eq. (2) is in general not zero. This
gives rise to a finite single-excitation contribution to the
second-order correlation energy.
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