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THE REPRESENTATION DIMENSION OF HECKE ALGEBRAS

AND SYMMETRIC GROUPS

PETTER ANDREAS BERGH & KARIN ERDMANN

Abstract. We establish a lower bound for the representation dimension of
all the classical Hecke algebras of types A, B and D. For all the type A

algebras, and “most” of the algebras of types B and D, we also establish
upper bounds. Moreover, we establish bounds for the representation dimension
of group algebras of some symmetric groups.

1. Introduction

The representation dimension of a finite dimensional algebra was introduced by
Auslander in [Au1]. His aim was an invariant which would somehow measure how
far an algebra is from having finite representation type. As a first step, he showed
that a non-semisimple algebra is of finite representation type if and only if its
representation dimension is exactly two, whereas it is of infinite type if and only if
the representation dimension is at least three.

For more than three decades, no example was produced of an algebra whose
representation dimension exceeds three. However, in 2006 Rouquier showed in
[Ro1] that the representation dimension of the exterior algebra on a d-dimensional
vector space is d+ 1, using the notion of the dimension of a triangulated category
(cf. [Ro2]). Thus there do exist finite dimensional algebras of arbitrarily large
representation dimension. Other examples illustrating this were subsequently given
in [Ber], [BO1], [BO2], [KrK], [Op1], [Op2], [Op3], [OpM].

Naturally, these papers focused on finding lower bounds for the representation
dimension of various algebras. However, there does not exist a method for com-
puting a good upper bound. The best upper bound available so far was proved
by Auslander himself: the representation dimension of a selfinjective algebra is at
most its Loewy length. For some selfinjective algebras, this bound equals the repre-
sentation dimension, but there also exist algebras for which the difference between
this bound and the precise value is arbitrarily large. The simplest example is the
selfinjective algebra k[x]/(xn) for n ≥ 2. This has finite representation type, and
its representation dimension is therefore 2, whereas its Loewey length is n.

In this paper, we provide both an upper and a lower bound for the representation
dimension of the Hecke algebra Hq(An−1) of type An−1, where q is a primitive ℓth
root of unity and the ground field is of characteristic zero. In particular, we show
that

[n/ℓ] + 1 ≤ repdimHq(An−1) ≤ 2[n/ℓ]

whenever Hq(An−1) is not semisimple (where [r] denotes the integer part of a
rational number r). These bounds are obtained by passing to a maximal ℓ-parabolic
subalgebra, which is just a tensor product of Brauer tree algebras and semisimple
algebras. The proof carries over to some group algebras of symmetric groups, and
consequently we obtain bounds also for such algebras. Namely, if k is a perfect field
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of positive characteristic p, and Sn is the nth symmetric group with n < p2, then
we show that the inequalities

[n/p] + 1 ≤ repdim kSn ≤ 2[n/p]

hold whenever kSn is not semisimple (i.e. when n ≥ p). For these algebras, the
bounds are obtained by passing to a Sylow p-subgroup of Sn: when n < p2, this is
an elementary abelian p-group of rank [n/p].

We also establish lower bounds for all Hecke algebras of types B and D, and
these bounds are the same as for type A. Namely, if H is either a Hecke algebra
HQ,q(Bn) of type Bn, or a Hecke algebra Hq(Dn) of type Dn, then we show that
the inequality

[n/ℓ] + 1 ≤ repdimH

holds whenever [n/ℓ] ≥ 1. Moreover, when a certain polynomial expression in the
parameters is nonzero (in the ground field), and n is odd in type D, then we also
provide an upper bound:

repdimH ≤ 2[n/ℓ].

As with the lower bound, this upper bound is the same as for type A.

2. Comparing global dimensions

In this section we prove two results that compare the global dimensions of en-
domorphism rings of modules over two different algebras. They both apply to
Hecke algebras of type A and group algebras of symmetric groups. All modules are
assumed to be finitely generated.

The first result considers the case of a subalgebra of an algebra.

Theorem 2.1. Let Λ be a finite dimensional algebra, and suppose there exist a

subalgebra Γ and a Γ-module M such that:

(1) the Γ-module Λ⊗Γ M belongs to addΓ M ,

(2) the restriction map

Ext1Λ(X,Y )
resΛΓ−−−→ Ext1Γ(X,Y )

is injective for all X,Y ∈ addΛ(Λ⊗Γ M).

Then gldimEndΛ(Λ ⊗Γ M) ≤ gldimEndΓ(M).

Proof. Suppose the global dimension of EndΓ(M) is finite, say gldimEndΓ(M) = d.
Denote the induced Λ-module Λ ⊗Γ M by MΛ, and let N0 be an indecompos-
able summand of MΛ. Then HomΛ(M

Λ, N0) is an indecomposable projective
EndΛ(M

Λ)-module, and every indecomposable projective module for this endo-
morphism algebra is of this form. Denote by S(N0) the simple EndΛ(M

Λ)-module
corresponding to HomΛ(M

Λ, N0), and recall that HomΛ(M
Λ,−) induces an equiva-

lence between addΛMΛ and the category of projective EndΛ(M
Λ)-modules. There-

fore there exists an exact sequence

· · · → N2 → N1 → N0

of Λ-modules, in which each Ni belongs to addΛMΛ, and such that

· · · → HomΛ(M
Λ, N1) → HomΛ(M

Λ, N0) → S(N0) → 0

is a projective resolution of S(N0). For each i ≥ 1, denote by Ki the image of the
map Ni → Ni−1.

By restricting to Γ and using adjointness, we obtain an exact sequence

· · · → HomΓ(M,N1) → HomΓ(M,N0) → L → 0
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of EndΓ(M)-modules. As Γ-modules, each Ni belongs to addΓ M , since addΓ M
Λ ⊆

addΓ M by assumption. Therefore each HomΓ(M,Ni) is a projective EndΓ(M)-
module, and the exact sequence is a projective resolution of L. Since the projective
dimension of L is at most d, the image of the map

HomΓ(M,Nd) → HomΓ(M,Nd−1),

namely HomΓ(M,Kd), is a projective EndΓ(M)-module. Consequently the short
exact sequence

0 → HomΓ(M,Kd+1) → HomΓ(M,Nd) → HomΓ(M,Kd) → 0

of EndΓ(M)-modules splits. The functor HomΓ(M,−) induces an equivalence be-
tween addΓ M and the category of projective EndΓ(M)-modules, hence the short
exact sequence

0 → Kd+1 → Nd → Kd → 0

splits in modΓ. By assumption, the restriction map

Ext1Λ(Kd,Kd+1)
resΛΓ−−−→ Ext1Γ(Kd,Kd+1)

is injective, and so the short exact sequence also splits in modΛ. Then Kd belongs
to addΛMΛ, hence in the projective resolution of the EndΛ(M

Λ)-module S(N0)
the image of the map

HomΛ(M
Λ, Nd) → HomΛ(M

Λ, Nd−1)

is projective. This shows that the projective dimension of every simple EndΛ(M
Λ)-

module is at most d, thus proving the theorem. �

We shall also need the following result when we apply Theorem 2.1 to Hecke
algebras and group algebras. It gives sufficient conditions for an induced module to
be a generator, that is, contain all the indecomposable projective modules as direct
summands.

Proposition 2.2. Let Λ be a finite dimensional algebra, and suppose there exist a

subalgebra Γ and a Γ-module M such that:

(1) Λ is projective as a left Γ-module,

(2) M is a generator in modΓ.

Then the Λ-module Λ⊗Γ M is a generator.

Proof. Since Λ is projective as a left Γ-module, it belongs to addΓ M , and hence

Λ⊗Γ Λ belongs to addΛ(Λ⊗Γ M). The surjective multiplication map Λ⊗Γ Λ
µ
−→ Λ

splits when viewed as a map of left Λ-modules, and so the left Λ-module Λ is a direct
summand of Λ⊗ΓΛ. Therefore Λ must belong to addΛ(Λ⊗ΓM), and consequently
Λ⊗Γ M is a generator in modΛ. �

We turn now to the second result comparing global dimensions of endomorphism
rings of modules over two different algebras. Whereas one of the algebras in Theo-
rem 2.1 was a subalgebra of the other, this is not necessarily the case in the following
result. Still, the proofs are similar in nature.

Given two algebras Λ and Γ, we say that Λ separably divides Γ if there exist bi-
modules ΛXΓ and ΓY Λ, both projective on either side, such that the Λ-Λ-bimodule
Λ is a direct summand of X ⊗Γ Y . If, in addition, the Γ-Γ-bimodule Γ is a direct
summand of Y ⊗Λ X , then the algebras are separably equivalent (cf. [Li2]). Obvi-
ously, if Λ and Γ are separably equivalent, then each of them separably divides the
other. However, the converse does not seem to hold automatically: the bimodules
involved need not be the same. Note that a group algebra is separably divided by
the group algebra of any subgroup. Namely, if k is a field, and G is a group with a
subgroup H , then the bimodules kGXkH and kHY kG defined by X = kG = Y do



4 PETTER ANDREAS BERGH & KARIN ERDMANN

the trick: the kH-kH bimodule kH is a summand of Y ⊗kG X . If, in addition, the
subgroup H is a Sylow subgroup, then kG and kH are separably equivalent, since
in this case the kG-kG bimodule kG is a summand of X ⊗kH Y . Similarly, a block
algebra is separably equivalent to the group algebra of a defect group.

Theorem 2.3. Let Λ and Γ be finite dimensional algebras, and suppose there exists

a Γ-module M such that:

(1) Λ separably divides Γ through bimodules ΛXΓ and ΓY Λ,

(2) HomΛ(X,X ⊗Γ M) ∈ addΓ M.

Then gldimEndΛ(X ⊗Γ M) ≤ gldimEndΓ(M).

Proof. Since X is a projective left Λ-module, the linear map

ExtnΛ(U, V )
HomΛ(X,−)
−−−−−−−−→ ExtnΓ (HomΛ(X,U),HomΛ(X,V ))

is well-defined for all n and all Λ-modules U, V . Suppose an element η ∈ ExtnΛ(U, V )
maps to zero through this map, i.e. HomΛ(X, η) = 0. Since Y is projective as a left
Γ-module, the linear map

ExtnΓ(U
′, V ′)

HomΓ(Y,−)
−−−−−−−→ ExtnΛ (HomΓ(Y, U

′),HomΓ(Y, V
′))

is well-defined for all n and all Γ-modules U ′, V ′. Applying this map to the zero
element HomΛ(X, η), and using adjunction, we obtain

0 = HomΓ(Y,HomΛ(X, η)) ≃ HomΛ(X ⊗Γ Y, η).

Now since the Λ-Λ-bimodule Λ is a direct summand of X ⊗Γ Y , the extension η is
a direct summand of the extension HomΛ(X ⊗Γ Y, η), hence η = 0. Consequently,
the linear map

ExtnΛ(U, V )
HomΛ(X,−)
−−−−−−−−→ ExtnΓ (HomΛ(X,U),HomΛ(X,V ))

is injective for all n and all Λ-modules U, V .
Suppose the global dimension of EndΓ(M) is finite, say gldimEndΓ(M) = d.

Denote the induced Λ-module X ⊗Γ M by MΛ, and let S be a simple EndΛ(M
Λ)-

module. The arguments used in the proof of Theorem 2.1 show that there exists
an exact sequence

S : · · · → N2 → N1 → N0

of Λ-modules, with the following properties:

(1) each Ni belongs to addΛMΛ,
(2) when applying HomΛ(M

Λ,−) to S, we obtain a projective resolution

· · · → HomΛ(M
Λ, N1) → HomΛ(M

Λ, N0) → S → 0

of S over EndΛ(M
Λ).

For each i ≥ 1, denote by Ki the image of the map Ni → Ni−1.
Using adjointness, we obtain an isomorphism

HomΛ(M
Λ, S) = HomΛ(X ⊗Γ M, S)

≃ HomΓ(M,HomΛ(X, S)).

Consequently, the sequence HomΛ(M
Λ, S) gives rise to an exact sequence

· · · → HomΓ(M,HomΛ(X,N1)) → HomΓ(M,HomΛ(X,N0)) → L → 0

of EndΓ(M)-modules. Since each Ni belongs to addΛMΛ, and HomΛ(X,MΛ) ∈
addΓ M by assumption, each EndΓ(M)-module HomΓ(M,HomΛ(X,Ni)) is projec-
tive. Therefore the sequence HomΓ(M,HomΛ(X, S)) is a projective resolution of L
as a module over EndΓ(M).
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Since the global dimension of EndΓ(M) is d, the image of the map

HomΓ(M,HomΛ(X,Nd)) → HomΓ(M,HomΛ(X,Nd−1)),

namely HomΓ(M,HomΛ(X,Kd)), is a projective EndΓ(M)-module. Therefore,
when we apply HomΓ(M,−) to the short exact sequence

(†) 0 → HomΛ(X,Kd+1) → HomΛ(X,Nd) → HomΛ(X,Kd) → 0

of Γ-modules, the result is a split exact sequence of projective EndΓ(M)-modules.

But the functor modΓ
HomΓ(M,−)
−−−−−−−−→ modEndΓ(M) induces an equivalence between

addΓ M and the category of projective EndΓ(M)-modules, hence the sequence (†)
splits itself. It follows from the beginning of this proof that the linear map

Ext1Λ(Kd,Kd+1)
HomΛ(X,−)
−−−−−−−−→ Ext1Γ (HomΛ(X,Kd),HomΛ(X,Kd+1))

is injective, and so the short exact sequence

0 → Kd+1 → Nd → Kd → 0

splits in modΛ. The moduleKd is then a summand ofNd, and sinceNd ∈ addΛMΛ,
we obtain Kd ∈ addΛMΛ. This implies that in the projective resolution of the
EndΛ(M

Λ)-module S, the image HomΛ(M
Λ,Kd) of the map

HomΛ(M
Λ, Nd) → HomΛ(M

Λ, Nd−1)

is projective, and consequently pdEndΛ(MΛ) S ≤ d. Since S was an arbitrary simple

module over EndΛ(M
Λ), the global dimension of this endomorphism algebra is at

most d, and the proof is complete. �

We end this section with the counterpart to Proposition 2.2

Proposition 2.4. Let Λ and Γ be finite dimensional algebras, and suppose there

exists a Γ-module M such that:

(1) Λ separably divides Γ through bimodules ΛXΓ and ΓY Λ,

(2) M is a generator in modΓ.

Then the Λ-module X ⊗Γ M is a generator.

Proof. Since Y is projective as a left Γ-module, it belongs to addΓ M , and hence
the left Λ-module X ⊗Γ Y belongs to addΛ(X ⊗Γ M). But Λ is a direct summand
of X⊗ΓY as a bimodule, and in particular as a left Λ-module. Therefore Λ belongs
to addΛ(X ⊗Γ M). �

3. Symmetric algebras

In this section, we record some properties of symmetric algebras. All modules
are assumed to be finitely generated left modules. Recall that a finite dimensional
algebra Λ over a field k is symmetric if it is isomorphic as a bimodule to its k-dual

D(Λ) = Homk(Λ, k). If this is the case, then fix such an isomorphism Λ
φ
−→ D(Λ),

and denote by s ∈ D(Λ) the element φ(1). It is not hard to see that

s(xy) = s(yx)

φ(x)(y) = s(xy)

for all x, y ∈ Λ. The map s is called a symmetrizing form for Λ. Now suppose
that Γ is a parabolic subalgebra of Λ (cf. [Bro]), that is, the following conditions
are satisfied:

(1) Γ is symmetric,
(2) the restriction of s to Γ is a symmetrizing form for Γ,
(3) Λ is a finitely generated projective left (equivalently, right) Γ-module.
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Condition (2) is equivalent to the condition that, as a bimodule over Γ, the algebra
Λ is a direct sum Λ = Γ⊕B, where B ⊆ Ker s. In other words, the Γ-Γ-bimodule
Γ has a complement in Λ contained in the kernel of the symmetrizing form.

The multiplication map Λ⊗Γ Λ
µ
−→ Λ and the bimodule isomorphism φ give rise

to a Λ-Λ-bimodule homomorphism Λ → Λ⊗Γ Λ, given as the composition

Λ
φ
−→ D(Λ)

D(µ)
−−−→ D(Λ ⊗Γ Λ)

∼
−→ D(Λ)⊗Γ D(Λ)

φ−1
⊗φ−1

−−−−−−→ Λ⊗Γ Λ.

The image of the identity of Λ under this homomorphism is the relative Casimir

element, and denoted by cΛΓ (cf. [Bro] and [Li2]). This element satisfies x·cΛΓ = cΛΓ ·x
for every x ∈ Λ, hence µ(cΛΓ) belongs to the center of Λ. Write

cΛΓ =

n
∑

i=1

xi ⊗ yi

for some elements xi, yi ∈ Λ, and let M and N be two Λ-modules. Moreover, for a

Γ-homomorphism M
f
−→ N , consider the k-linear map M

trΛΓ(f)
−−−−→ N defined by

trΛΓ(f)(m)
def
=

n
∑

i=1

xif(yim)

for m ∈ M . It follows from [Bro, Section 6] that this map is Λ-linear, and so trΛΓ is
a k-linear map

HomΓ(M,N)
trΛΓ−−→ HomΛ(M,N)

called the trace map. Using this trace map, the following lemma shows that the
restriction map

HomΛ(M,N)
resΛΓ−−−→ HomΓ(M,N)

is injective whenever µ(cΛΓ) is invertible in the center of Λ.

Lemma 3.1. Let Λ be a finite dimensional symmetric algebra and Γ a parabolic

subalgebra. If µ(cΛΓ) is invertible in the center of Λ, then the restriction map

HomΛ(M,N)
resΛΓ−−−→ HomΓ(M,N)

is injective for all Λ-modules M and N .

Proof. Write cΛΓ =
∑t

i=1 xi ⊗ yi, and consider the composition

HomΛ(M,N)
trΛΓ ◦ resΛΓ−−−−−−→ HomΛ(M,N).

Then

(trΛΓ ◦ resΛΓ)(f)(m) =

t
∑

i=1

xif(yim) =

(

t
∑

i=1

xiyi

)

f(m) = µ(cΛΓ)f(m)

for every f ∈ HomΛ(M,N) and every m ∈ M . Since µ(cΛΓ) is invertible, the
composition trΛΓ ◦ resΛΓ is injective, hence resΛΓ is injective. �

Our aim in this section is to extend this result to cohomology. To do that, we
need a lemma on the transitivity of trace maps. Suppose we have a parabolic chain
Λ ⊇ Γ ⊇ ∆ of symmetric algebras, that is, the algebra Γ is a parabolic subalgebra
of Λ, and ∆ is a parabolic subalgebra of Γ. Since Γ is a parabolic subalgebra of Λ,
the Γ-Γ-bimodule Λ is a direct sum Λ = Γ⊕B1, where B1 ⊆ Ker s. Similarly, since
∆ is a parabolic subalgebra of Γ, the ∆-∆-bimodule Γ is a direct sum Γ = ∆⊕B2,
where B2 ⊆ Ker s. Therefore, as a bimodule over ∆, the algebra Λ is a direct sum
Λ = ∆⊕B1⊕B2, with B1⊕B2 ⊆ Ker s. Consequently, the algebra ∆ is a parabolic



HECKE ALGEBRAS AND SYMMETRIC GROUPS 7

subalgebra of Λ, and the following lemma shows the trace map is transitive in this
case.

Lemma 3.2. If Λ ⊇ Γ ⊇ ∆ is a parabolic chain of symmetric algebras, then

trΛΓ ◦ trΓ∆ = trΛ∆ .

Proof. This follows directly from [Li1, Proposition 2.11(ii)]. With the notation used
in that proposition, take X and Y to be the bimodules ΛΛΓ and ΓΓ∆, respectively.

�

The field k is obviously a parabolic subalgebra of Λ and Γ when the symmetrizing
form s is nonzero. Moreover, the latter is automatic if µ(cΛΓ) is invertible in the
center of Λ. Namely, the relative Casimir element is by definition the image of the
unit 1Λ in Λ under the composition

Λ
φ
−→ D(Λ)

D(µ)
−−−→ D(Λ ⊗Γ Λ)

∼
−→ D(Λ)⊗Γ D(Λ)

φ−1
⊗φ−1

−−−−−−→ Λ⊗Γ Λ,

and the image of 1Λ under the first map in this composition is precisely s. Therefore,
if µ(cΛΓ) is invertible, then Λ ⊇ Γ ⊇ k is a parabolic chain of symmetric algebras,
and the above lemma applies. Using this, we end this section with a result which
extends Lemma 3.1 to cohomology.

Proposition 3.3. Let Λ be a finite dimensional symmetric algebra, and Γ a para-

bolic subalgebra such that µ(cΛΓ) is invertible in Λ. Then for every i the restriction

map

ExtiΛ(M,N)
resΛΓ−−−→ ExtiΓ(M,N)

is injective for all Λ-modules M and N .

Proof. Given Λ-modules M and N , let f ∈ HomΛ(M,N) be a homomorphism
factoring through a projective module. Since projective Λ-modules are projective
also as Γ-modules, the restriction resΛΓ(f) factors through a projective Γ-module.
Thus restriction induces a k-linear map

HomΛ(M,N)
resΛΓ−−−→ HomΓ(M,N)

for stable homomorphisms. Let g represent an element in HomΛ(M,N), and sup-
pose that resΛΓ(g) = 0 in HomΓ(M,N). By [Bro, Lemma 3.15], there is a k-linear
map h ∈ Homk(M,N) with the property that resΛΓ(g) = trΓk (h). Then

(trΛΓ ◦ resΛΓ)(g) = (trΛΓ ◦ trΓk )(h) = trΛk (h)

by Lemma 3.2, and so by [Bro, Lemma 3.15] again, the map (trΛΓ ◦ resΛΓ)(g) fac-
tors through a projective Λ-module. In the proof of Lemma 3.1 we saw that
(trΛΓ ◦ resΛΓ)(g) = µ(cΛΓ)g, hence g itself must factor through a projective Λ-module.

We have just shown that the restriction map

HomΛ(M,N)
resΛΓ−−−→ HomΓ(M,N)

is injective for all Λ-modules M and N . Since the cohomology group ExtiΛ(M,N)
is isomorphic to HomΛ(Ω

i
Λ(M), N), where Ωi

Λ(M) denotes the ith syzygy of M ,
the result follows. �
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4. Hecke algebras of type A and symmetric groups

Let Λ be a finite dimensional algebra over a field k, and denote by modΛ the cat-
egory of finitely generated left Λ-modules. As in the previous sections, all modules
are assumed to be finitely generated left modules. The representation dimension

of Λ, denoted repdimΛ, is defined as

repdimΛ
def
= inf{gldimEndΛ(M) | M generates and cogenerates modΛ},

where gldim denotes the global dimension of an algebra. To say that a module
generates and cogenerates modΛ means that it contains all the indecomposable
projective and injective modules as direct summands. Of course, if Λ is selfinjec-
tive, these two notions coincide. It follows immediately from the definition that a
semisimple algebra is of representation dimension zero. As mentioned, Auslander
showed that the representation dimension of a non-semisimple algebra is two if its
representation type is finite, and at least three whenever its representation type is
infinite. Thus no algebra is of representation dimension one. Moreover, Auslander
showed that the representation dimension of a selfinjective algebra is at most its
Loewy length. Later, Iyama showed in [Iya] that the representation dimension is
finite for every finite dimensional algebra.

The focus of this paper is the representation dimension of Hecke algebras and
group algebras of symmetric groups. Let k be a field of characteristic zero, ℓ ≥ 2
an integer and q ∈ k a primitive ℓth root of unity. Recall that the corresponding
Hecke algebraHq(An−1) of type An−1 is the k-algebra with generators T1, . . . , Tn−1

satisfying the relations

(Ti + 1)(Ti − q) = 0 for 1 ≤ i ≤ n− 1

TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ n− 2

TiTj = TjTi for |i− j| ≥ 2.

If q = 1, this is just the group algebra of the symmetric group Sn, hence Hq(An−1)
is also referred to as the Hecke algebra of Sn. It is well-known that a Hecke algebra
is symmetric, and that its representation type depends on the number [n/ℓ] (cf.
[ErN]). Namely, write n = ℓm+ a, where 0 ≤ a ≤ ℓ − 1 (hence [n/ℓ] = m). Then
Hq(An−1) is semisimple if and only if ℓ = ∞ or m = 0. It is non-semisimple of
finite representation type if and only if m = 1, and of tame representation type if
and only if ℓ = 2 and n is either 4 or 5 (and then m = 2). In all other cases, the
algebra Hq(An−1) is of wild representation type.

It was shown in [BEM] and [Li2] there exists a maximal ℓ-parabolic subalgebra
B ⊆ Hq(An−1) which is isomorphic to an m-fold tensor product

B ≃ B1 ⊗ · · · ⊗Bm,

where each Bi is either semisimple or a Brauer tree algebra. Thus each Bi has
finite representation type. The same occurs for group algebras of certain symmetric
groups. Suppose k is a field of positive characteristic p, let n be an integer with
n < p2, and Sn the nth symmetric group. If we write m = [n/p], then a Sylow p-
subgroup of Sn is a direct product P = P1×· · ·×Pm, where each Pi has order p, and
these cyclic groups have disjoint supports. The group algebra kP is isomorphic to
the tensor product kP1⊗· · ·⊗kPm, and each kPi is isomorphic to the local algebra
k[x]/(xp). In particular, each algebra kPi has finite representation type.

Note that in both these situations, there is a canonical generator for the sub-
algebra. Namely, for each 1 ≤ i ≤ m, let Mi be the direct sum of a complete set
of isomorphism classes of indecomposable Bi-modules (respectively, kPi-modules).
Then the B-module (respectively, kP -module) M1 ⊗ · · · ⊗Mm is a generator. The
following crucial lemmas show that when we induce and then restrict this module,



HECKE ALGEBRAS AND SYMMETRIC GROUPS 9

the resulting module is contained in the additive closure of M . We include a proof
only for the group algebra case; the proof of the Hecke algebra case is completely
analogous.

Lemma 4.1. Let k be a field of positive characteristic p, let n be an integer with

n < p2, and Sn the nth symmetric group. Furthermore, let P = P1 × · · · × Pm

be a Sylow p-subgroup, where each Pi has order p and m = [n/p]. Finally, for

each 1 ≤ i ≤ m, let Mi be the direct sum of a complete set of isomorphism classes

of indecomposable kPi-modules, and denote the kP -module M1 ⊗ · · · ⊗Mm by M .

Then the kP -module kSn ⊗kP M belongs to addkP M .

Proof. By the Mackey formula, the restriction of kSn ⊗kP M to kP is given by

kSn ⊗kP M =
⊕

x

kP ⊗k(P∩xPx−1) (x⊗M),

where the sum is taken over a system of double coset representatives. Our module
M is an outer tensor product of the kPi-modulesMi, so assume that each P∩xPx−1

in the formula is a direct product P ∩ xPx−1 = Q1 × · · · × Qm, with each Qi a
subgroup of Pi. Then the k(P ∩ xPx−1)-module x ⊗ M is again an outer tensor
product of modules over the algebras kQi, hence kP ⊗k(P∩xPx−1) (x ⊗M) is also
an outer tensor product N1 ⊗ · · · ⊗Nm, with each Ni a module over kPi. Thus, in
this case, each kP -module kP ⊗k(P∩xPx−1) (x⊗M), and therefore also kSn⊗kP M ,
belongs to addkP M .

We must therefore show that each P ∩ xPx−1 is a direct product P ∩ xPx−1 =
Q1 × · · · × Qm, with each factor Qi a subgroup of Pi. Write n = mp + a, where
0 ≤ a < p. The group P ∩ xPx−1 is a subgroup of Sλ ∩ xSλx

−1, where Sλ is a
Young subgroup for the partition λ = (pm, 1a) of n, and P ≤ Sλ. The intersection
Sλ ∩ xSλx

−1 is again a Young subgroup, for a partition which refines λ. The
group P ∩ xPx−1 is a p-subgroup for this intersection, and by Sylow’s theorem it
is therefore contained in a Sylow p-subgroup R of Sλ ∩ xSλx

−1. The group R is
a direct product of the Sylow subgroups of the factors, and is therefore a direct
product R = R1 × · · · × Rm. If Ri is nontrivial, then it is generated by a p-cycle,
and distinct nontrivial Ri, Rj have disjoint supports. Therefore any subgroup of R,
in particular P ∩ xPx−1, is a direct product of groups generated by p-cycles, with
disjoint supports. �

As mentioned, we do not include the proof of the Hecke algebra version of Lemma
4.1, since it is completely analogous to the proof just given. For more background
on the relevant machinery (for instance, the Mackey formula), see [DJ1].

Lemma 4.2. Let Hq(An−1) be the Hecke algebra of the symmetric group Sn, where

q is a primitive ℓth root of unity and the ground field is of characteristic zero.

Furthermore, let B ≃ B1 ⊗ · · · ⊗ Bm be a maximal ℓ-parabolic subalgebra, where

m = [n/ℓ] and each Bi is either semisimple or a Brauer tree algebra. Finally,

for each i, let Mi be the direct sum of a complete set of isomorphism classes of

indecomposable Bi-modules, and denote the B-module M1 ⊗ · · · ⊗Mm by M . Then

the B-module Hq(An−1)⊗B M belongs to addB M .

We are now ready to prove our two main results. The first of these gives both
an upper and a lower bound for the representation dimension of a non-semisimple
Hecke algebra Hq(An−1). The main ingredient in the proof of the upper bound is
Theorem 2.1.

Theorem 4.3. Let Hq(An−1) be the Hecke algebra of type An−1, where q is a

primitive ℓth root of unity and the ground field is of characteristic zero. If Hq(An−1)
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is not semisimple (i.e. if ℓ is finite and [n/ℓ] ≥ 1), then

[n/ℓ] + 1 ≤ repdimHq(An−1) ≤ 2[n/ℓ].

Proof. Let k be the ground field, and write n = ℓm+ a, where 0 ≤ a ≤ ℓ − 1. We
must show that

m+ 1 ≤ repdimHq(An−1) ≤ 2m,

and we start with the lower bound. Throughout this proof, we denote our Hecke
algebra Hq(An−1) by Λ.

By [Li2, Theorem 1.1], the Hochschild cohomology ring

HH∗(Λ) = Ext∗Λ⊗kΛop(Λ,Λ)

of Λ is Noetherian, and Ext∗Λ⊗kΛop(Λ, X) is a finitely generated HH∗(Λ)-module
for every Λ-Λ-bimodule X . By [EHSST, Proposition 2.4], the latter is equivalent
to Ext∗Λ(Λ/ radΛ,Λ/ radΛ) being a finitely generated HH∗(Λ)-module. Since the
characteristic of k is zero, it is a perfect field, hence (Λ/ radΛ) ⊗k (Λ/ radΛ) is a
semisimple algebra. Therefore, by [Ber, Corollary 3.6] (see also [BIKO, Corollary
5.12]), the inequality

dimHH∗(Λ) + 1 ≤ repdimΛ

holds, where dimHH∗(Λ) is the Krull dimension of HH∗(Λ). By [Li2, Theorem 1.2],
the Krull dimension of HH∗(Λ) is m, hence the lower bound follows.

To prove the upper bound, let B be a maximal ℓ-parabolic subalgebra of Λ.
Then B is isomorphic to an m-fold tensor product B ≃ B1 ⊗ · · · ⊗Bm, where each
Bi is either semisimple or a Brauer tree algebra. In any case, each Bi is of finite
representation type. For each i, let Mi be the direct sum of a complete set of
isomorphism classes of indecomposable Bi-modules, and consider the B-module

M = M1 ⊗ · · · ⊗Mm.

Then gldimEndBi
(Mi) ≤ 2, and therefore

gldimEndB(M) =

m
∑

i=1

gldimEndBi
(Mi) ≤ 2m

by [Xi, Corollary 3.3 and Lemma 3.4], since the ground field k is perfect. The
module M is a generator in modB, and the B-module Λ⊗B M belongs to addB M
by Lemma 4.2. Moreover, by [Du, Theorem 2.7] the element µ(cΛB) is invertible in
the center of Λ, hence by Proposition 3.3, the restriction map

ExtiΛ(X,Y )
resΛ

B−−−→ ExtiB(X,Y )

is injective for all i and all Λ-modulesX and Y . Then by Theorem 2.1 the inequality

gldimEndΛ(Λ ⊗B M) ≤ gldimEndB(M) ≤ 2m

holds. Consequently, since the Λ-module Λ⊗BM is a generator by Proposition 2.2,
the representation dimension of Λ is at most 2m. �

Next, we prove the second of our main results, namely the analogue of Theorem
4.3 for group algebras of symmetric groups. Here we use Theorem 2.3 when we
prove the upper bound.

Theorem 4.4. Let k be a perfect field of positive characteristic p, let n be an

integer with n < p2, and Sn the nth symmetric group. If kSn is not semisimple

(i.e. if p ≤ n), then

[n/p] + 1 ≤ repdim kSn ≤ 2[n/p].
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Proof. We start with the lower bound. Since n < p2, any Sylow p-subgroup of Sn

is elementary abelian of order [n/p], hence this number is the p-rank of Sn. The
lower bound now follows from [Op1, Corollary 19].

For the upper bound, let P be a Sylow p-subgroup of Sn. Then P = P1×· · ·×Pm,
where each Pi has order p and m = [n/p]. For each 1 ≤ i ≤ m, let Mi be the direct
sum of a complete set of isomorphism classes of indecomposable kPi-modules, and
denote the kP -module M1 ⊗ · · · ⊗Mm by M . This module generates mod kP , and
as in the proof of Theorem 4.3, the global dimension of EndkP (M) is at most 2m.

Define bimodules kSn
XkP and kPY kSn

by X = kSn and Y = kSn. Then the
kSn-kSn-bimodule kSn is a direct summand of X ⊗kP Y , so kSn separably divides
kP . Moreover, the kP -module HomkSn

(X,X⊗kPM) is justX⊗kPM , and therefore
belongs to addkP M by Lemma 4.1. Theorem 2.3 now gives

gldimEndkSn
(X ⊗kP M) ≤ gldimEndkP (M) ≤ 2m,

and since X ⊗kP M generates mod kSn by Proposition 2.4, the result follows. �

We end this section with some remarks on our main results.

Remarks. (1) Instead of Theorem 2.1, we could have used Theorem 2.3 to prove the
upper bound in Theorem 4.3. Indeed, if B is a maximal ℓ-parabolic subalgebra of
Hq(An−1), define bimodules Hq(An−1)XB

and BY Hq(An−1) by X = Y = Hq(An−1).

By [Li2, Proposition 5.1], the algebraHq(An−1) separably divides B through X and
Y . Thus assumption (1) in Theorem 2.3 holds. Assumption (2) holds by Lemma
4.2 and the arguments used at the end of the proof of Theorem 4.4.

(2) Similarly, instead of Theorem 2.3, we could have used Theorem 2.1 to prove
the upper bound in Theorem 4.4. First, note that when P is a Sylow p-subgroup
of Sn, then kP is a parabolic subalgebra of kSn. When n < p2, the index |Sn|/|P |

is not divisible by p, hence µ(ckSn

kP ) is invertible in kSn. Therefore, by Proposition
3.3, assumption (2) in Theorem 2.1 holds. Assumption (1) is just Lemma 4.1.

(3) As mentioned prior to Lemma 4.1, the Hecke algebra Hq(An−1) is non-
semisimple of finite representation type if and only if [n/ℓ] = 1, and of tame repre-
sentation type if and only if ℓ = 2 and n is either 4 or 5 (and then [n/ℓ] = 2). In
all the other non-semisimple cases, the Hecke algebra has wild representation type.
In the finite type case, Theorem 4.3 therefore gives 2 ≤ repdimHq(An−1) ≤ 2, i.e.
repdimHq(An−1) = 2. This was of course to be expected: every non-semisimple fi-
nite dimensional algebra of finite representation type has representation dimension
2. When Hq(An−1) is tame, Theorem 4.3 gives 3 ≤ repdimHq(An−1) ≤ 4, that is,
the representation dimension is either 3 or 4. It is known that the representation
dimension is 3 in this case. Namely, by [ScS], there are two Morita equivalence
classes of blocks, represented by Hq(A3) and Hq(A4). It is shown in [ErN] that
these algebras are special biserial, and so by [EHIS, Corollary 1.3] they are both of
representation dimension 3.

(4) The group algebra kSn is non-semisimple when p ≤ n, and when n < p2 it
has finite representation type precisely when [n/p] = 1. For in this case, the Sylow
p-subgroups of Sn are cyclic, and by a classical result of Higman this is equivalent
to kSn having finite type. As was the case for Hecke algebras, Theorem 4.4 gives
repdim kSn = 2 in this case.

5. Hecke algebras of types B and D

In this final section, we consider Hecke algebras of types Bn (n ≥ 2) and Dn

(n ≥ 4). These are associated to Coxeter groups W (Bn) = S2 ≀ Sn and W (Dn) =
W (Bn) ∩ A2n, where A2n is the alternating group of degree 2n. As before, the
ground field is assumed to be of characteristic zero.
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For type Bn, the Hecke algebra involves two parameters q and Q, and we write
HQ,q(Bn). This is the k-algebra with generators T0, T1, . . . , Tn−1 satisfying the
relations

(T0 + 1)(T0 −Q) = 0

T0T1T0T1 = T1T0T1T0

(Ti + 1)(Ti − q) = 0 for 1 ≤ i ≤ n− 1

TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ n− 2

TiTj = TjTi for |i− j| ≥ 2.

Note that there is a natural inclusion of the Hecke algebra Hq(An−1) of type An−1

into HQ,q(Bn), taking the generator Ti of Hq(n) (for 1 ≤ i ≤ n−1) to the generator
Ti ofHQ,q(Bn), ignoring the element T0. The algebraHQ,q(Bn) is free as a left/right
module over Hq(An−1).

For Hecke algebras of type Dn, there is just one parameter q, and we write
Hq(Dn). This is the k-algebra with generators T0, T1, . . . , Tn−1 satisfying the rela-
tions

T0T2T0 = T2T0T2

T0Ti = TiT0 for 1 ≤ i ≤ n− 1, i 6= 2

(Ti + 1)(Ti − q) = 0 for 0 ≤ i ≤ n− 1

TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ n− 2

TiTj = TjTi for 1 ≤ i ≤ j − 2 ≤ n− 3.

As with Hecke algebras of type B, there is a natural inclusion of Hq(An−1) into
Hq(Dn): the generator Ti of Hq(n) (for 1 ≤ i ≤ n − 1) maps to the generator Ti

of Hq(Dn), ignoring the element T0. Moreover, the algebra Hq(Dn) is free as a
left/right module over Hq(An−1).

We shall first establish lower bounds for the representation dimensions of Hecke
algebras of types B and D. To do this, we compute lower bounds for the dimen-
sions of the stable module categories involved, viewed as triangulated categories.
Namely, if H is any Hecke algebra, then H is symmetric, in particular selfinjective.
The stable module category modH is then triangulated, with suspension functor
Ω−1

H
: modH → modH. Now let T be an arbitrary triangulated category with

suspension functor Σ: T → T , and C and D subcategories of T . We denote by
thick1T (C) the full subcategory of T consisting of all the direct summands of finite
direct sums of suspensions of objects in C. Furthermore, we denote by C ∗ D the
full subcategory of T consisting of objects M such that there exists a distinguished
triangle

C → M → D → ΣC

in T , with C ∈ C and D ∈ D. Now for each n ≥ 2, define inductively thicknT (C) by

thicknT (C)
def
= thick1T

(

thickn−1
T (C) ∗ thick1T (C)

)

.

Then the dimension of T , denoted dim T , is defined as

dim T
def
= inf{n ≥ 0 | ∃ an object G ∈ T such that T = thickn+1

T (G)}.

This notion was introduced by Rouquier in [Ro2], precisely in order to establish
lower bounds for the representation dimension of certain algebras, namely exterior
algebras.

Lemma 5.1. [Ro2, Proposition 3.9] If Λ is a finite dimensional non-semisimple

selfinjective algebra, then dim (modΛ) + 2 ≤ repdimΛ.
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Thus, in order to compute lower bounds for the representation dimensions Hecke
algebras of types B and D, we compute lower bounds for the dimensions of their
stable module categories. We include also Hecke algebras of type A.

Lemma 5.2. Let k be a field of characteristic zero, and q ∈ k a primitive ℓth root

of unity, where ℓ is finite. Furthermore, let n be an integer, and H either a Hecke

algebra Hq(An−1) of type An−1, a Hecke algebra HQ,q(Bn) of type Bn, or a Hecke

algebra Hq(Dn) of type Dn. Then dim (modH) ≥ [n/ℓ]− 1.

Proof. The Hecke algebra Hq(An−1) of type An−1 is a subalgebra of H, but also a
factor algebra in a natural way (factor out the generator T0). Therefore, there is a
diagram

Hq(An−1)
i
−→ H

π
−→ Hq(An−1)

of k-algebra homomorphisms, in which the composition π ◦ i is the identity on
Hq(An−1). Since H is projective as a left Hq(An−1)-module, the inequality

dim (modHq(An−1)) ≤ dim (modH)

holds by [BO1, Lemma 2.3]. It is therefore enough to prove the result forHq(An−1).
Denote our algebra Hq(An−1) by Λ. Since the ground field k is of characteristic

zero, it is a perfect field, hence the algebra (Λ/ radΛ)⊗k (Λ/ radΛ) is semisimple.
As we saw in the proof of Theorem 4.3, the Hochschild cohomology ring HH∗(Λ)
is Noetherian of Krull dimension [n/ℓ], and Ext∗Λ(Λ/ radΛ,Λ/ radΛ) is a finitely
generated HH∗(Λ)-module. Moreover, in the proof of [Ber, Corollary 3.6], it was
shown that the Krull dimension of the Hochschild cohomology ring equals the com-
plexity of the Λ-module Λ/ radΛ. It then follows from [Ber, Theorem 3.2] that
dim (modΛ) ≥ [n/ℓ]− 1. �

Combining this lemma with Lemma 5.1, we obtain the lower bounds for the
representation dimensions of Hecke algebras of types B and D. The same bound
holds for Hecke algebras of types An−1, Bn and Dn.

Theorem 5.3. Let k be a field of characteristic zero, and q ∈ k a primitive ℓth
root of unity, where ℓ is finite. Furthermore, let n be an integer such that [n/ℓ] ≥ 1,
and H either a Hecke algebra HQ,q(Bn) of type Bn, or a Hecke algebra Hq(Dn) of
type Dn. Then repdimH ≥ [n/ℓ] + 1.

Remark. There is a common generalization of Hecke algebras of types A and B,
namely the Ariki-Koike algebras. Let q,Q1, . . . , Qt be elements of k, and denote
the sequence (Q1, . . . , Qt) by Q. The corresponding Ariki-Koike algebra HQ,q(n)
is the k-algebra with generators T0, T1, . . . , Tn−1 satisfying the relations

t
∏

i=1

(T0 −Qi) = 0

T0T1T0T1 = T1T0T1T0

(Ti + 1)(Ti − q) = 0 for 1 ≤ i ≤ n− 1

TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i ≤ n− 2

TiTj = TjTi for |i− j| ≥ 2.

When Q = (1), this is just the Hecke algebraHq(An−1) of type An−1, whereas when
Q = (−1, Q) we retrieve the Hecke algebra HQ,q(Bn) of type Bn. As with Hecke
algebras of types Bn and Dn, the algebra Hq(An−1) is a subalgebra of HQ,q(n),
and the latter is free over Hq(An−1). Moreover, there is a diagram

Hq(An−1)
i
−→ HQ,q(n)

π
−→ Hq(An−1)
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of k-algebra homomorphisms, in which the composition π ◦ i is the identity on
Hq(An−1). As in the proof of Lemma 5.2, we obtain the inequalities

dim (modHQ,q(n)) ≥ dim (modHq(An−1)) ≥ [n/ℓ]− 1,

and so the representation dimension of HQ,q(n) is also bounded below by [n/ℓ]+1.

Finally, we turn to upper bounds for the representation dimensions of Hecke
algebras of types B and D. The situation is more complicated than for type A, and
our method depends on whether certain polynomial expressions in the parameters
are nonzero. First we treat type Bn for n ≥ 2: we set

fn(Q, q) =
n−1
∏

i=1−n

(Q + qi).

By a result of Dipper and James, when fn(Q, q) is nonzero, then the algebra
HQ,q(Bn) is Morita equivalent to a product of tensor products of Hecke algebras
of type A. Of course, the condition that fn(Q, q) be nonzero is equivalent to the
condition Q+ qi 6= 0 for 1− n ≤ i ≤ n− 1.

Lemma 5.4. [DJ2, Theorem 4.17] If fn(Q, q) is nonzero, then the Hecke algebra

HQ,q(Bn) is Morita equivalent to the algebra

n
∏

j=0

Hq(Aj−1)⊗k Hq(An−j−1).

Using this result, we obtain the upper bound for the representation dimension
in type B, provided the relevant polynomial is invertible.

Theorem 5.5. Let k be a field of characteristic zero, and q ∈ k a primitive ℓth
root of unity, where ℓ is finite. Furthermore, let n be an integer, and HQ,q(Bn) a

Hecke algebra of type Bn. If fn(Q, q) is nonzero, then repdimHQ,q(Bn) ≤ 2[n/ℓ].

Proof. In general, the representation dimension of a direct product of algebras
equals the maximum of the representation dimensions of the factors. Therefore, by
Lemma 5.4, the representation dimension of HQ,q(Bn) equals

max{repdim (Hq(Aj−1)⊗k Hq(An−j−1)) | 0 ≤ j ≤ n}.

Now by [Xi, Theorem 3.5], the representation dimension ofHq(Aj−1)⊗kHq(An−j−1)
is at most

repdimHq(Aj−1) + repdimHq(An−j−1),

and by Theorem 4.3 this sum is at most 2([j/ℓ] + [(n− j)/ℓ]) (of course, the upper
bound in Theorem 4.3 holds without the assumption that [n/ℓ] ≥ 1: if [n/ℓ] = 0
then the Hecke algebra is semisimple). Since [j/ℓ] + [(n − j)/ℓ] ≤ [n/ℓ], we are
done. �

Next, we consider type Dn for n ≥ 4, and here we set

gn(q) = 2

n−1
∏

i=1

(1 + qi).

The following theorem, which is analogous to the one for type B, is implicit in [Pal,
Theorems 3.6 and 3.7], and is made explicit in [Hu].

Lemma 5.6. If gn(q) is nonzero and n is odd, then Hq(Dn) is Morita equivalent

to the algebra
n
∏

j=(n+1)/2

Hq(Aj−1)⊗k Hq(An−j−1).
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There is a corresponding theorem when n is even, a result which was proved in
[Hu]. However, the Morita description in this case has a direct factor which is not
a tensor product of type A Hecke algebras, and therefore we cannot deal with the
case when n is even. But when n is odd we obtain an upper bound. We skip the
proof since it is exactly the same as that of Theorem 5.5.

Theorem 5.7. Let k be a field of characteristic zero, and q ∈ k a primitive ℓth
root of unity, where ℓ is finite. Furthermore, let n be an odd integer, and Hq(Dn)
a Hecke algebra of type Dn. If gn(q) is nonzero, then repdimHq(Dn) ≤ 2[n/ℓ].
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