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Boundary conditions in the Dirac approach to graphene devices

C.G. Beneventano∗ and E.M. Santangelo†

Departamento de F́ısica, Universidad Nacional de La Plata, 1900 La Plata, Argentina and

Instituto de F́ısica de La Plata, CONICET and Universidad Nacional de La Plata, 1900 La Plata, Argentina

We study a family of local boundary conditions for the Dirac problem corresponding to the con-
tinuum limit of graphene, both for nanoribbons and nanodots. We show that, among the members
of such family, MIT bag boundary conditions are the ones which give the best agreement with
experiment.

It would be redundant to start this paper with
a detailed description of the wonderful properties of
graphene. In this respect, the interested reader is re-
ferred to1. As predicted theoretically2,3 twenty years
before its production in a laboratory4, electron trans-
port in graphene is described by a massless Dirac equa-
tion, which leads to distinctive electronic properties5,6.
Indeed, many such properties where studied experimen-
tally, starting with the determination of the quantum
Hall effect7, and found to agree with the predictions of a
“relativistic” and massless Dirac field theory8.
The aforementioned properties allow to envisage many

possible applications. However, a crucial point in achiev-
ing such goals as the construction of graphene-based tran-
sistors is the opening of a controllable band gap in an
otherwise gapless material. The use of samples of fi-
nite size is a natural guess when trying to do so6. In
fact, several measurements of the electric conductivity in
graphene devices do show the existence of a gap (see, for
instance,9–12).
Unlike the case of usual semiconductors, the confine-

ment of charge carriers to a finite region cannot be mod-
eled, in the continuous Dirac theory, by the condition
that the fields vanish at the boundaries. Most theoreti-
cal approaches to this problem presuppose an orientation
dependence of the adequate boundary conditions13,14,
which is in contradiction with the experimental results9.
A nice general study of possible boundary conditions in
the Dirac problem and of their symmetries in the case of
nanotubes was presented in15. It is the aim of this pa-
per to study one possible family of boundary conditions
and compare the predictions arising from taking different
members of such family with experimental results.
We will choose the orientation of the lattice as in

reference2, so that, by taking the two nonequivalent Dirac
points as K± = (0,± 4π

3a ), we get the total Hamiltonian
as a direct sum of

H± = h̄vF (−iσ2∂x ± iσ1∂y) , (1)

where vF = 3at
2h̄ is the Fermi velocity of graphene, with

a = 0.14nm the distance between nearest neighbors and
t = 2.7eV the nearest neighbor hopping energy.
Such Hamiltonian corresponds to a free Dirac equa-

tion in 2 + 1 dimensions, where the gamma matrices are
given, in each valley, by γ0± = iσ3, γ

1
± = σ1, γ

2± = ±σ2.
We will study the corresponding eigenvalue problems
H±Ψ±(x, y) = E±Ψ±(x, y), when the domain of the dif-

ferential operator is defined by a family of local boundary
conditions which

1. Are separately imposed in each valley,

2. Give a vanishing flux of current perpendicular to
the boundary14,

3. Are defined through a self-adjoint projector14,15.

From now on, we will study the problem around K+,
leaving the discussion on how to combine boundary con-
ditions in both valleys for later on. We will consider the
boundary to be placed at a given x = x0 value. Through-
out our calculations, we will take vF = h̄ = 1, and recover
the right units when comparing our predictions with ex-
perimental results.
The condition 2. is a close to confinement as one can

get in a Dirac theory and it leads to a self-adjoint Hamil-
tonian (thus, to real energies). It is easy to check that the
current perpendicular to the boundary is proportional to

Ψ†
+σ2Ψ+, while the current along the boundary is pro-

portional to Ψ†
+σ1Ψ+. So, the most general local bound-

ary conditions satisfying conditions 1. to 3. above are
given by (I + σ1 e

−iασ2 )Ψ+⌋x=x0
= 0, which is a one-

parameter family. Note that α = 0, π correspond to the
so-called MIT bag boundary conditions16, while α = ±π

2

are the conditions used to mimic a zigzag boundary13.
Each member of this family imposes a different condition
on the density of tangential current at the boundary. In

fact, one has Ψ†
+σ1Ψ+⌋x=x0

= − cos (α)Ψ†
+Ψ+⌋x=x0

. In
particular, zigzag boundary conditions enforce the van-
ishment of the tangential current at the boundary, while
MIT ones equate it to the density of charge.
In view of the translational invariance along the y

direction we will propose, for each ky, Ψ+(x, y) =
eiky yψ+(x).
We start with the case of the half plane, with its bound-

ary at x = 0, in order to analyze the existence of edge
states (or the lack thereof). In order to do so, it is conve-
nient to perform a unitary transformation of the eigen-
functions, ψ̃(x) = e−iα

2
σ2ψ+(x). This leads us to the

eigenvalue problem,

[−iσ2∂x − σ1ky cosα+ σ3ky sinα] ψ̃(x) = Eψ̃(x)

(I + σ1) ψ̃(x = 0) = 0 , (2)

together with the normalizability condition when x→ ∞.
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It is a simple exercise to show that, for all α 6= 0, π
(i.e., all boundary conditions different from the MIT bag
ones) there are, apart from bulk sates, some edge states,
corresponding to E = ky cosα, with ky sinα > 0, which
are eigenfunctions decreasing exponentially with x, thus
concentrated at the boundary.
The existence of these states is well known for zigzag

boundary conditions (α = ±π
2 ), in which case they are

zero energy modes5. This shows that, in a compact
region with a single smooth boundary, the boundary
problem will not satisfy the Lopatinsky-Shapiro condi-
tion (equivalently, they would not define a Fredholm
operator)17. In the remaining cases, these modes cor-
respond to real, nonzero, energies. We will comment on
this point when treating circular quantum dots.
For a comparison with experiments, we will first dis-

cuss the case of a graphene nanoribbon, which requires
the imposition of a boundary condition at a second
boundary, placed at x =W .
Experiments concerning nanoribbons9,10,12 show a gap

which, moreover, is symmetric around the Dirac point.
There are two ways of obtaining a symmetric spectrum,
i.e., choosing exactly the same projector to define the
boundary condition at x = W or choosing, instead, the
orthogonal one. It is easily shown that the first alter-
native allows for the existence of zero modes, no matter
the value of α. They appear for all values of ky when
α = ±π

2 and for ky = 0 in the remaining cases. So, we
will limit our discussion to the second alternative, which
is also consistent with the fact that the sign of the inward
normal is opposite at both boundaries.
Our boundary value problem will now be,

[−iσ2∂x − σ1ky cosα+ σ3ky sinα] ψ̃(x) = Eψ̃(x)

(I + σ1) ψ̃(x = 0) = 0

(I − σ1) ψ̃(x =W ) = 0 . (3)

In all cases one has E = ±
√

k2x + k2y. However, MIT

bag boundary conditions are unique in that the spec-
trum is determined by the equation cos (kxW ) = 0, which
doesn’t depend on ky, and they allow only real values of
kx. Thus we have, in these two cases (α = 0, π),

En = ±

√

(

(n+ 1
2 )π

W

)2

+ k2y . (4)

This leads to an energy gap ∆E = π
W
.

The remaining values of α, instead, lead to a spectrum
determined by

kx cos (kxW ) = ky sinα sin (kxW ) forE 6= ±ky , (5)

and

ky =
1

W sinα
, forE = ±ky . (6)

Note that both equations break the invariance under
ky → −ky. It is difficult to imagine why this invari-
ance would be broken in a ribbon, which extends to

−∞ < y < ∞, in the absence of electromagnetic fields.
Such invariance could only be recovered by imposing ex-
actly the same boundary conditions on the eigenfunctions
around the other valley.

Moreover, for ky = 0 one has kx =
(n+ 1

2
)π

W
, no matter

the value of α. For all the remaining values of ky, at vari-
ance with the situation in the MIT case, the admissible
values of kx are not equally spaced.
But, more important, equation (5) allows for imagi-

nary as well as real values of kx. Calling κ = i kx one
has, for E 6= ±ky,

κ cosh (κW ) = ky sinα sinh(κW ), for |ky|>
1

W | sinα|
.(7)

When | sinα| = 1, i.e., zigzag boundary conditions,
this equation allows for energies arbitrarily close to zero
when κ → ∞. As a consequence, no gap exists in this
case, which is a well known fact5. For the remaining
values of α, the eigenenergies coming from equation (5)
never tend to zero. The analysis of the minimal value
of |E| can be performed analytically. From such analysis
one concludes that, for all α, the energy gap satisfies
∆E ≤ π

W
.

The experiments on nanoribbons9,10,12 show a trans-
port gap as a function of the gate voltage, when per-
formed at low temperature and bias voltage. This elim-
inates zigzag boundary conditions as candidates to de-
scribe the physical situation. For the remaining values
of α we have, recovering units, ∆E ≤ h̄vFπ

W
= 3

2πt
a
W
.

For MIT bag boundary conditions (α = 0, π) the equal
sign holds. Moreover, reference10 shows equally spaced
plateaux in the conductivity, which suggests that MIT
bag boundary conditions are the ones to be imposed in
the continuous model.
As for the numerical value of the gap, reference12

presents a study of several graphene nanoribbons, of dif-
ferent widths, all of which show a gap in the gate volt-
age corresponding to a one-particle energy gap fitted to
∆m = 36eV a

W
. This is roughly three times our re-

sult for MIT boundary conditions, i.e., ∆E = 12.7eV a
W
.

Reference10 finds, for a sample of width W = 30nm, a
value of the energy gap ∆E = 46meV , in very good
agreement with our result for such case, i.e., ∆E =
57meV (note, that, in this case, our prediction is higher
than the measured gap). Obviously, both experiments
disagree. The origin of such discrepancy is not clear to
us, since both use similar values of the capacitance for
comparable samples.
Finally, as shown clearly by reference9, and at odds

with most theoretical models13,14 (which would impose
different boundary conditions depending on the orien-
tation of the boundary) the measured gap in the gate
voltage doesn’t depend on the orientation of the bound-
ary. This will certainly be the case in our continuous
model if MIT bag boundary conditions are written as
(I + /n)ψ(x = 0,W ) = 0, where n is the inward pointing
normal vector corresponding to each boundary. More-
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over, consistently imposing MIT boundary conditions
around K− leads to the same gap in both valleys.
In order to further compare the predictions of differ-

ent members of our family of boundary conditions with
the experiment, we will now treat the case of a circular
graphene dot of radius R. To this end, we adopt polar
coordinates. Taking the gamma matrices for the theory
around K+ as before, we are led to the boundary value
problem (with vF = h̄ = 1),

[

−iγθ∂r + i
γr

r
∂θ

]

ψ(r, θ) = Eψ(r, θ)

(

I − γre−iαγθ
)

ψ(r = R, θ) = 0

ψ(r, θ) = ψ(r, θ + 2π) , (8)

where γr = σ1 cos θ+σ2 sin θ and γ
θ = σ2 cos θ−σ1 sin θ.

Solving this boundary value problem is a simple ex-
ercise (see, for instance18). The first outcome is that
zigzag boundary conditions (α = ±π

2 ) allow for an infi-
nite amount of zero modes, as expected from the facts
that they don’t satisfy the Lopatinski-Shapiro condition
and that we are now treating a compact region with a
smooth boundary. As for the remaining conditions in
the family, none of them allows for zero modes. Since
experiments on quantum dots also present a gap, we will
concentrate on the remaining cases (cosα 6= 0), which

give a spectrum determined by

(1−sinα)Jn(|E|R)+s cosα)Jn+1(|E|R) = 0, n = 0, ...,∞

(1−sinα)Jn+1(|E|R)−s cosα)Jn(|E|R) = 0, n = 0, ...,∞(9)

where Jn is the Bessel function of order n, and s is the
sign of the energy.
Now, the experiment11 shows clearly that the gap in a

quantum dot is symmetric around the Dirac point. This,
again, points to the MIT boundary conditions as the right
conditions to impose on the continuum model in order to
reproduce the experimental results, since all the remain-
ing values of α produce a spectral asymmetry.
Note that reference18 had already suggested that this

could be the case. Indeed, this is the first guess a particle
physicist would make when asked for confinement in a
Dirac theory. The comparison with experimental results
presented in this paper shows this to be, most probably,
the case.
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