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Abstract. In this work, we present a collision attack on 5/8 rounds of the ECHO-256 hash
function with a complexity of 2112 in time and 285.3 memory. In this work, we further
show that the merge inbound phase can still be solved in the case of hash function attacks
on ECHO. As correctly observed by Jean et al., the merge inbound phase of previous hash
function attacks succeeds only with a probability of 2−128. The main reason for this be-
havior is the low rank of the linear SuperMixColumns transformation. However, since there
is enough freedom in ECHO we can solve the resulting linear equations with a complexity
much lower than 2128. On the other hand, also this low rank of the linear SuperMixColumns
transformation allows us to extend the previous collision attacks by one more round.
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1 Introduction

Many new and interesting hash function designs have been proposed in the NIST SHA-3
competition [7]. In this paper, we improve the cryptanalysis of the hash function ECHO [1],
which is one of 14 Round 2 candidates of the competition. ECHO is a wide-pipe, AES based
design which transforms 128-bit words similar as AES transforms bytes. Inside these 128-
bit words, two standard AES rounds are used. The best result on the hash function of
ECHO-256 is a collision attack for 4 rounds and a subspace distinguisher for 5 rounds [8].
In this work, we show how to extend these attacks to get collisions for 5 rounds of the
ECHO-256 hash function.

As correctly observed by Jean et al. in [3], the merge inbound phase of [8] succeeds only
with a probability of 2−128. The main reason for this behavior is the low rank of the linear
SuperMixColumns transformation. Jean et al. also present a solution to efficiently solve
the merge inbound phase but are able to attack 4/8 rounds of the ECHO-256 compression
function. They present a semi-free-start collision attack on 4/8 rounds with complexity
252 and 216 memory and have implemented a semi-free-start near-collision attack on 4/8
rounds. In this work, we show how to solve the merge inbound phase for the hash function
of ECHO as well. Since in the attacks on ECHO we have enough freedom and many parts
can be fulfilled independently, the resulting linear equations can still be fulfilled with a
complexity much lower than 2128. Additionally, the low rank of the linear SuperMixColumns
transformation allows us to extend the previous collision attacks on the hash function by
one more round.

2 Description of ECHO

In this section we briefly describe the AES based SHA-3 candidate ECHO. For a detailed
description of ECHO we refer to the specification [1]. ECHO is a double-pipe, iterated hash
function and uses the HAIFA [2] domain extension algorithm. More precisely, a padded t-
block message M and a salt s are hashed using the compression function f(Hi−1,Mi, ci, s),



where ci is a bit counter, IV the initial value and trunc(Ht) a truncation to the final output
hash size of n bits:

H0 = IV

Hi = f(Hi−1,Mi, ci, s) for 1 ≤ i ≤ t

h = truncn(Ht).

The message block size is 1536 bits for ECHO-256 and 1024 bits for ECHO-512, and the
message is padded by adding a single 1 followed by zeros to fill up the block size. Note
that the last 18 bytes of the last message block always contain the 2-byte hash output
size, followed by the 16-byte message length.

The compression function of ECHO uses one internal 2048-bit permutation P which
manipulates 128-bit words similar as AES manipulates bytes. The permutation consists of
8 rounds in the case of ECHO-256 and has 10 rounds for ECHO-512. The internal state of the
permutation P can be modeled as a 4 × 4 matrix of 128-bit words. We denote one ECHO

state by Si and each 128-bit word or AES state is indexed by [r, c], with rows r ∈ {0, ..., 3}
and columns c ∈ {0, ..., 3} of the ECHO state.

The 2048-bit input of the permutation (which is also tweaked by the counter ci and salt
s) are the previous chaining variable Hi−1 and the current message block Mi, concatenated
to each other. After the last round of the permutation, a feed-forward (FF) is applied to
get the preliminary output V :

V = Pci,s(Hi−1||Mi)⊕ (Hi−1||Mi). (1)

To get the 512-bit chaining variable Hi for ECHO-256, all columns of the ECHO output state
V are XORed. In the case of ECHO-512, the 1024-bit chaining variable Hi is the XOR of the
two left and the two right columns of V . The feed-forward together with the compression of
columns is called the BigFinal (BF) operation. To get the final output of the hash function,
the lower half is truncated in the case of ECHO-256 and the right half is truncated for
ECHO-512.

The round transformations of the ECHO permutation are very similar to AES rounds,
except that 128-bit words are used instead of bytes. One round is the composition of the
following three transformations in the given order:

– The non-linear layer BigSubWords (BSW) applies two AES rounds to each of the 16
128-bit words of the internal state. The first round key consists of a counter value
initialized by ci and increased for every AES state and round of ECHO. The second
round key consists of the 128-bit salt s.

– The cyclical permutation BigShiftRows (BSR) rotates the 128-bit words of row j to the
left by j words.

– The linear diffusion layer BigMixColumns (BMC) mixes the AES states of each ECHO

column by the same MDS matrix MMC but applied to those bytes with equal position
inside the AES states.

For an easier description of the following attacks, we use an equivalent description of
one ECHO round. First, we swap the BigShiftRows transformation with the MixColumns
transformation of the second AES round. Second, we swap SubBytes with ShiftRows of the
first AES round. Swapping these operations does not change the computational result of
ECHO and similar alternative descriptions have already been used in the analysis of AES.
This results in the two super-round transformations SuperBox and SuperMixColumns which
are separated just by byte shuffling operations. For more details on these transformations
and their differential properties we refer to [8].
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3 Collisions for 5 Rounds of the ECHO-256 Hash Function

Three improvements are needed to get a collision for 5 rounds. Firstly, we split the merge
inbound phase into two parts. In the first part, we efficiently fulfill the 128-bit condition
raised in [3] such that a hash function attack is still possible. Note that this also changes the
inbound phases slightly. Secondly, we show that the resulting differences in the subspace of
the hash function output collide with a probability of 2−64. Finally, we improve the second
part of the merge inbound phase which determines the remaining white bytes to get an
average complexity of 221.3 to compute one such solution. Then, the total complexity to
get a collision for 5 rounds of ECHO-256 is about 2112 with memory requirements of 285.3.
For this attack, we use exactly the same truncated differential path as in [8], except that
we get a collision at the output (see Fig. 1).

3.1 Solving and Merging the Inbound Phases

To find input pairs according to the truncated differential path given in Fig. 1, we use a
rebound attack [6] with multiple inbound phases [4,5,8]. The main advantage of multiple
inbound phases is that we can first find pairs for each inbound phase independently and
then, connect (or merge) the results. For the attack on 5 rounds of ECHO-256 we use
an inbound phase in round 2 (red) and another inbound phase in round 3 (yellow). In
the yellow inbound and green outbound phase we construct (partial) pairs such that the
truncated differential path in round 3, 4 and 5 is fulfilled. In the red inbound phase we
search for many pairs conforming to the red part. Additionally, we ensure the 128-bit
condition such that the yellow and red part can be connected. Then, we merge (connect)
the resulting pairs of the red and yellow inbound phase with the chaining input (blue) and
padding (cyan). Note that for each found pair in these phases, the white bytes are still free
to choose. We find values which also satisfy the remaining white bytes in the subsequent
sections.

Yellow Inbound and Green Outbound. We start the attack by choosing a difference
in state S16 such that the truncated differential path of SuperMixColumns between state
S14 and S16 is fulfilled. Then, we can find one pair for the yellow and green part with a
complexity of 296 and memory requirements of 264. Since we do not change this part of
the attack, we refer to [8] for more details on how to find such a pair. Note that this step
determines the values of all yellow and black bytes in state S16.

Red Inbound. In the red inbound phase, we search for many pairs according to the
truncated differential path between state S7 and S14. The difference in S14 is already fixed
due to the yellow inbound phase but we can still choose from 232 differences for each
active AES state in S7. As shown in [8] and previous rebound attacks [6], we can find
one pair on average for each starting difference in an inbound phase. Note that we can
independently search for pairs for each BigColumn of state S7 since the four BigColumns
stay independent until they are mixed by the following BigMixColumns transformation
between state S15 and S16. Hence, we can independently iterate through all 232 starting
differences for the 1st, 2nd and 3rd column, and through all 264 starting differences for the
4th column of state S7. Then, we get 232 pairs for each of the first three columns and 264

pairs for the 4th column. The total complexity to find all these pairs is 264 and determined
by the last column (also see [8]). For each pair, the red and black bytes in state S14 are
determined.
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Additional Conditions at SuperMixColumns. For each pair of the previous two phases,
the values of the red, yellow and black bytes of state S14 and S16 are fixed. These two
states are separated by the linear SuperMixColumns transformation and we get for the first
column-slice the following relation

MSMC ·
[
a0 ∗ ∗ ∗ a1 ∗ ∗ ∗ a2 ∗ ∗ ∗ a3 ∗ ∗ ∗

]T
=
[
b0 b1 b2 b3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

]T
,

where MSMC is the SuperMixColumns transformation matrix, ai the input bytes deter-
mined by the red inbound phase and bi the output bytes determined by the yellow inbound
phase. All bytes marked by ∗ are free to choose. We get a similar relation for all other
16 column-slices. As correctly observed by Jean et al. [3], we only get a solution with
probability 2−8 for each column-slice due to the low rank of the MSMC matrix. In total,
each pair of the red and yellow inbound phase imposes a 128-bit condition on the whole
state due to the SuperMixColumns transformation between state S14 and S16. In detail, we
get for each of the 16 column-slices one linear 8-bit conditions on the 8 values of the red,
yellow and black bytes. The 8-bit condition for the first column-slice is then

2 · a0 + 3 · a1 + a2 + a3 = 14 · b0 + 11 · b1 + 13 · b2 + 9 · b3 (2)

and similar conditions exist for all other columns.

1st Part of Merge Inbound Phase. At this point, we have constructed one pair for
the yellow inbound phase and in total, 232 · 232 · 232 · 264 = 2160 pairs for the red inbound
phase. Among these 2160 pairs we expect to find 232 right pairs which also satisfy the
128-bit condition on SuperMixColumns between state S14 and S16. In the following, we
show how to find all these 232 pairs with a complexity below 2128. First, we combine the
232 · 232 = 264 pairs determined by the first two columns of state S7 in a list L1, and the
232 · 264 = 296 pairs determined by the last two columns of state S7 in a list L2. Note that
the pairs in these two lists are independent. Hence, we can use a birthday attack to find
those pairs which satisfy the 128-bit condition imposed by SuperMixColumns. This way,
we get 264× 296× 2−128 = 232 pairs with a total complexity of 296. Note that the memory
requirements can be reduced to 264 if we do not store the elements of L2 but compute
them online instead. In detail, we first separate Equation 2 into terms determined by L1

and terms determined by L2:

2 · a0 + 3 · a1 = a2 + a3 + 14 · b0 + 11 · b1 + 13 · b2 + 9 · b3. (3)

Then, we apply the left-hand side to the elements of L1 and the right-hand side to elements
of L2 and sort L1 according to the bytes to be matched. Finally, we just iterate through
all elements of L2 and collect the 232 pairs which satisfy the 128-bit condition. These 232

pairs are then valid partial pairs for the combined red and yellow inbound phase. Note
that the complexity of this part can probably be further reduced using the techniques
proposed in [3].

Merge Chaining Input. Next, we need to merge the 232 results of the previous phase
with the chaining input (blue) and the bytes fixed by the padding (cyan). The chaining
input and padding overlap with the red inbound phase in state S7 on 5 · 4 = 20 bytes.
This results in a 160-bit conditions on the overlapping blue/cyan/red bytes. We use 2112

randomly generated first message blocks to find a pair according to this condition. Addi-
tionally, we repeat from the yellow inbound phase with 216 different starting points. This
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way, we get 216 · 232 = 248 pairs for the combined yellow and red inbound phases which
also satisfy the 128-bit condition of SuperMixColumns between state S14 and S16. Next,
we do a birthday match on the overlapping 160-bits and get 2112 × 248 × 2−160 = 1 final
pair. If we compute the 2112 blocks online, the complexity of this step is 2112 with memory
requirements of 248. For the resulting pair, all differences (black) between state S4 and
state S33, and all colored values (blue, cyan, red, yellow, green) between state S0 and state
S31 are determined.

3.2 Colliding Subspace Differences

As shown in [8], we can combine the linear MixColumns and BigMixColumns transforma-
tions with the BigFinal function and the final output truncation. Note that in all these
transformations, the resulting one-byte columns of the output hash value can be computed
independently of each other. Further, column i ∈ {0, 1, 2, 3} of the output hash value de-
pends only on columns i · 4 of state S38. It follows that the output difference in the first
column i = 0 of the output hash value depends only on the 4 active differences in columns
0, 4, 8, and 12 of state S38 which we denote by a, b, c, d. Using Mcomb of the first output
column (see [8, Section 3.3]), we get the following linear system of equations:

4 6 2 2
2 3 1 1
2 3 1 1
6 5 3 3
2 4 6 2
1 2 3 1
1 2 3 1
3 6 5 3


·


a
b
c
d

 =



0
0
0
0
0
0
0
0


Since we cannot directly control the differences a, b, c, d in the attack, we need to solve
this system of equations by brute-force. However, the brute-force complexity is less than
expected due to the reduced rank of the given matrix. Since the rank is 2, 216 solutions
exist and a random difference results in a collision with a probability of 2−16 instead of
2−32 for the first output column. Since the rank of each of the 4 output column matrices
is 2 as well, we get a collision at the output of the hash function with a total probability
of 2−64 for any random difference in state S38 of Fig. 1.

3.3 Improved Merge Inbound Phase

To get a collision attack with a complexity below 2128 for 5 rounds, we need to improve
the merge inbound phase further. We start exactly as in the merge inbound phase of the
hash function attack in [8]. First, we choose random values for the white bytes in the
first two BigColumns of state S7 and propagate the resulting pairs forward to state S14.
Note that we again need to ensure that the conditions on the linear SuperMixColumns
transformation are fulfilled. We can solve this part with a complexity of at most 264 in
time and memory and we refer to [8] for a detailed description of this part. At this point,
all gray values of Fig. 2 are determined and we know that for these values a solution
according to SuperMixColumns exists.

After this part, we can choose from up to 2384 values for each of the green, blue, yellow
and red column bytes in state S14 (see [8]). In the last part of the merge inbound phase,
we do a generalized birthday attack to find values which also match the 24 cyan bytes (a
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S7 S8 S14 S16

SR

SB

MC MC
BIG

SB BIGMC
SR MC

BIG
SR

Fig. 2. States used to merge the two inbound phases with the chaining values. Gray bytes
show values already determined. Green, blue, yellow and red bytes show independent
values used in the generalized birthday attack and cyan bytes represent values with the
target conditions.

192-bit condition) in state S7 of Fig. 2. First, we choose 264 values for each of the green,
blue, yellow and red columns in state S14 and independently compute them backward to
state S8. Since we get 4 independent lists with 264 values in state S8, we can use the
generalized birthday attack [9] to find one solution with a complexity of 2192/3 = 264 in
time and memory.

To improve the average complexity of this generalized birthday attack, we can start
with 285.3 values for the green, blue, yellow and red columns in state S14. Since we need to
match a 192-bit condition, we get 23·85.3× 2−192 = 264 solutions with a complexity of 285.3

in time and memory, or with an average complexity of 221.3 per solution (see [9] for more
details). Note that we can even find solutions with an average complexity of 1 by starting
with lists of size 296. Each of these 264 solution of the generalized birthday match results
in a valid pair conforming to the whole 5-round truncated differential path. According to
the previous section, among these 264 pairs we expect to find one pair which collides at
the output of the hash function. The maximum time complexity is determined by merging
the chaining input and the memory complexity by the generalized birthday attack. In
total, the complexity to find a collision for 5 rounds of the ECHO-256 hash function is 2112

compression function evaluations with memory requirements of 285.3.

4 Conclusion

In this work, we have shown how to efficiently solve the condition observed by Jean et
al. in [3] for the hash function of ECHO as well. This condition occurs due to the low
rank of the SuperMixColumns transformation in ECHO. However, using the large degrees of
freedom and a meet-in-the-middle approach, this 128-bit condition can be solved with a
complexity much lower than 2128. On the other hand, the low rank of the SuperMixColumns
transformation allows us to extend the collision attack on ECHO-256 by one more round. We
have shown that collision for 5/8 rounds of the ECHO-256 hash function can be constructed
with a complexity of 2112 and memory requirements of 285.3. We expect that the attacks
on ECHO can be further improved by combining our ideas with those of Jean et al.
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