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ON SPECTRAL PROPERTIES OF THE FOURTH ORDER DIFFERENTIAL

OPERATOR WITH SINGULAR COEFFICIENTS

STEPAN MAN’KO

ABSTRACT. A formal fourth order differential operator with a singular coefficient
that is a linear combination of the Dirac delta-function and its derivatives is con-
sidered. The asymptotic behavior of spectra and eigenfunctions of a family of
differential operators with smooth coefficients approximating the singular coeffi-
cients is studied. We explore how behavior of eigenvalues and eigenfunctions is
influenced by singular coefficients. The limit operator is constructed and is shown
to depend on a type of approximation of singular coefficients.

1. INTRODUCTION

Differential operators with singular coefficients appear in atomic physics, acous-
tics, quantum mechanics, solid state physics, aerodynamics, fluid mechanics, aeroa-
coustics [1], [2], [8], [9], [15], [16]. An important task of the theory of differen-
tial equations is to find the minimal smoothness of coefficients, under which the
equation admits a solution. Although there are some models that are closely re-
lated to the differential operators with distributions in coefficients it is impossible
to construct the theory of linear differential equations with distributional coeffi-
cients, since the space of distributions D′(Rn) is not an algebra with respect to
the “pointwise” multiplication. This raises the basic question how to interpret the
differential operators with distributions in coefficients.

A lot of models are expected to be “selfadjoint” in the sense that appropriate
operators, describing these models must be selfadjoint in some Hilbert spaces. Let
a differential expression S correspond to such a model and let it contain distri-
butions, supported by x = 0, in coefficients. In order to interpret the operator
S we first construct a symmetric operator S0 by restricting S to the set of func-
tions vanishing at the origin along with their derivatives. Then we consider all
selfadjoint extensions of S0 and choose one of these extensions as a definition of
S. This method goes back to the work of F. Berezin and L. Faddeev [6]. In some
instances the set of all selfadjoint extensions of a symmetric operators is multi-
parametric. Therefore the harder question comes: how to choose an extension that
is best suited to our physical model. For some models the proper operator can
not be chosen within the selfadjoint extensions theory, because the models con-
tain hidden parameters. After replacing the singular coefficient with a sequence
of short-range smooth coefficients, the operator obtained in the zero-range limit,
as often happens, can depend on the type of regularization, i.e., the operator is
governed by the shape of squeezed coefficients. This shape is a hidden parameter
and plays a crucial role in the choice of a selfadjoint extension corresponding to
the physical model under consideration.
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In [10], [11] the problem how to define the one-dimensional Schrödinger opera-
tor with the δ′-potential, where δ′ is the first derivative of the Dirac delta-function,
was considered . A natural approach to defining such a Hamiltonian is to ap-
proximate δ′ in D′(Rn)-topology by regular potentials and then to investigate the
corresponding family of regular Schrödinger operators. Therefore the authors con-
sidered the family of Schrödinger operators on the line of the form

Hε(α, Ψ) = −
d2

dx2
+ U(x) +

α

ε2
Ψ

(x

ε

)

,

approaching a formal Hamiltonian Hα = − d2

dx2 + U(x) + αδ′(x). Here ε is a small

positive parameter, Ψ ∈ C∞

0 (−1, 1), U is a real valued potential going to +∞ as
|x| → ∞, and α is a real coupling constant. The map assigning a limit operator
H(α, Ψ) to each pair (α, Ψ) was constructed there. The choice of H(α, Ψ) is de-
termined by proximity of its energy levels and pure states to those for the Hamil-
tonian with regularized potentials for small ε. For almost all α the limit opera-
tor is just the direct sum of the Schrödinger operators with the potential U on
half-axes subject to the Dirichlet boundary condition at the origin (the nonresonant
case). But for α belonging to the discrete resonant set ΣΨ, which is the spectrum
of the Sturm-Liouville problem −w′′ + αΨw = 0 on the interval (−1, 1) subject
to the boundary conditions w′(−1) = w′(1) = 0, the operator H(α, Ψ) acts via
H(α, Ψ) f = − f ′′ + U f on an appropriate set of functions satisfying the matching
conditions f (+0) = θΨ(α) f (−0) and θΨ(α) f ′(+0) = f ′(−0) (the resonant case).
Here θΨ(α) = wα(1)/wα(−1), where wα is an eigenfunction corresponding to the
eigenvalue α ∈ ΣΨ.

In [12] the results of [10], [11] were extended to the case of the fourth order
ordinary differential operators. An attempt was made to define the formal dif-

ferential operator Aα = d4

dx4 + U(x) + αδ′′′(x). To approximate Aα, the family

Aε(α, Ψ) = d4

dx4 + U(x) + α
ε4 Ψ

(

x
ε

)

with domain

D(Aε(α, Ψ)) = { f ∈ W4
2 (a, b) : f (a) = f ′(a) = 0, f (b) = f ′(b) = 0}

was considered. Here (a, b) is an interval of R containing the origin, U is a smooth
real valued function on [a, b] and Ψ ∈ C∞

0 (−1, 1). Asymptotic expansions for
eigenvalues and eigenfunctions of Aε(α, Ψ) were constructed, and therefore the
limit operator A(α, Ψ) was obtained. Upon constructing asymptotics two different
cases are distinguished: the resonant case and the nonresonant one. In the resonant
case α belongs to the discrete resonant set ΣΨ ⊂ R, which is the spectrum of the
eigenvalue problem

(1.1)

{

w(4) + αΨw = 0, ξ ∈ (−1, 1),

w′′(−1) = w′′′(−1) = 0, w′′(1) = w′′′(1) = 0.

The limit operator was obtained under the additional assumptions

(1.2) α is a simple eigenvalue of the problem (1.1) and w′
α(−1)w′

α(1) 6= 0,

where wα is an eigenfunction corresponding to the eigenvalue α. In this case

A(α, Ψ) acts via A(α, Ψ) f = f (4) + U f on an appropriate set of functions obey-
ing the interface conditions f (0) = 0, f ′(+0) = θΨ(α) f ′(−0) and θΨ(α) f ′′(+0) =
f ′′(−0), where θΨ(α) = w′

α(1)/w′
α(−1). In the nonresonant case, when α /∈ ΣΨ,
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the limit operator is the direct sum of the Dirichlet operators on (a, 0) and (0, b)
respectively.

We extend the results of [12] to more a general perturbation of the fourth order
differential operator, namely, we consider a formal differential expression

d4

dx4
+ U(x) + αδ′′′(x) + βδ′′(x) + γ1δ′(x) + γ2δ(x).

The investigation of the papers [10]–[12] is based on the asymptotic analysis. We
will use techniques of [10]–[12] to obtain an appropriate limit operator.

1.1. Problem statement and main results. Let L stand for the differential expres-

sion d4

dx4 + U(x). As before U is a smooth real valued function on the interval

[a, b] ⊂ R, containing the origin. Denote by Ψε the function

Ψε(x) = αε−4
Ψ(ε−1x) + βε−3

Φ(ε−1x) + γ1ε−2
Υ1(ε

−1x) + γ2ε−1
Υ2(ε

−1x).

Here Ψ, Φ, Υ1, Υ2 ∈ C∞
0 (−1, 1), supp Ψ = [−1, 1], and α, β, γ1, γ2 ∈ R are arbitrary

constants. Let us consider the eigenvalue problem

(1.3) Lyε + Ψε(x)yε = λεyε, x ∈ (a, b), yε(a) = y′ε(a) = yε(b) = y′ε(b) = 0.

Note that the further analysis of the problem (1.3) does not depend on the type
of boundary conditions. Hence Dirichlet boundary conditions may be replaced by
one of the possible combinations at the endpoints x = a and x = b of the following
boundary conditions

y(x0) = y′(x0) = 0, y(x0) = y′′(x0) = 0, y′′(x0) = y′′′(x0) = 0.

We associate with the problem (1.3) an operator

Sε(α, β, γ1, γ2; Ψ, Φ, Υ1, Υ2) =
d4

dx4
+ U(x) + Ψε(x),

D(Sε(α, β, γ1, γ2; Ψ, Φ, Υ1, Υ2)) = { f ∈ W4
2 (a, b) :

f (a) = f ′(a) = 0, f (b) = f ′(b) = 0}.

We denote it briefly by Sε.
Note that for some Ψ, Φ, Υ1, Υ2 ∈ C∞

0 (−1, 1) the function Ψε converges in the
sense of distributions as ε → 0 to the linear combination of the derivatives of the
Dirac delta-function, which serves as a motivation for the choice of the singular
perturbation Ψε. If therefore the operator Sε converges (in some sense) as ε → 0 to
the limit operator, then it is natural to regard this limit as the interpretation of the

fourth order differential operator d4

dx4 + U + αδ′′′ + βδ′′ + γ1δ′ + γ2δ.

Our purpose is to investigate the asymptotic behavior of eigenvalues λε and
eigenfunctions yε as ε → 0. The perturbation Ψε consists of four terms each of
which has different influence on λε and yε. It is of interest to know when each term
starts to have effect in asymptotic expansions. Intuitively, we expect that the term
approximating the third derivative of the Dirac delta-function has to be dominat-
ing. We also wish to assign an operator to each collection (α, β, γ1, γ2; Ψ, Φ, Υ1, Υ2).
We base the choice of the limit operator on the proximity of its eigenvalues and
eigenfunctions to those of the operators Sε for sufficiently small ε.

The rest of the paper is organized as follows. Sec. 2 includes the description
of the spectrum of the perturbed operators Sε. We show that all eigenvalues are
continuous functions of ε and are bounded from above. Generally speaking, the
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spectrum of this family is not bounded from below as ε → 0: for some Ψ and α
there exists a finite number of eigenvalues converging to −∞ as ε → 0.

Then Sec. 3 presents the formal asymptotic expansions for the eigenvalues and
eigenfunctions of Sε. The leading terms of asymptotic expansions and the limit
operators are constructed in the section. We introduce a spectral characteristic of
the shape Ψ, namely, the resonant set ΣΨ, which is the spectrum of the eigenvalue
problem (1.1). In the case when α does not belong to the resonant set, the limit
operator is just the direct sum of the Dirichlet operators on (a, 0) and (0, b) respec-
tively. In the resonant case, when α ∈ ΣΨ, the limit operator Sα,β(Ψ, Φ) acts via

Sα,β(Ψ, Φ) f = L f on a set of functions obeying appropriate coupling conditions
at the origin.

The remainders of asymptotics for eigenvalues and eigenfunctions of Sε are
constructed in Sec. 4, because we are in need of more precise asymptotics in order
to prove the approximation theorems. In this section we also analyze the effect of
each singular term. The justification and estimation of the range of validity for the
approximations are presented in Sec. 5.

2. SPECTRUM OF Sε AND AUXILIARY RESULTS

An element f of C∞
0 (−1, 1) is called the δ(n)-like shape if

ε−(n+1) f (ε−1x) → δ(n)(x) as ε → 0

in D′(R)-topology. Set 〈 f 〉k = (k!)−1
∫

∞

−∞
ξk f (ξ) dξ. It is easy to prove that a func-

tion f ∈ C∞
0 (−1, 1) is the δ(n)-like shape if and only if 〈 f 〉j = 0 for j = 0, . . . , n − 1

and 〈 f 〉n = (−1)n ( see [11] for details). In what follows, we denote by Mn the set

of all δ(n)-like shapes, i.e.

Mn =
{

f ∈ C∞
0 (−1, 1) : 〈 f 〉j = 0, j = 0, . . . , n − 1, 〈 f 〉n = (−1)n

}

.

For all ε > 0 the spectrum of Sε is real and discrete. Let {λε
k}

∞

k=1 be the eigenval-
ues of Sε enumerated in increasing order taking multiplicity into account. Suppose
that {yε

k}
∞

k=1 is the L2(a, b)-orthonormal system of eigenfunctions.

Theorem 2.1. The eigenvalues λε
k of the operator Sε are continuous functions of

ε ∈ (0, 1). Moreover, all eigenvalues are bounded from above as ε → 0. Let Ψ

change sign and |α| be large enough; then the spectrum of Sε is unbounded from
below as ε → 0, in particular, λε

1 ≤ −cε−4 for some positive constant c. There is at
most a finite number N− of eigenvalues converging to −∞ as ε → 0.

Proof. Let us consider the quadratic form

qε[u] =
∫ b

a

(

|u′′|2 + (U + Ψε)|u|
2
)

dx,

u ∈ H = { f ∈ W2
2 (a, b) : f (a) = f ′(a) = 0, f (b) = f ′(b) = 0},

that is equicontinuous on the set of functions u ∈ D(qε) ∩ {‖v‖ = 1} with respect
to ε. The minimax principle [5, p. 343]

λε
k = inf

Ek

sup
v∈Ek, ‖v‖=1

qε[v],

yields continuity of eigenvalues with respect to ε. Here Ek runs over all k-dimensional
linear subspaces of H, and ‖ · ‖ denotes the L2(a, b)-norm.
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Choose a subspace E∗
k containing only elements vanishing in a neighborhood

of the origin. Then we obtain

λε
k ≤ sup

v∈E∗
k , ‖v‖=1

qε[v].

For sufficiently small ε the restriction of qε to E∗
k does not depend on ε. This yields

boundedness of the eigenvalues from above.
Suppose Ψ changes sign. Let u ∈ C∞

0 (a, b) be a normalized function supported
on an interval [c1, c2], where Ψ takes negative values. Consider the sequence

uε(x) = ε−1/2u(ε−1x), ‖uε‖ = 1, and assume that α > 0. From the minimax
principle one can conclude that

ε4λε
1 ≤ ε4qε[uε] = ε4

∫ c2ε

c1ε

(

|u′′
ε |

2 + U|uε|
2 + Ψε|uε|

2
)

dx =

=
∫ c2

c1

(

|u′′|2 − α|Ψ||u|2
)

dξ+

+ ε

∫ c2

c1

(

βΦ + γ1εΥ1 + γ2ε2
Υ2

)

|u|2 dξ + ε4
∫ c2

c1

U(εξ)|u|2 dξ.

The first integral gives a negative number for α > r, where

r =
∫ c2

c1

|u′′(ξ)|2 dξ ·

(

∫ c2

c1

|Ψ(ξ)||u|2 dξ

)−1

,

while the other terms go to zero. Thus for ε sufficiently small the estimate λε
1 ≤

−cε−4 holds with some positive c. The case α < 0 may be handled in much the
same way.

Let N−
ε denote the number of negative eigenvalues of the operator Sε. Clearly,

N− ≤ lim supε→0 N−
ε . It is well known [4] that the estimate for the number of

negative eigenvalues

N−
ε ≤ c0 + c1

∫ b

a
|x|3 |U(x)| dx + c2

∫ b

a
|x|3 |Ψε(x)| dx,

holds, where c0, c1 and c2 are positive constants. The function Ψε is supported on
[−ε, ε], thus

∫ b

a
|x|3 |Ψε(x)| dx =

∫ ε

−ε
|x|3

(

ε−4|αΨ(ε−1x)|+ ε−3|βΦ(ε−1x)|+

+ ε−2|γ1Υ1(ε
−1x)|+ ε−1|γ2Υ2(ε

−1x)|
)

dx = |α|
∫ 1

−1
|ξ|3 |Ψ(ξ)| dξ+

+ ε

∫ 1

−1
|ξ|3

(

|βΦ(ξ)|+ ε|γ1Υ1(ξ)|+ ε2|γ2Υ2(ξ)|
)

dξ ≤ |α|c(Ψ) + 1

for small ε > 0. From what has already been proved it follows that

N− ≤ c0 + c1(U) + c2(Ψ)|α|

for some positive constants c0, c1(U), c2(Ψ). �

Therefore the spectrum of Sε consists of two parts: the set of eigenvalues tend-
ing to −∞ as ε → 0, and the set of all bounded eigenvalues as ε → 0.
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3. ASYMPTOTICS OF EIGENVALUES AND EIGENFUNCTIONS OF Sε AND THE LIMIT

OPERATOR

Fix an eigenvalue λε
k of the problem (1.3) with k > N−. We write it λε for short.

Let yε be the corresponding eigenfunction. The asymptotic expansions of λε are
represented by

λε ∼ λ + ελ1 + ε2λ2 + . . . ,(3.1)

and we postulate two-scale expansions for the eigenfunction

yε(x) ∼ v(x) + εv1(x) + ε2v2(x) + . . . for x ∈ (a,−ε) ∪ (ε, b),(3.2)

yε(x) ∼ εw(ε−1x) + ε2w1(ε
−1x) + . . . for x ∈ (−ε, ε).(3.3)

Here all functions v, vk are defined for x ∈ (a, 0) ∪ (0, b), and w, wk are defined
for ξ ∈ (−1, 1). Assume that v is different from zero. Series (3.2), (3.3) satisfy the
coupling conditions

(3.4)
[

y
(j)
ε

]

x=−ε
= 0,

[

y
(j)
ε

]

x=ε
= 0, j = 0, . . . , 3,

where by [ f ]x=a we denote the jump of f at a point a.
We substitute series (3.1), (3.2) into the equation and the boundary conditions

(1.3) and derive

Lv = λv, v(a) = v′(a) = 0, v(b) = v′(b) = 0,(3.5)

Lv1 = λv1 + λ1v, v1(a) = v′1(a) = 0, v1(b) = v′1(b) = 0,(3.6)

Lv2 = λv2 + λ1v1 + λ2v, v2(a) = v′2(a) = 0, v2(b) = v′2(b) = 0,(3.7)

where all equations hold on (a, 0) ∪ (0, b). We set ξ = ε−1x. After substituting
(3.1), (3.3) into the equation (1.3), one obtains the following equations on (−1, 1)

w(4) + αΨw = 0,(3.8)

w
(4)
1 + αΨw1 = −βΦw,(3.9)

w
(4)
2 + αΨw2 = −βΦw1 − γ1Υ1w,(3.10)

w
(4)
3 + αΨw3 = −βΦw2 − γ1Υ1w1 − γ2Υ2w.(3.11)

Substituting (3.2), (3.3) into the coupling conditions (3.4), we can assert that

v(j)(±ε) + ε v
(j)
1 (±ε) + ε2 v

(j)
2 (±ε) + · · · ∼ ε1−j w(j)(±1) + ε2−j w

(j)
1 (±1) + · · ·
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for j = 0, . . . , 3. We can now expand v
(j)
k into the formal Taylor series about x =

±0. Then we conclude that

v(−0) = 0, v(+0) = 0,(3.12)

w′′(±1) = 0, w′′′(±1) = 0,(3.13)

v′(−0) = w′(−1), v′(+0) = w′(1),(3.14)

v1(−0)− v′(−0) = w(−1), v1(+0) + v′(+0) = w(1),(3.15)

v′1(−0)− v′′(−0) = w′
1(−1), v′1(+0) + v′′(+0) = w′

1(1),(3.16)

v2(−0)− v′1(−0) + 1
2 v′′(−0) = w1(−1), v2(+0) + v′1(+0) + 1

2 v′′(+0) = w1(1),

(3.17)

v′2(−0)− v′′1 (−0) + 1
2 v′′′(−0) = w′

2(−1), v′2(+0) + v′′1 (+0) + 1
2 v′′′(+0) = w′

2(1),

(3.18)

w′′
1 (±1) = v′′(±0), w′′′

1 (±1) = 0,(3.19)

w′′
2 (±1) = v′′1 (±0)± v′′′(±0), w′′′

2 (±1) = v′′′(±0),(3.20)

w′′
3 (±1) = v′′2 (±0)± v′′′1 (±0) + 1

2 v(4)(±0), w′′′
3 (±1) = v′′′1 (±0)± v(4)(±0).

(3.21)

It follows that v satisfies the equation and the boundary conditions (3.5), and fur-
thermore v(0) = 0. The function w is a solution to the problem

(3.22) w(4) + αΨw = 0, ξ ∈ (−1, 1), w′′(±1) = 0, w′′′(±1) = 0.

Moreover these functions are related by the coupling conditions (3.14). The prob-
lem (3.22) is decisive in our next consideration, because it contains information
about the singular perturbation. The first and primary question is whether there
exists its nontrivial solution.

3.1. Resonant set. The problem (3.22) can be regarded as a spectral problem with
the spectral parameter α. We note that in the generic case, the function Ψ is sign-
changing. It is of interest to investigate spectral properties of this problem. We
will also introduce the spectral characteristic of the shape Ψ.

We introduce the operator TΨ = 1
Ψ(ξ)

d4

dξ4 with the domain

D(TΨ) = { f ∈ L2
|Ψ|(−1, 1) | Ψ

−1 f (4) ∈ L2
|Ψ|(−1, 1), f ′′(±1) = f ′′′(±1) = 0}.

The problem (3.22) is equivalent to the spectral equation TΨw = −αw.

Theorem 3.1. Given Ψ ∈ C∞

0 (R), with supp Ψ = [−1, 1], the spectrum of the
operator TΨ is real and discrete. Suppose Ψ changes sign; then the spectrum of TΨ

has two accumulation points −∞ and +∞.

Proof. Since the case where Ψ keeps sign is much simpler and can be handled
within the standard Hilbert space theory, we assume that Ψ changes sign and
apply the Krein space theory to investigate the spectrum of TΨ. Let L be the

weighted L2-space with the scalar product ( f , g) =
∫ 1
−1 |Ψ| f ḡ dξ, and let us de-

fine by [ f , g] =
∫ 1
−1 Ψ f ḡ dξ the indefinite metric in L. Then the pair (L, [·, ·]) is

called a Krein space [3, ch. 1].
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In this Krein space there exists the fundamental symmetry J f = sgn Ψ f such
that [ f , g] = (J f , g) for all f , g ∈ L. An operator T is J-selfadjoint if JT is selfadjoint

in L2
|Ψ|

(−1, 1). An operator T is said to be J-nonnegative if [T f , f ] ≥ 0 for all f ∈

D(T).
For each Ψ ∈ C∞

0 (−1, 1) the operator JTΨ is selfadjoint, and so TΨ is J-selfadjoint.
Next, for all f ∈ D(TΨ) one obtains

[TΨ f , f ] =
∫ 1

−1
f (4) f dξ =

∫ 1

−1

∣

∣ f ′′
∣

∣

2
dξ ≥ 0.

Thus TΨ is J-nonnegative. Any J-selfadjoint and J-nonnegative operator with a
nonempty resolvent set has real spectrum [3, p. 138]. Let us show that the resol-
vent set of TΨ is nonempty. The homogenous problem

(3.23) g(4) + iΨg = 0, ξ ∈ (−1, 1), g′′(±1) = 0, g′′′(±1) = 0

has a trivial solution only. Indeed, each solution satisfies the equality

∫ 1

−1

∣

∣g′′
∣

∣

2
dξ + i

∫ 1

−1
Ψ |g|2 dξ = 0.

Since Ψ is real-valued, it follows that g is a linear function. Obviously, only zero

function can be a solution of (3.23). Hence the nonhomogeneous problem g(4) +
iΨg = h, g′′(±1) = 0, g′′′(±1) = 0 admits a unique solution for arbitrary h ∈
L2(−1, 1) [13, p. 39]. Note that Ψ f belongs to L2(−1, 1) for each f ∈ L, since

‖Ψ f‖L2(−1,1) ≤ maxR |Ψ|1/2 · ‖ f‖L. Then the equation TΨg + ig = f is equivalent

to the nonhomogeneous problem g(4) + iΨg = Ψ f , g′′(±1) = 0, g′′′(±1) = 0 and
admits a unique solution for each f ∈ L. Therefore −i belongs to the resolvent set.
Since the resolvent set of TΨ is nonempty, the spectrum of TΨ is real.

We shall prove that the resolvent Rµ(TΨ) of the operator TΨ is compact. The
operator Rµ(TΨ) acts from the space L into D(TΨ), and for each f ∈ L solves the
equation

g(4) − µΨg = Ψ f , g ∈ D(TΨ).

As far as the right-hand side Ψ f belongs to L2(−1, 1), it follows that the solu-

tion g is an element of W4
2 (−1, 1). The space D(TΨ) is a Banach space with the

graph norm. The sequence of continuous embeddings D(TΨ) ⊂ W4
2 (−1, 1) ⊂

L2(−1, 1) ⊂ L yields the compactness of the resolvent, since W4
2 (−1, 1) ⊂ L2(−1, 1)

is the compact embedding. As a consequence we have σ(TΨ) = σp(TΨ).
Since Ψ changes sign, the spectrum σ(TΨ) is unbounded in both directions [7].

�

We introduce the set ΣΨ = {α ∈ R : − α ∈ σ(TΨ)}, which is the spectrum of the
problem (3.22). We call ΣΨ the resonant set of the shape Ψ. When α ∈ ΣΨ, suppose
that (1.2) holds (the case of nondegenerate resonance). In this paper we assume that
only the nondegenerate resonance is possible, namely, if α belongs to the resonant
set, then both conditions (1.2) hold.

3.2. The limit operator. Let us continue to construct the asymptotics. We distin-
guish two different cases and start with the assumption α /∈ ΣΨ. Then the problem
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(3.22) admits a trivial solution w = 0 only. That v′(0) = 0 follows from the cou-
pling conditions (3.14). We conclude from (3.5) that v is a solution to the problem

(3.24)

{

Lv = λv, x ∈ (a, 0) ∪ (0, b),

v(a) = v′(a) = 0, v(0) = v′(0) = 0, v(b) = v′(b) = 0.

Let us introduce the operators

S− f = L f , D(S−) = { f ∈ W4
2 (a, 0) : f (a) = f ′(a) = 0, f (0) = f ′(0) = 0},

S+ f = L f , D(S+) = { f ∈ W4
2 (0, b) : f (0) = f ′(0) = 0, f (b) = f ′(b) = 0}.

The operator S− ⊕ S+ is associated with the problem (3.24). Therefore in the non-
resonant case, when α /∈ ΣΨ, we can define the limit operator as S− ⊕ S+.

Let us now suppose that α belongs to the resonant set ΣΨ. Recalling (1.2), we
deduce that the quotient

θΨ(α) =
w′

α(1)

w′
α(−1)

is well defined and does not depend on the choice of an eigenfunction. Clearly,
w = cwα(ξ), where c is a constant. We conclude from (3.14) that v′(−0) = cw′

α(−1),
v′(+0) = cw′

α(1), hence that

(3.25) v′(+0)− θΨ(α)v
′(−0) = 0,

and also that c = v′(−0)
w′

α(−1)
. According to (3.9), (3.19) the next term w1 of series (3.3)

can be found by solving the problem

(3.26)
w
(4)
1 + αΨw1 = −β

v′(−0)
w′

α(−1)
Φwα, ξ ∈ (−1, 1),

w′′
1 (−1) = v′′(−0), w′′′

1 (−1) = 0, w′′
1 (1) = v′′(+0), w′′′

1 (1) = 0.

Because α is an eigenvalue of (3.22), the problem admits a solution if and only if

(3.27) θΨ(α)v
′′(+0)− v′′(−0) = βv′(−0)

∫ 1

−1
Φ(ξ)

(

wα(ξ)
w′

α(−1)

)2
dξ.

To derive this solvability condition, we multiply the equation by wα and integrate

by parts. Let us define a functional on C∞
0 (−1, 1) by ϑΦ[ f ] =

∫ 1
−1 Φ f 2 dξ. Col-

lecting (3.5), (3.25) and (3.27) we deduce that v must be an eigenfunction of the
problem

(3.28)



















Lv = λv, x ∈ (a, 0)∪ (0, b),

v(a) = v′(a) = 0, v(b) = v′(b) = 0,

v(0) = 0, v′(+0)− θΨ(α)v
′(−0) = 0,

θΨ(α)v
′′(+0)− v′′(−0)− βϑΦ

[

wα/w′
α(−1)

]

v′(−0) = 0.

Consequently, the operator S(α, β; Ψ, Φ) = d4

dx4 + U(x) with the domain

(3.29) D(S(α, β; Ψ, Φ)) =
{

f ∈ W4
2

(

(a, 0) ∪ (0, b)
)

: f (a) = f ′(a) = 0,

f (b) = f ′(b) = 0, f (0) = 0, f ′(+0)− θΨ(α) f ′(−0) = 0,

θΨ(α) f ′′(+0)− f ′′(−0)− βϑΦ

[

wα/w′
α(−1)

]

f ′(−0) = 0
}
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is associated with the problem (3.28). Combining resonant case and nonresonant
one, gives us the limit operator

Sα,β(Ψ, Φ) =

{

S− ⊕ S+, α /∈ ΣΨ,

S(α, β; Ψ, Φ), α ∈ ΣΨ.

Recall that we consider only those α from the resonant set, which satisfy assump-
tions (1.2).

4. ASYMPTOTIC EXPANSIONS OF EIGENVALUES AND EIGENFUNCTIONS OF Sε :
CORRECTORS

In order to justify the closeness of eigenvalues and eigenfunctions of operators
Sε and Sα,β(Ψ, Φ) we must derive next terms of series (3.1)–(3.3). Clearly, the
construction of correctors depends on the multiplicity of λ. Let λ be a simple
eigenvalue of Sα,β(Ψ, Φ) with the eigenfunction v being normalized in L2(a, b).

4.1. Asymptotics in the nonresonant case. In this subsection we assume that α
does not belong to the resonant set ΣΨ. Then w = 0 and σ(Sα,β(Ψ, Φ)) = σ(S−) ∪
σ(S+). If λ is a simple eigenvalue of Sα,β(Ψ, Φ), then λ is a simple eigenvalue

of S− or S+. Without loss of generality we may assume λ ∈ σ(S+), and thus v
vanishes on (a, 0). Employing (3.9), (3.19) gives us the problem

w
(4)
1 + αΨw1 = 0, ξ ∈ (−1, 1),

w′′
1 (−1) = w′′′

1 (−1) = 0, w′′
1 (1) = v′′(+0), w′′′

1 (1) = 0,

which admits a unique solution, since α does not belong to the spectrum of (3.22).
In light of (3.6), (3.15) the function v1 can be found by solving problems

(4.1)











Lv1 = λv1, x ∈ (a, 0),

v1(a) = v′1(a) = 0,

v1(−0) = 0, v′1(−0) = w′
1(−1),











Lv1 = λv1 + λ1v, x ∈ (0, b),

v1(+0) = −v′(+0), v′1(+0) = w′
1(1)− v′′(+0),

v1(b) = v′1(b) = 0.

on (a, 0) and (0, b) respectively. Of course, the first of these problems has a unique
solution, since λ /∈ σ(S−). Note that in the generic case the second problem has
no solution. But we can ensure the existence of a solution by choosing the free
parameter λ1. Indeed, applying the Fredholm alternative we conclude that the
second problem (4.1) admits a solution if and only if

λ1 = v′′(+0)(v′′(+0)− w′
1(1))− v′(+0)v′′′(+0).

To derive this we multiply the equation by the eigenfunction and integrate by
parts. The last equality is simultaneously a formula for the corrector λ1 in the
asymptotic expansions of the eigenvalue. Clearly, the solution v1 is defined up to

the term cv. To fix it we subordinate the solution to the condition
∫ b

0 vv1 dx = 0.
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Combining (3.10) with (3.20) and recalling α /∈ ΣΨ, we deduce the problem

w
(4)
2 + αΨw2 = −βΦw1, ξ ∈ (−1, 1),

w′′
2 (−1) = v′′1 (−0), w′′′

2 (−1) = 0,

w′′
2 (1) = v′′1 (+0) + v′′′(+0), w′′′

2 (1) = v′′′(+0),

which gives us the corrector w2. We employ (3.7), (3.17), (3.18) to find

(4.2)



















Lv2 = λv2 + λ1v1, x ∈ (a, 0),

v2(a) = 0, v′2(a) = 0,

v2(−0) = w1(1) + v′1(−0),

v′2(−0) = w′
2(−1) + v′′1 (−0),



















Lv2 = λv2 + λ1v1 + λ2v, x ∈ (0, b),

v2(+0) = w1(1)− v′1(+0)− 1
2 v′′(+0),

v′2(+0) = w′
2(1)− v′′1 (+0)− 1

2 v′′′(+0),

v2(b) = v′2(b) = 0.

As before we deduce that the first of these problems has a unique solution, and
the second one admits a solution if and only if

λ2 = v′′′(+0)
(

w1(1)− v′1(+0)− 1
2 v′′(+0)

)

− v′′(+0)
(

w′
2(1)− v′′1 (+0)− 1

2 v′′′(+0)
)

.

For the sake of definiteness, the solution is subject to the additional condition
∫ b

0 vv2 dx = 0. By using (3.11), (3.21) one obtains

w
(4)
3 + αΨw3 = −βΦw2 − γ1Υ1w1, ξ ∈ (−1, 1),

w′′
3 (−1) = v′′2 (−0)− v′′′1 (−0), w′′′

3 (−1) = v′′′1 (−0),

w′′
3 (1) = v′′2 (+0) + v′′′1 (+0) + 1

2 v(4)(+0), w′′′
3 (1) = v′′′1 (+0) + v(4)(+0).

Reasoning as before, from this problem we get w3.
Let us introduce the notations

(4.3)

Λε = λ + ελ1 + ε2λ2,

Yε(x) =

{

v(x) + εv1(x) + ε2v2(x), x ∈ (a,−ε) ∪ (ε, b),

ε2w1(ε
−1x) + ε3w2(ε

−1x) + ε4w3(ε
−1x), x ∈ (−ε, ε)

for the constructed approximations of eigenvalues and eigenfunctions.

4.2. Asymptotics under resonance. Now we assume that α belongs to the reso-
nant set ΣΨ and that λ is an eigenvalue of the operator S(α, β, Ψ, Φ). Let wα be an
eigenfunction of (3.22) such that w′

α(−1) = 1. Clearly, θΨ(α) = w′
α(1).

Since (3.27) holds, the problem (3.26) admits a solution. This solution can be
represented as w1 = w∗

1 + c1wα, the function w∗
1 being a partial solution of the

problem fixed by the condition
dw∗

1
dξ (−1) = 0, and the constant c1 is to be chosen

later.
We next construct the corrector v1. The function v1 satisfies the equation (3.6)

outside the origin and (3.19) yields

(4.4) v′1(+0)− θΨ(α)v
′
1(−0) = G1,
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where G1 = w′
1(1)− θΨ(α)w

′
1(−1)− v′′(+0)− θΨ(α)v

′′(−0). Although w1 is not
uniquely chosen, the constant G1 is well defined. In fact,

w′
1(1)− θΨ(α)w

′
1(−1) =

(

dw∗
1

dξ
(1)− θΨ(α)

dw∗
1

dξ
(−1)

)

+

+ c1

(

w′
α(1)− θΨ(α)w

′
α(−1)

)

=
dw∗

1

dξ
(1).

From (3.10) and (3.20) it follows that the corrector w2 must solve the problem

w
(4)
2 + αΨw2 = −βΦw1 − γ1Υ1w, ξ ∈ (−1, 1),

w′′
2 (−1) = v′′1 (−0)− v′′′(−0), w′′′

2 (−1) = v′′′(−0),

w′′
2 (1) = v′′1 (+0) + v′′′(+0), w′′′

2 (1) = v′′′(+0).

(4.5)

From the first condition in (3.16) we deduce c1 = v′1(−0)− v′′(−0). Set ϑΥi
[ f ] =

∫ 1
−1 Υi f dξ for f ∈ C∞

0 (−1, 1) and i = 1, 2. Thus the solvability condition of the

above problem can be written as

(4.6) θΨ(α)v
′′
1 (+0)− v′′1 (−0)− βϑΨ[wα]v

′
1(−0) = H1

which is due to the Fredholm alternative. Here

H1 =
(

wα(1)− θΨ(α)
)

v′′′(+0)−
(

wα(−1) + 1
)

v′′′(−0)+

+ β
(

ϑΨ[
√

w∗
1wα]− ϑΨ[wα]v

′′(−0)
)

+ γ1ϑΥ1
[w2

α]v
′(−0).

From (3.15) we have v1(±0) = v′(−0)wα(±1)∓ v′(±0). Combining these identi-
ties along with (3.6), (4.4) and (4.6) we conclude that v1 solves the problem
(4.7)


















Lv1 = λv1 + λ1v, x ∈ (a, 0)∪ (0, b),

v1(a) = v′1(a) = 0, v1(b) = v′1(b) = 0,

v1(−0) = v′(−0)wα(−1) + v′(−0), v1(+0) = v′(−0)wα(1)− v′(+0),

v′1(+0)− θΨ(α)v
′
1(−0) = G1, θΨ(α)v

′′
1 (+0)− v′′1 (−0)− βϑΨ[wα]v′1(−0) = H1.

The free parameter λ1 in the right-hand side of equation (4.11) enables us to solve
the problem. In view of Fredholm’s alternative, (4.11) admits a solution if and only
if

λ1 = H1v′(−0)− G1v′′(+0)−
(

v′(−0)wα(−1) + v′(−0)
)

v′′′(−0)+

+
(

v′(−0)wα(1)− v′(+0)
)

v′′′(+0).

For the sake of definiteness, the solution is subject to the additional condition
∫ b

a vv1 dx = 0.
Given v1, we may compute the constant c1. A trivial verification shows that the

second condition in (3.16) holds.
The condition (4.6) enables one to solve the problem (4.5). A solution of this

problem has the form w2 = w∗
2 + c2wα, where w∗

2 solves (4.5) and satisfies
dw∗

2
dξ (−1) =

0. The constant c2 will be chosen later.
Following as before we shall similarly find correctors w3, v2 and λ2. The func-

tion v2 satisfies the equation and boundary conditions (3.7), and

(4.8) v′2(+0)− θΨ(α)v
′
2(−0) = G2
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by (3.18). Here G2 =
dw∗

2
dξ (1)− θΨ(α)

(

v′′1 (−0)− 1
2 v′′′(−0)

)

− v′′1 (+0)− 1
2 v′′′(+0).

Next we employ (3.11) and (3.21) to obtain the problem

w
(4)
3 + αΨw3 = −βΦw2 − γ1Υ1w1 − γ2Υ2w, ξ ∈ (−1, 1),

w′′
3 (−1) = v′′2 (−0)− v′′′1 (−0) + 1

2 v(4)(−0), w′′′
3 (−1) = v′′′1 (−0)− v(4)(−0),

w′′
3 (1) = v′′2 (+0) + v′′′1 (+0) + 1

2 v(4)(+0), w′′′
3 (1) = v′′′1 (+0) + v(4)(+0).

(4.9)

On applying (3.18), one obtains c2 = v′2(−0)− v′′1 (−0) + 1
2 v′′′(−0). Therefore we

may write the solvability condition of this problem in the form

(4.10) θΨ(α)v
′′
2 (+0)− v′′2 (−0)− βϑΨ[wα]v

′
2(−0) = H2

with

H2 = v′′′1 (+0)
{

wα(1)− θΨ(α)
}

− v′′′1 (−0)
{

wα(−1) + 1
}

+

+ v(4)(+0)
{

wα(1)−
1
2 θΨ(α)

}

+ v(4)(−0)
{

wα(−1) + 1
2

}

+

+ β
(

ϑΨ[
√

w∗
2wα]−

{

v′′1 (−0)− 1
2 v′′′(−0)

}

ϑΨ[wα]
)

+γ1ϑΥ1
[w1wα] +γ2ϑΥ2

[wwα].

From (3.17) we find v2(±0) = F±
2 , where

F±
2 = w∗

1(±1) +
(

v′1(−0)− v′′(−0)
)

wα(±1)∓ v′1(±0)− 1
2 v′′(±0).

In view of (3.7), (4.8) and (4.10) it follows that v2 is a solution to the problem

(4.11)



















Lv2 = λv2 + λ1v1 + λ2v, x ∈ (a, 0) ∪ (0, b),

v2(a) = v′2(a) = 0, v2(b) = v′2(b) = 0,

v2(−0) = F−
2 , v2(+0) = F+

2 , v′2(+0)− θΨ(α)v
′
2(−0) = G2,

θΨ(α)v
′′
2 (+0)− v′′2 (−0)− βϑΨ[wα]v′2(−0) = H2.

The problem admits a solution if and only if

λ2 = H2v′(−0)− G2v′′(+0)− F−
2 v′′′(−0) + F+

2 v′′′(+0).

This solution is defined up to the term cv. To eliminate this ambiguity we addi-

tionally demand that the condition
∫ b

a vv2 dx = 0 holds.
Summing up, one obtains the following approximations for the eigenvalue and

eigenfunction of the perturbed problem in the resonant case:
(4.12)

Λε = λ + ελ1 + ε2λ2,

Yε(x) =

{

v(x) + εv1(x) + ε2v2(x), x ∈ (a,−ε) ∪ (ε, b),

εw(ε−1x) + ε2w1(ε
−1x) + ε3w2(ε

−1x) + ε4w3(ε
−1x), x ∈ (−ε, ε).

Here w3 is an arbitrary solution of (4.9). The choice of c3 in the representation
w3 = w∗

3 + c3wα is not important since we do not look for the corrector v3.

5. JUSTIFICATION OF ASYMPTOTIC EXPANSIONS

As shown in Theorem 2.1, for every regularization Ψε(x) there is at most a finite
number N−

> 0 of eigenvalues λε
k, converging to −∞ as ε → 0. Other eigenvalues

remain bounded as ε → 0. We shall show that these eigenvalues converge to the
eigenvalues of Sα,β(Ψ, Φ).
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5.1. Convergence theorem. Let {λε}ε∈I be a sequence of eigenvalues of Sε and
assume that {yε}ε∈I is a sequence of the corresponding L2(a, b)-normalized eigen-
functions. Here I is an infinite subset of (0, 1) for which 0 is an accumulation
point.

Theorem 5.1. If λε → λ and yε → v in L2(a, b) weakly as I ∋ ε → 0, then λ is an
eigenvalue of Sα,β(Ψ, Φ) with the corresponding eigenfunction v. Furthermore, yε

converges to v in L2(a, b).

We have divided the proof into a sequence of lemmas. To start with, let us
describe the behavior of yε outside the ε-neighborhood of the origin.

Lemma 5.2. Under the assumptions of Theorem 5.1, for every positive γ the se-
quence yε tends to v weakly in the topology of W4

2 ((a, b) \ (−γ, γ)) and strongly

in the topology of C3([a, b] \ (−γ, γ)). Furthermore, v solves the equation

(5.1) Lv = λv, x ∈ (a, 0) ∪ (0, b).

Proof. Throughout the proof Gγ denotes the set of test functions ϕ ∈ C∞
0 (a, b) such

that ϕ(x) = 0 for x ∈ (−γ, γ). From the equation (1.3) for all ϕ ∈ Gγ and ε < γ we
deduce

(5.2)
∫ b

a
Lyε ϕ dx = λε

∫ b

a
yε ϕ dx,

since supp Ψε ⊂ (−γ, γ). The right hand side of (5.2) has a limit as I ∋ ε → 0
by assumption, thus the integral on the left hand side converges for all ϕ ∈ Gγ. It

follows that yε → v in W4
2 ((a, b) \ (−γ, γ)) weakly and thus

∫ b

a
Lv ϕ dx = λ

∫ b

a
vϕ dx, ϕ ∈ Gγ.

From this identity it may be concluded that v solves (5.1) on (a, b) \ (−γ, γ), and
so on (a, 0) and (0, b), since γ is an arbitrary constant. Applying the imbed-

ding theorem yields convergence of yε in C3((a, b) \ (−γ, γ)), which completes
the proof. �

We proceed to investigate the behavior of yε along with its derivatives at the
points x = −ε and x = ε.

Lemma 5.3. Let λε → λ and yε → v in L2(a, b) weakly as I ∋ ε → 0. Then for

k = 0, . . . , 3 the sequences y
(k)
ε (±ε) converge to v(k)(±0) as I ∋ ε → 0.

Proof. Let ζk be C∞

0 ((a, b) \ 0)-functions such that ζk(x) = 0 for x < 0 and ζk(x) =
xk

k! for x ∈ (0, b
2 ). Denote by χ(ε,∞) the characteristic function of (ε, ∞) and set

ζε
k(x) = χ(ε,∞)(x)ζk(x). We note that dk+1

dxk+1 ζε
k(x) = 0 for x ∈ (ε, b

2 ). Multiplying

both equalities (1.3), (5.1) by ζε
0 and integrating by parts yield

y′′′ε (ε) = −
∫ b

b
2

y′′′ε ζ ′0 dx +
∫ b

ε
yεζ0(V − λε) dx,

v′′′(ε) = −
∫ b

b
2

v′′′ζ ′0 dx +
∫ b

ε
vζ0(V − λ) dx.
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The right hand sides of the equalities have the same limit as I ∋ ε → 0 in view of
Lemma 5.2, and so y′′′ε (ε) → v′′′(+0). Applying the function ζε

0(−x) similar to the
above implies y′′′ε (−ε) → v′′′(−0). We have proved the Lemma for k = 3.

The case k = 2 can be handled in much the same way, the only difference being
in applying the function ζε

1. Multiplying (1.3), (5.1) by ζε
1 and integrating by parts,

we derive

y′′ε (ε) = y′′′ε (ε)ε −
∫ b

b
2

y′′ε ζ ′′1 dx +
∫ b

ε
yεζ1(λ

ε − V) dx,

v′′(ε) = v′′′(ε)ε −
∫ b

b
2

v′′ζ ′′1 dx +
∫ b

ε
vζ1(λ − V) dx.

Again employing Lemma 5.2, we deduce u′′
ε (ε) → v′′(+0) as I ∋ ε → 0. Using

ζε
1(−x) instead of ζε

1(x) yields y′′ε (−ε) → v′′(−0). The rest of the proof runs as
before. �

We denote by g1, g2 solutions of the following problems

g
(4)
k + αΨ(ξ)gk = 0, ξ ∈ (−1, 1),

gk(−1) = δ1,k, g′k(−1) = δ2,k, g′′k (−1) = 0, g′′′k (−1) = 0,
(5.3)

where δi,j is the Kronecker symbol. Let gε solve the Cauchy problem on [−1, 1]

g(4) + (αΨ(ξ) + ε2γ1Υ1(ξ))g = −βΦ(ξ)
(

ε−1yε(−ε)g1(ξ) + y′ε(−ε)g2(ξ)
)

,

g(−1) = 0, g′(−1) = 0, g′′(−1) = v′′(−0), g′′′(−1) = 0,
(5.4)

and let gε
k be the solutions of the problems

g
(4)
k + (αΨ(ξ) + ε2γ1Υ1(ξ))gk = 0, ξ ∈ (−1, 1),

gk(−1) = δ1,k, g′k(−1) = δ2,k, g′′k (−1) = 0, g′′′k (−1) = 0.

The task is now to describe the behavior of the eigenfunction yε in the ε-neighborhood
of the origin.

Lemma 5.4. If λε → λ and yε → y in L2(a, b) weakly as I ∋ ε → 0, then

(5.5) |yε(−ε)|+ |yε(ε)| ≤ cε,

and moreover,

(5.6)
∥

∥

∥
ε−2yε(εξ)− ε−2yε(−ε)gε

1(ξ)− ε−1y′ε(−ε)gε
2(ξ)− gε(ξ)

∥

∥

∥

C3([−1,1])
→ 0.

Proof. First let us prove that the sequence uε(ξ) = ε−1yε(εξ)− ε−1yε(−ε)g1(ξ)−
y′ε(−ε)g2(ξ) tends to 0 in L2(−1, 1) as I ∋ ε → 0. Set Uε(ξ) = ε−1yε(εξ) −
ε−1yε(−ε)hε

1(ξ)− y′ε(−ε)hε
2(ξ) with hε

1, hε
2 being solutions to problems

h
(4)
k + (αΨ(ξ) + εβΦ(ξ))hk = 0, ξ ∈ (−1, 1),

hk(−1) = δ1,k, h′k(−1) = δ2,k, h′′k (−1) = 0, h′′′k (−1) = 0.

By construction Uε solves the problem
{

u(4) + (αΨ(ξ) + εβΦ(ξ))u = hε(ξ), ξ ∈ (−1, 1),

u(−1) = 0, u′(−1) = 0, u′′(−1) = εy′′ε (−ε), u′′′(−1) = ε2y′′′ε (−ε),
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where hε(ξ) = −εyε(εξ)(γ1Υ1(ξ) + εγ2Υ2(ξ) + ε2U(εξ)− ε2λε). For every func-
tion hε ∈ L2(−1, 1) the solution Uε of the above problem is unique, belongs to

W4
2 (−1, 1), and satisfies the estimate

‖Uε‖W4
2 (−1,1) ≤ c ‖hε‖L2(−1,1)

with constant c being independent of ε. Employing the inequality

ε

∫ 1

−1
y2

ε (εξ) dξ =
∫ ε

−ε
y2

ε (x) dx ≤ ‖yε‖
2
L2(a,b) = 1,

one concludes that ε1/2‖yε(εξ)‖L2(−1,1) ≤ c, hence that ‖hε‖L2(−1,1) ≤ cε1/2, and

finally that ‖Uε‖W4
2 (−1,1) → 0 as I ∋ ε → 0. From this it follows that

ε−1yε(ε)− ε−1yε(−ε)hε
1(1)− y′ε(−ε)hε

2(1) → 0,(5.7)

y′ε(ε)− ε−1yε(−ε)(hε
1)

′(1)− y′ε(−ε)(hε
2)

′(1) → 0,(5.8)

εy′′ε (ε)− ε−1yε(−ε)(hε
1)

′′(1)− y′ε(−ε)(hε
2)

′′(1) → 0,(5.9)

ε2y′′′ε (ε)− ε−1yε(−ε)(hε
1)

′′′(1)− y′ε(−ε)(hε
2)

′′′(1) → 0,(5.10)

By (5.8)–(5.10) we deduce

yε(−ε)(hε
1)

(k)(1) = O(ε) as I ∋ ε → 0 for k = 1, 2, 3.

If at least one of the values (hε
1)

′′(1) or (hε
1)

′′′(1) is nonzero, then yε(−ε) = O(ε)
as I ∋ ε → 0. Suppose, to the contrary, that (hε

1)
′′(1) = (hε

1)
′′′(1) = 0. From (5.3)

it follows that g1 is an eigenfunction of the problem (3.22) corresponding to the
eigenvalue α ∈ ΣΨ. By construction g′1(−1) = 0, contrary to (1.2). The proof of
(5.5) is complete by using (5.7).

Finally, since ‖gk − hε
k‖L2(−1,1) converges to 0 as I ∋ ε → 0 for k = 1, 2, then uε

converges to 0 in L2(−1, 1) as I ∋ ε → 0. In fact,

‖uε‖L2(−1,1) ≤ ‖Uε‖L2(−1,1) + ε−1yε(−ε)‖hε
1 − g1‖L2(−1,1)+

y′ε(−ε)‖hε
2 − g2‖L2(−1,1) → 0

as ε → 0.
We introduce the function Wε(ξ) = ε−2yε(εξ)− ε−2yε(−ε)gε

1(ξ)− ε−1y′ε(−ε)gε
2(ξ)−

gε(ξ). Analysis similar to the above implies that Wε solves the problem

{

u(4) + (αΨ(ξ) + ε2γ1Υ1(ξ))u = fε(ξ), ξ ∈ (−1, 1),

u(−1) = 0, u′(−1) = 0, u′′ = y′′ε (−ε)− v′′(−0), u′′′(−1) = εy′′′ε (−ε),

with fε(ξ) = −βΦuε(ξ)− εyε(εξ)(γ2Υ2 + εU(εξ)− ελε) and satisfies the estimate

‖Wε‖W4
2 (−1,1) ≤ c

(

‖ fε‖L2(−1,1) + |y′′ε (−ε)− v′′(−0)|
)

with constant c being independent of ε. According to Lemma 5.3 the right hand

side of this estimate converges to zero. Thus Wε tends to 0 in W4
2 (−1, 1) as I ∋ ε →

0. The embedding W4
2 (−1, 1) ⊂ C3([−1, 1]) establishes the convergence (5.6). �



SPECTRAL PROPERTIES OF THE FOURTH ORDER DIFFERENTIAL OPERATOR 17

Letting I ∋ ε → 0 we conclude that

ε−2
(

yε(ε)− yε(−ε)gε
1(1)− εy′ε(−ε)gε

2(1)
)

− gε(1) → 0,(5.11)

ε−1
(

y′ε(ε)− ε−1yε(−ε)(gε
1)

′(1)− y′ε(−ε)(gε
2)

′(1)
)

− g′ε(1) → 0,(5.12)

y′′ε (ε)− ε−2yε(−ε)(gε
1)

′′(1)− ε−1y′ε(−ε)(g2)
′′(1)− g′′ε (1) → 0,(5.13)

εy′′′ε (ε)− ε−2yε(−ε)(g1)
′′′(1)− ε−1y′ε(−ε)(g2)

′′′(1)− g′′′ε (1) → 0,(5.14)

in light of Lemma 5.4 for ξ = 1.

Lemma 5.5. Assume that λε → λ and yε → y in L2(a, b) weakly as I ∋ ε → 0.
Then yε → y in L2(a, b) as I ∋ ε → 0.

Proof. First we show that yε is bounded on [a, b] uniformly with respect to ε. Ap-
plying (5.6) and Lemma 5.3, we see at once that the sequence yε is uniformly
bounded on [−ε, ε]

|yε(εξ)| ≤ cε2 + |yε(−ε)gε
1(ξ)|+ ε|y′ε(−ε)gε

2(ξ)|+ ε2|gε(ξ)| ≤ c1ε.(5.15)

Set Ωε = (a, b) \ (−ε, ε). Multiplying the equation (1.3) by the function χΩε
yε and

integrating by parts give

∫

Ωε

y′′2ε dx =
∫

Ωε

(λε − U)y2
ε dx − y′′′ε (−ε)yε(−ε)+

y′′′ε (ε)yε(ε) + y′′ε (−ε)y′ε(−ε)− y′′ε (ε)y
′
ε(ε).

All terms on the right-hand side are uniformly bounded with respect to ε. Thus

the sequence yε is bounded in W2
2 (Ωε), and so in C1(Ωε). On account of the above

conclusion combining with (5.15), we deduce that max
x∈(a,b)

|yε(x)| ≤ c with constant

c being independent of ε.
Fix γ > 0. According to Lemma 5.2 the difference yε − y has the L2(Ωγ)-norm

less than γ, provided ε is small enough. Then

‖yε − y‖L2(a,b) ≤ ‖yε − y‖L2(Ωγ) + ‖yε − y‖L2(−γ,γ) ≤

≤ γ(1 + 2 max
x∈(a,b)

|yε(x)− y(x)|) ≤ Cγ

with constant C being independent of ε. Recall that γ may be made arbitrary small,
and the proof is complete. �

Proof of Theorem 5.1. We conclude from Lemmas 5.2, 5.5 that v is a solution of the
equation

Lv = λv, x ∈ (a, 0) ∪ (0, b),

satisfies the boundary conditions v(a) = v′(a) = 0, v(b) = v′(b) = 0, and
‖v‖L2(a,b) = 1. Furthermore, v(0) = 0 according to (5.5), and we are left with

the task of showing that v satisfies appropriate coupling conditions at the origin.

Again applying (5.5), we deduce that ε−1yε(−ε) has a limit as I ∋ ε → 0, which
will be denoted by s, and y′ε(−ε) → v′(−0) as shown in Lemma 5.3. Therefore

qε = ε−1yε(−ε)gε
1 + y′ε(−ε)gε

2 converges to q = sg1 + v′(−0)g2 in C3([−1, 1]) as
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I ∋ ε → 0. From (5.13)–(5.14) it may be concluded that sequences ε−1q′′ε (1) and

ε−1q′′′ε (1) are bounded as I ∋ ε → 0, hence that

(5.16) q′′(1) = 0, q′′′(1) = 0.

Combining (5.3) with (5.12) yields

(5.17) q′(−1) = v′(−0), q′(1) = v′(+0).

We see at once that q is a solution of the Cauchy problem

(5.18)

{

q(4) + αΨq = 0, ξ ∈ (−1, 1),

q(−1) = s, q′(−1) = v′(−0), q′′(−1) = 0, q′′′(−1) = 0.

Coupling conditions of the limit problem depend on whether the problem (5.18)
admits a nontrivial solution. Let us suppose for the moment that the problem
(5.18) has a trivial solution q = 0 only. Then (5.17) implies the coupling condition
v′(0) = 0.

Next assume that (5.18) has a nontrivial solution. By (5.16) q is an eigenfunction
of the problem (3.22) and α belongs to the resonant set ΣΨ. In view of (5.17) we
have

q′(1)v′(−0)− q′(−1)v′(+0) = 0,

which is equivalent to v′(+0)− θΨ(α)v
′(−0) = 0.

For every ε > 0 the Lagrange identity holds

q′′′ε (1)q(1)− q′′ε (1)q
′(1) = 0.

Dividing the above identity by ε and letting I ∋ ε → 0, we derive

(5.19) z′′′(1)q(1) + (v′′(+0)− z′′(1))q′(1) = 0.

in light of (5.13), (5.14), where z solves the problem
{

z(4) + αΨ(ξ)z = −βΦ(ξ)q(ξ), ξ ∈ (−1, 1),

z(−1) = 0, z′(−1) = 0, z′′(−1) = v′′(−0), z′′′(−1) = 0.

Taking into account (5.19), the Lagrange identity for z may be written as

z′′′(1)q(1)− z′′(1)q′(1)+ v′′(−0)q′(−1) =
(

z′′′(1)q(1)+ (v′′(+0)− z′′(1))q′(1)
)

−

− v′′(+0)q′(1) + v′′(−0)q′(−1) = −v′′(+0)q′(1) + v′′(−0)q′(−1) = −βϑΨ[q].

Dividing the last equality by q′(−1) and recalling (5.17) gives

θΨ(α)v
′′(+0)− v′′(−0)− βϑΨ

[

wα/w′
α(−1)

]

v′(−0) = 0.

Thus v is an eigenfunction of Sα,β(Ψ, Φ) corresponding to the eigenvalue λ. �

Theorem 5.1 allows one to justify the choice of Sα,β(Ψ, Φ).

Theorem 5.6. Suppose that the eigenvalue λε of Sε is bounded from below. Then
λε has a finite limit as I ∋ ε → 0 and this limit is a point of the spectrum of
Sα,β(Ψ, Φ). For each simple eigenvalue λ of Sα,β(Ψ, Φ) there exist exactly one
eigenvalue λε of Sε converging to λ as ε → 0.
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Proof. Suppose to start with that

µ∗ = limε→0λε
k < limε→0λε

k = µ∗.

The constants µ∗, µ∗ are finite since λε
k is a bounded function. Recall that λε

k is
a continuous function of ε ∈ (0, 1). Then for each λ ∈ [µ∗, µ∗] there exists a
subsequence of eigenvalues λε, ε ∈ I , converging to λ.The sequence {yε}ε∈I of
the corresponding normalized eigenfunctions contains a weakly convergent sub-
sequence. By Theorem 5.1, λ is an eigenvalue of Sα,β(Ψ, Φ). Therefore the interval

[µ∗, µ∗] belongs to the spectrum σ(Sα,β(Ψ, Φ)), a contradiction.
We now turn to the second part of the theorem. Let us assume that λε

k → λ

and λε
k+1 → λ for some k. Then there exist two sequences {yε

k}ε∈I and {yε
k+1}ε∈I

of eigenfunctions, which converge in L2(a, b) to vectors of the form eiϕv. This
contradicts the fact that yε

k and yε
k+1 are orthogonal in L2(a, b) for all ε ∈ I . �

5.2. Approximation theorem. We proceed to show that each point of σ(Sα,β(Ψ, Φ))
is a limit of the eigenvalues of Sε.

Let B be a self-adjoint operator in a Hilbert space H with domain D(B). A pair
(µ, u) ∈ R ×D(B) with ‖u‖H = 1 is called a quasimode of the operator B with an
accuracy ρ > 0 if ‖Bu − µu‖H ≤ ρ.

Lemma 5.7. Suppose that the spectrum of B is discrete and simple. If (µ, u) is a
quasimode of B with accuracy ρ > 0, then the interval [µ − ρ, µ + ρ] contains an
eigenvalue λ of B. Furthermore, if the segment [µ − τ, µ + τ] contains only this
eigenvalue of B, then ‖u − v‖H ≤ 2τ−1ρ, where v is a normalized eigenfunction
of B for the eigenvalue λ. [14]

Let us construct the quasimodes of Sε. Suppose λ is a simple eigenvalue of the
operator Sα,β(Ψ, Φ) with the eigenfunction v such that ‖v‖ = 1. Here and subse-

quently, ‖·‖ stands for the norm in L2(a, b). For each λ and v we have obtained
the formal asymptotic approximations Λε, Yε defined by either (4.3) or (4.12) de-
pending on α and Ψ. In further computation we do not distinguish the resonant
and non-resonant cases. By construction we have

LYε − ΛεYε = ε3R1(ε, x), x ∈ (a,−ε) ∪ (ε, b),
(

L + αε−4
Ψ(ε−1x) + βε−3

Φ(ε−1x) + γ1ε−2
Υ1(ε

−1x) + γ2ε−1
Υ2(ε

−1x)
)

Yε−

− ΛεYε = εR2(ε, x), x ∈ (−ε, ε).

(5.20)

The function Yε does not belong to the domain of Sε, since it has jump disconti-
nuities at the points ±ε. Indeed,

[Yε]x=±ε = ε3r±0 (ε), [Y′
ε ]x=±ε = ε3r±1 (ε),

[Y′′
ε ]x=±ε = ε3r±2 (ε), [Y′′′

ε ]x=±ε = ε2r±3 (ε).

Here all the functions Rj, r±j are uniformly bounded with respect to their argu-

ments. We can construct a function ζε with the following properties

◦ ζε is a smooth function outside the points x = ±ε and differs from zero
only for ε < |x| < 1;

◦ [ζε]x=±ε = −εr±0 (ε), [ζ ′ε]x=±ε = −εr±1 (ε), [ζ ′′ε ]x=±ε = −εr±2 (ε) and [ζ ′′′ε ]x=±ε =

−r±3 (ε);
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◦ max
ε<|x|<1

(|ζε(x)|+ |ζ ′ε(x)|+ |ζ ′′ε (x)|+ |ζ ′′′ε (x)|+ |ζ ′′′′ε (x)|) ≤ c with constant

c being independent of ε,

which eliminates discontinuity. In fact, Yε + ε2ζε is a function from C3(a, b) and

belongs to D(Sε). We set Yε = ‖Yε + ε2ζε‖−1(Yε + ε2ζε) and substitute Yε into
(5.20) instead of Yε. Then the orders of smallness of right-hand sides in (5.20)

do not change since ‖Yε + ε2ζε‖ → 1 as ε → 0. Therefore the pair (Λε,Yε) is a
quasimode of Sε with accuracy ε.

Theorem 5.8. Given (α, β, γ1, γ2; Ψ, Φ, Υ1, Υ2) ∈ R
4 × (C∞

0 (−1, 1))4, suppose that
λ is a simple eigenvalue of Sα,β(Ψ, Φ) with the normalized eigenfunction v. Then
there exists a simple eigenvalue λε

j of Sε with a corresponding normalized eigen-

function yε
j such that

∣

∣

∣
λε

j − λ
∣

∣

∣
≤ c1ε,

∥

∥yε
j − v

∥

∥ ≤ c2ε(5.21)

with constants c1, c2 being independent of ε.

Proof. Let (Λε,Yε) be a quasimode of Sε corresponding to the limit eigenvalue λ
and the eigenfunction v. According to Lemma 5.7 there exists an eigenvalue λε

j

such that |λε
j − Λε| ≤ c1ε, from which the first inequality in (5.21) follows. In view

of Theorem 5.6 the index j is independent of ε. If τ is less than the distance from λ
to the rest of the spectrum of Sα,β(Ψ, Φ), then the interval [λ − τ, λ + τ] contains
the eigenvalue λε

j only, provided ε is small enough. Applying again Lemma 5.7

yields
∥

∥

∥
yε

j − Yε

∥

∥

∥
≤ 2τ−1c1ε, from which the second inequality in (5.21) immedi-

ately follows. �
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