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Rank of Projection-Algebraic Representations of Some
Differential Operators

Abstract. The Lie-algebraic method approximates differential operators
that are formal polynomials of {1, z, %} by linear operators acting on a
finite dimensional space of polynomials. In this paper we prove that the
rank of the n-dimensional representation of the operator

dk; dk—H dk:—i—p
K = ak@ —|—ak+1W + ... +ak+pm

is n—k and conclude that the Lie-algebraic reductions of differential equati-
ons allow to approximate only some of solutions of the differential equation
K[u] = f. We show how to circumvent this obstacle when solving boundary
value problems by making an appropriate change of variables. We generali-
ze our results to the case of several dimensions and illustrate them with
numerical tests.

1 Introduction

The Lie-algebraic method of discrete approximations was proposed by
Calogero in his seminal work [5], with the purpose of solving eigenvalue
problems for ordinary and partial differential operators. Several years later,
Mytropolski, Prykarpatsky, and Samoylenko have established a general
algebraic-projection framework for the method that has broadened its
applicability to a wide class of problems of Mathematical Physics [6]. The
fundamental idea of the method is to project functions onto the space
P,[x] of polynomials of fixed degree n and to approximate differenti-
al operators by linear maps acting on P,[z]. In early 2000s, Bihun and
Lustyk estimated the error of such approximation and applied the method
to solving boundary value problems for elliptic partial differential equati-
ons [II, 2, B]. An overview of the literature on the Lie-algebraic method of
discrete approximations can be found in [4].
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In this paper we prove that the rank of the n-dimensional representation
of the operator
dk: dk—H dk‘—i—p
K = ak@ + akHW 4+ ...+ CL]H_pm

is n—k and conclude that the Lie-algebraic reductions of differential equati-
ons allow to approximate only some of solutions of the differential equation
K[u] = f. We show how to circumvent this obstacle when solving boundary
value problems by making an appropriate change of variables. We generali-
ze our results to the case of several dimensions and illustrate them with
numerical tests.

2 The Lie-Algebraic Method
of Discrete Approximations

Every differentiable function u : [a,b] — R can be approximated by its
Lagrange polynomial of degree n. To construct the Lagrange polynomi-
al L[u] of a differentiable function w : [a,b] — R, the interval [a,b] is
partitioned by points a = xp < 1 < ... < x, = b and the values
Llul(z;) = u(x;) are prescribed, where i = 0,1,2,...,n. The Lagrange
polynomial of u is uniquely defined by its n + 1 values at the points of the
partition and can be written in the form

Llu)(z) = 3" ua)li(2),
i=0

where Hn ( )
k=0 \L — T}

) = [ o =
k=0 \L; — X

ki g

is the ¢-th standard Lagrange polynomial, 0 <17 < n.

Let A be a differential operator acting on differentiable functions defi-
ned on [a,b]. We assume that A belongs to the enveloping algebra of
the Heisenberg-Weyl algebra of differential operators {1, z, %}; that is,
A is a formal polynomial of {1, x, %} The value of A at a function f is
denoted by A[f]. For a differentiable function w : [a,b] — R and a parti-
tion o = {xg, z1,..., 2} of [a,b], let u, = (u(xg),u(x1),...,u(x,))? be
the vector of the values of u at the nodes of the partition. The finite di-
mensional representation A, : R"*1 — R"*! of A can be constructed from



the condition

Aauo - A[L[u“a

Following this condition, the finite dimensional representation Z =
{Zkj i j=o of the operator d/dx can be found from the relation

4 () lk(z0)
%(ml) _ 7 Ik(21) ’
(7, ()

where 0 < k < n. Because l(z;) = d; for all k,j7 € {0,1,...,n}, the
right hand side of the last equality is the k-th column of Z. Therefore,

Cdl, o Y hcomp ey EE =1
ij = %(SL’]) = { 77:_2$jixk if k 74]’ (1)

where = [}, _gmsr (T — ) for every k € {1,2,...,n}.
Because the derivative % coincides with its Lagrange polynomial, we

obtain the relation
dlj, i
(@)= > Zili(x). (2)
j=0

The finite dimensional representation X of the operator x of multipli-
cation by the variable z is the square matrix of dimension (n+ 1) with the
diagonal (zg, z1,...,2,):

X = Diag(xg, x1,...,x,). (3)

The finite dimensional representation of the identity operator 1 is the (n+
1)-dimensional identity matrix denoted by I,,41.

Having constructed the finite dimensional representations of the operators
1, x,d/dz, we can approximate every operator A in the enveloping algebra

of {1,z,d/dx}.
Example 2.1. Consider the boundary value problem

u +u =0,
{mngwwpy:1 ()

for a C? function u : [0,7/2] — R. Let 0 = {x;}!", be a partition of
[0,7/2] and let Z and I,.; be the finite dimensional representations of

% and 1, respectively, for this partition. We approximate the differential
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operator A = d*/dx® + 1 by Z? + I,;1 and reduce problem to the
problem of finding a vector u, € R*™! that satisfies

(Z2 + In+1)ua = 0,
{ [Us]o = 2, [Us]n = 1. (5)

A natural question to ask here is this: does problem have a solution?
More generally, when does the finite dimensional approximation of the
original problem have a unique solution in R"*1? We address this question
in the following sections.

3 Rank of the Finite Dimensional Representation of
the Differential Operator ) ", ap%

Let 1 <k <m <nandlet ax,ar,1,...,a, be real numbers such that a
and a,, are not zeroes. In this section we prove that the finite dimensional
representation
k k+1 m
apZ” + ap 2"+ ..+ an s

of the differential operator

dk dk+1 dm
akw + Clk+1W + ...+ amdx—m
has rank n +1 — k.
Lemma 3.1. Let 0 = {xg,x1,...,x,} be a partition of the interval |a, b]

and let Z, given by formula (1)), be the finite dimensional representation
of d/dx with respect to this partition. Then rank Z = n and Z"! = 0.

Proof. Let us recall that the matrix Z is (n + 1)-dimensional.
First, let us show that Z"*! = 0. Using formula ([2), it is easy to verify

that
d*l; "
(@) = Y [ZMujln(a)
m=0

m—+1

for every k € Nand j € {0,1,...,n}. Because Tl = 0, we obtain

dLL’”+1

n

D 12" gl (x) = 0,

m=0

for all z € [0,7/2], which, after evaluation x = zj, for k € {0,1,...,},
implies that Z"*1 = 0.



Let us now prove that rank Z = n.
There exists a nonsingular matrix B = {B;}{,_, of dimension n + 1
such that

n
li(x) =) By’
p=0
for every integer 7 between 0 and n. Then

dl .
@ = 2 nitnl@

= zn: Zn: ijBpm(L'p

m=0 p=0
n

= Z[Bz]pjxp-

p=0

Because the polynomial %(az) has degree n — 1, the last row of the
matrix BZ must be zero. Therefore, rank Z = rank BZ < n.

It remains to show that rank Z cannot be strictly smaller than n.
Suppose, on the contrary, that rank Z < n. Then there exist n linearly
dependent columns in Z. Without loss of generality we assume that the
first n columns of Z are linearly dependent; denote these columns by

Ag, A1, ... A,_1. There exist constants ag, o, . . ., a,—1, not all zeros, such
that

n—1

Z OéjAj =0

§=0
But then

= 0,

which, after integration, gives us

n—1
> ajli(x) =C,
j=0



where C' is a constant.

By setting = z; in the previous equality, where j € {0,1,...,n—1},
we obtain oy = a1 = ... = a1 = C # 0. On the other hand, if we set
r = x, in the very same equality, we obtain C' = 0, a contradiction. We
have thus proved that rank Z cannot be smaller than n. Q.E.D.

Lemma 3.2. Let H be a nilpotent square matrix of dimension n+ 1 such
that rank H = n and H"™' = 0. Then rank H* = n + 1 — k for all
k€{0,1,...,n}. Moreover, the Jordan form of H is
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where I, is the identity matriz of dimension n.

Proof. Let J be the Jordan form of H so that H = B~'JB for some
invertible matrix B and diag(J) = (Ao, A1, ..., Ay), where \; are the ei-
genvalues of H.

Then 0 = H"™' = B71J"1 B and J"! = 0. Because diag(J"™!) =
(Mg XA the matrix J has only one eigenvalue A = 0 of
multiplicity n + 1 and is given by formula @

It is now easy to verify that

r (8 ) »

and rank J¥ = n+1—k. Thus, rank H* = rank J* = n+1—k as required.
Q.E.D.

Theorem 3.3. Let P(z) = apz® + ap 12" 4. . 4 apn2™ be a polynomial
of degree m with real coefficients, where k € {0,1,...,m} and a, # 0. If
a square matriz B is nilpotent, then rank P(B) = rank B*.

Proof.

Let us rewrite P(B) as P(B) = a;B*(I + 22 + aZ_Zsz + ...+
a B"F). Define D := %HB 4 %2 B2 4 4 du gk,

Because the matrix B is nilpotent, D is nilpotent. But then the matrix
I+ D is invertible. Indeed, the series ) = ((—D)? is a finite sum and equals
(I+D)™.

In summary, P(B) = B*A, where A is an invertible matrix. Therefore,
rank P(B) = rank B* as required. Q.E.D.

The next theorem follows immediately from theorem [3.3)and lemmas
and 3.2



Theorem 3.4. Let 0 = {xg, x1,...,x,} be a partition of the interval |a, b]
and let Z, given by formula (1)), be the finite dimensional representations
of the operators d/dx and x, respectively, corresponding to this partition.
Let P(z) be a polynomial defined in the hypothesis of theorem [3.3 Then
rank Z =n, 2" =0, and rank P(Z) = rank Z¥ =n + 1 — k.

It is natural to ask whether theorem [3.3| can be generalized to the case
where the coefficients a,,, p € {k,k+1,...,m}, of the polynomial P(z) =
apz2® +ap 12" 4. 4a,,2™, are polynomials in z. In other words, suppose
that a,, p € {k,k+1,...,m}, are polynomials, matrix B is nilpotent and
matrix X is diagonal. Is it true that the matrix P(X, B) has the rank of
B*? The next example shows that, in general, this is not true.

Example 3.5. Let

-2 —1 a 0
B—<4 2>,and X—<Ob>.

It is easy to verify that B2 = 0, hence B is nilpotent. Consider the
polynomial P(x,z) = 1+ zz. The matrix P(X,B) = I, + XB does
not have the full rank if b — a = —%. Indeed,

1—2a —a
]2+XB_< 4b 1+2b>

and det(ly + XB) =1+4+2(b—a)=0ifb—a= —1.

Let us revise example in the view of what we have proved. The
finite-dimensional approximation of the differential equation «” 4+ u = 0
on the interval [0, 7/2] is given by

Z%uy +u, =0, (8)

where u, € R" is a vector whose coordinates approximate the values of
the solution u at the nodes of a partition o of [0, 7/2].

By the last theorem, the rank of the matrix Z2 4 I is n + 1, thus the
system of linear equations has a unique solution. On the other hand,
we know that the space of solutions to the equation uv” + u = 0 is two-
dimensional. Therefore, such direct application of the Lie-algebraic method
does not help us approximate all the solutions of the differential equation,
only some of them. It is possible, however, to still approximate solutions of
initial and boundary value problems using the Lie-algebraic method. We
simply need to make an appropriate substitution so that to ensure that
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the solution of the differential equation automatically satisfies initial or
boundary conditions.
For example, to solve the boundary value problem

u" +u =0, z€l0,F]
SR, ©)

we make a substitution u = (2 — 2/7z) (z(z — 7/2)v + 1) and obtain the
equation p(x)v” + q(z)v" + r(z)v = s(x), where

2
p(z) = —=2° +32% — 7z,
m
6
q(z) = 2(——2*+ 62 —7),
7r
12 2 7
— —_ 246 9_ 2 _Z
r(z) —a + + a( 7T31:)(:1: 2),
2
s(z) = —x—2,
m

whose discrete approximation is
(P(X)Z* + q(X)Z + (X)) vs = s(X),

where o is a partition of [0, 7/2].

We have chosen the partition of the interval [0.001, 3] with equally
distributed n nodes z; = 0.001 4+ * (5 —0.001). We compared the values of
the vector v, with the values (u(zg), u(z1),...u(z,)) of the exact solution
u(z) = sinx + 2cosz to the boundary value problem (9). The values of
the errors

B(n) =) |[uolr — ulz))|
k=0

and

Emax(n) - ke{I(Iﬁfa,X,n} Hua]k - u(xk)’

are given in table 1.

We have compared the results obtained by means of the Lie-algebraic
method with the results obtained using the standard shooting method.
Following the shooting technique, we have split boundary value problem @
into two initial value problems:

L0 50y =0 (1)



and

{ 2(0) = 0.0/(0) = 1. (11)

The solution of problem ({9)) can be found by the formula

1 —w(3)

v(3)

We solved the initial value problems and using finite di-
fferences.

The error of the shooting method for problem @ is given in table 1,
which demonstrates fast convergence of the Lie-algebraic scheme.

u=w-+

Method n 4 8 12 16
Lie-Alg. E(n) 2.2788e-04 | 9.5522e-07 | 3.9033e-09 | 1.5205e-11
Lie-Alg. | Enae(n) | 1.1466e-04 | 2.5575e-07 | 6.8542e-10 | 1.9955e-12
Shooting | E(n) 2.71e-02 | 1.39e-02 9.3e-03 7.0e-03
Shooting | Eer(n) | 1.1e-02 2.7¢-03 1.2e-03 | 6.7013e-04

Table 1. The errors E(n) and Epq.(n) of the Lie-algebraic scheme and the shooting method
for boundary value problem @, where n is the number of subintervals in the partition of
[0.001, 7] for the Lie-algebraic scheme and [0, ] for the shooting method.

4  The Lie-algebraic Approximations
in Several Dimensions

4.1 Lagrange Polynomials of Several Variables

In this section we will generalize the results proved in the previous section
for the case of several dimensions. More precisely, we will study the exi-
stence and the number of solutions of the Lie-algebraic discrete approxi-
mations of partial differential equations.

Consider a differential equation

Au = f,

where €2 is a d-dimensional cube [ay, b1] X [ag,bo] X ... X [ag,bg] and [ :
2 — R belongs to the domain of the differential operator A. We denote
= (24, ...,2%).

We partition each interval [ay, br], where 1 < k < d, with the points

ap = ¢ < 2% < ... < xknk = by, and denote the basic Lagrange



polynomials with respect to this interval by

n

Py = I @ =2t/ H ),

m=0,m=£j m=0,m#£j

where 7 =0,1,...,ng.
The basic Lagrange polynomials on €2 are defined by

Ly ... id)(xl, 2. ,xd) = llil(xl)ZQiQ(xz) .. .ldid(:pd).

For brevity, we introduce the multi-index notation (7) = (i1, %9, ...1q),
where 0 < 1 < ny for every £ = 1,2,...,d. The set of all multi-
indices is denoted by J and the nodes of the partition of € are x(; :=
(xt;, 2%, ..., 2%)), where (i) € J. In this notation, the basic Lagrange
polynomials on € can be written as L;(x), where (i) € J, and the

Lagrange polynomial of a function u :  — R is

= ulwg) L (@)
(i)ed

Let ng-dimensional square matrix Z(® denote the representation of the
differential operator dz@ with respect to the partition {z%;};, of [aa, ba],
where a = 1,2,...,d. It is easy to verify that for 1 < a <d

691#1 ] :E:: wa ( )7

where

W(a)(j),(i) _ W(a)(jl,jz ..... . _ i Ja ~~~~~ ZAC )Jmia’

1 yeeriogseerid

§ is the Kronecker symbol, and a “hat” above the index 4, means that the
index 7, is omitted.

We consider W(® as a linear map from V := R1tH@R™ . . @Rt
to itself, which acts in the following way. Let {e¥; }i%o be the standard basis
of R™*1 Then

Wl @, @...0el) = ZW e]1®ej2®...®edjd.

We identify the map W(® with a square matrix W@ of dimension
N=(mn+1)-(ng+1)-...-(ng+1)
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that represents the linear map W(® in the standard basis of RN = V as
follows. We enumerate the multi-indices in J by introducing the following
bijection % : J — {1,2,..., N}:

%(0,0,0,...,0) = 1,
x(1,0,0,...,0) = 2,

*(nl,0,0,...,O) = n1—|—1,
£(0,1,0,...,0) = (m +1)+1,

*(nhl?Ov"'?O) - (n1+1)+(n1+1)7

x(n1,n92,0,...,0) = ng-(ny+1)+ (ng+1),
%(0,0,1,...,0) = 1-(ng+1)(ng+1)+1,
x(ni,no,ng,...,ng) = ng-(ng_1+1)...(np+1)
+...4+n3- e+ +1)+ny-(n1+1)+n; + 1.

It is easy to see that

*(7‘) - *(i17i27"'7id)
= dgmi+1)(ne+1)...(ng-1+1)+...+da(ng +1)+ip + 1

for all (7) € J.

Let {g;}YY, be the standard basis of RY. For every multi-index (i) € J,
we identify the basis element g,(; with the basis element el ®e?,®...®
e;, of V. Using this identification, it is now easy to compute the matrix
W@ that represents the linear map W : V — V: its %(i)-th column
equals

W%M:WW@@&@ ®%)

::meﬂ
(j)€d
Therefore,
1 (Oé) — ( .71 7777 .](,Y aaaa .]d ( ) .
W an = Wiy = 882 (12)

In the following, we identify W@ and W,
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Proposition 4.1. The matriz representation of the differential operator

% s given by the N X N-dimenstonal matrix

A

W(a) = In1+1 Q... Q Ina—1+1 ® Z(a) ® [na+1+1 ®...® Ind+1’ (13)

where @ denotes tensor product and I,,, 11 is (ng + 1)-dimensional identity
matrix.

We prove the above proposition for the case d = 2 in the next subsecti-

on, where we discuss the structure of matrix representations of — for

the two-dimensional case. The proof for multi-dimensional case (d > 2) is
similar and is left to the reader.

It can also be shown that the finite dimensional representation of the
operator of multiplication by a variable x* equals

X =[n®. . 0L 10XY90L  1®.. . @11, (14)
where X(®) = Diag(z%, 2%, ...,2%.).
We end this subsection with stating useful identities for matrix W (@),

Lemma 4.2. The matrix

~

WOl =1 0®.. 0L 2N, 1®...®L,a (15)

represents differential operator %ﬁi)k forallk € {1,2,...,n,}, and

W wh = a9 0L, 929, 1®... (16)
®[nﬁ_1—|—1 ® ZA(B) ® ]n[3+1—|—1 ® L ® [nd—|—1

represents differential operator axf—gmﬁ forall o, 6 € {1,2,...,d}.
Moreover, the matrices W(O‘), where o € {1,2,...,d}, commute and
are nilpotent.

Formulas and follow from a composition property of tensor
products: For every pair A, B of linear maps (between linear spaces) ,
(A® B)? = (A® B)(A® B) = A? ® B2 The last statement of the
last lemma is an immediate consequence of equations and (12)), and
lemma B.11
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4.2 Matrix Representations of 38@

for the Two-dimensional Case

Let us observe the structure of the matrices W® and W® in the two-
dimensional case (d = 2):

A 0

) 5 (1)

wo-| 0 2 " (17)
0 0 A

where the number of blocks Z(1) on the diagonal of WO is ny + 1;

A((),Q())In1+1 ZA((),QI)]TLH-I <. ZA(g,QyzQ]nl—i—l
(2 (2 5 (2
W(2) — 1(’0)]77/14—1 Zl(,l)[n1+1 ttt Zl(,’er[nl"‘l ’ (18)

(2 5 (2 (2
2D Zh Dy - Zin T

where I, +1 is the (ny + 1)-dimensional identity matrix.

Let us recall that for two linear operators A: X - X and B:Y =Y
acting on linear spaces X and Y, their tensor product AQ B: X ®Y —
X ®Y is defined by A ® B(z ® y) := Ax @ By.

Let {eq,...,en } and {fo, ..., fu,} be the standard bases of R™*! and
R respectively. Let N = (ny+1)(ng+1) and (i) = (i1,42) € J. Having
identified the *(i)-th vector in the standard basis {g1,go,...,gn} of RY
with e;, ® f;,, it is now easy to observe that wh = 20 g I,,+1 and
W@ =1, 41 & Z@

Indeed, the #(i)-th column of the matrix Z") ® I,,, equals

[Z(1> X [nz—l—l]-’*(i) - Z(l) ® [n2+1(€i1 ® f”)
—= Z(l)eil ® In2+1fi2

= E: ]1216]1®f12

J1 =0
- Z Z Jis 115]26.71 ® fi,
0]2 0
- Z W 631 ® f]z
= Z W) wto9:0)
(j)€d
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which is the %(i)-th column of W1 . The equality W® = I, ., ® Z? can
be verified in a similar fashion.

4.3 Rank of Matrix Representations of Operators -2

ox™
and Their Compositions

In this subsection we compute rank of matrix representations of operators

%, and their compositions, by generalizing results of section .

We start with proving the following simple fact.

Lemma 4.3. Let A : R™ — R™ and B : RP — RP be linear maps with
ranks my and mqy respectively. Then rank(A ® B) = my - mo.

Proof. Denote
k4 = dim(ker(A)) = m — my and kp := dim(ker(B)) = p — mo.
Let {f1, fo, ..., fr.} be a basis of ker(A); complete it to a basis

{f17f27" '7ka>ka+lv'-'7fm}

of R™. Similarly, let {g1, g2, ..., gk, } be a basis of ker(B); complete it to a
basis {91, 92, -, Gky> Jkp+1s - - - Gpy of RP. For every u € R™ and v € R?,
A®B(u®v) = Au® Bv = 0 if and only if Au = 0 or Bv = 0. Therefore,

ker(A® B) = span{fi® gi, o ®gi,. .-, fr, @ gi:i=1,2,... kp}
+span{fi ® §i, fo @ G, .. ., [ra ® gi i =kp+1,...,p}
+span{fi® g1, fi®ga, ..., [i @ gry i =ka+1,...,m},

and
dim (ker(A ® B)) = ka-kgp+ kg -mo+kp-mi=pm—mims,

which implies rank(A ® B) = myms as required. Q.E.D.
Using the previous lemma, it is easy to verify the statement of the
following proposition.

Proposition 4.4. Let B and C be (no + 1)- and (ng + 1)-dimensional
square matrices, respectively. Let

M = ny+1 ®...®[na71+1 ®B®[na+1+l ®---®Ind+l

and
K = n1_|_1®. . '®Ina—1+1®B®Ina+l+1®' . ‘®In/3—1+1®0®]n[3+1+1®' . '®[nd+1'
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Then
(n+1)...(ng+1)

rank M* = rank B” -
(ng + 1)

and
(np+1)...(ng+ 1)

k K =rank B - rank C -
ran ran ran (o & V(g + 1)

From the previous proposition, formulas , ) , and lemmas , ,

we conclude the following.

Proposition 4.5. Let o, € {1,2,...,d}. For alll < k < Ng and

1 <1 < ng, the rank of the matrix representatwn (W (a ] of 8 BT 18
- 1 1)... 1
ramk[I/V(O‘)]’C = (ng+1—k) (u+ D) +1). (na+1)
(na +1)
and the rank of the matriz representation [W @F[W O] of Al xf(’;gl;ﬁ

rank{ IV O = (g 1=Ky 1 ) P e L

Moreover, the matriz W@ is nilpotent: [W(@]1et1 = (.

Let 0 = {z(;) }ieg be a partition of = [a, b1] X ... X [ag, bg] as before.
Denote the number of nodes in the partition by /N. Recall that the matri-
ces W@ and X (@ denote the matrix representations of the differential
operator —a and the operator of multiplication by x®, respectively, with

respect to the partition o (see equations and ) Consider partial
differential equation

0 0
d,ﬁ,...,@)’u:fﬂ, (19)

31) is a formal polynomial of its arguments.
) oy f(m(4y))), where 4 € J and *(y;) = k for

where P(z!, ..., 2%
Let F' = (f ( )5
all k € {1,2,...,N}.

To solve PDE using Calogero method, we need to solve the system
linear equations

P(z'
i
? Oxl
(’Yz

pxXW XD wh Wi = (20)

for U € RN ; the 7-th component U of the solution vector U . if it exists,
approximates the value u(z(,y), where *(7) = i, of solution u of equati-
on (19) at the node x(,) of the partition o. It is therefore important to
know the conditions under which the system of linear equations has
a unique solution.
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Theorem 4.6. Let P(z',2%,...,2%) be a polynomial with real coeffici-
ents. The matrizc P(WM W WD) has full rank if and only if the
constant term of P is nonzero.

Proof. (i) If the constant term of P, which we denote by a, is
nonzero, then P(z',22,...,29) = a + Pi(2%, 2%, ..., 2%, where P; is a
polynomial in (z1,...,2z4) whose constant term vanishes. Because matri-
ces W@ where o € {1,2,...,d}, commute and are nilpotent (see
lemma [4.2), the matrix Py(W® .. W@) is nilpotent. But then the
matrix Iy + %Pl(VAV(l),...,W(d)) is nonsingular, as the formal series
expansion of (I + %Pl(VAV(l), ., W@D))~1ig a finite sum. Therefore, the
matrix

A

o o 1 A
PWwW WDy = oIy + =W, W)
a

has full rank as required.

On the other hand, if the constant term of P vanishes, then the matrix
PWW_ . W) is nilpotent, and therefore does not have full rank.
Q.E.D.

Example 4.7. We finish this article with an application of the Lie-
algebraic method to the following partial differential equation of hyperbolic

type [7]
Uy — Uy + YUy = 4(y* — 2%) sin(1 — 2% — y*) — 2wy cos(1 — 2> — ) (21)
on region Q = {(z,y) : 2% +y? < 1} with the boundary condition
ulgn = 0. (22)

This problem has solution u(x,y) = sin(l — 2* — y*). We compute the
approximate solution of the problem using Lie-algebraic approximations
and compare our results with the exact solution.

To incorporate boundary conditions, we make the change of variables

uw=(1—2*—y*v
, which yields the partial differential equation

(1 — 2% — y*) (Ve — vy + yv;) — dav, + dyv, — 2090 (23)
= 4(y* — 2%)sin(1 — 2° — y*) — 2zy cos(1 — z* — y?).

We partition the square D = [—1,1] x [—1, 1] that contains region ¢
with points o = {(z,y;) : 0 < i <mny,0 < j < ny}, where o, = {x;}}2,
and o, = {y;}.?, are partitions of the interval [—1, 1].
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Let Z, and Z, be matrix representations of d/dx on [—1, 1] with respect
to partitions o, and o, respectively. Similarly, let X and Y be matrix
representations of the operator of multiplication by x on [—1,1] with
respect to partitions o, and oy, respectively. Matrices Z, and X have
dimension n; + 1, while matrices Z, and Y have dimension ny + 1. Finally,
the identity matrices [,,,+; and I,,,1; represent the identity operator with
respect to partitions o, and oy, respectively.

The following table gives matrix representations of the operators d/0x,
0/0y, =, y, and 1, with respect to partition o.

0 0
Operator | — — 1
perator I ay X Yy
Repres. Zm X [n2+1 [n1+1 & Zy X X [n2+1 [711-1-1 X Y In1+1 X [n2_|_1
Notation | Z, Zy X Y 1

Table 2. Finite dimensional representations of basic differential operators in two dimensions.

Denote the right hand side of equation by
fz,y) = 4(y* — 2*) sin(1 — 2% — y*) — 2zy cos(1 — 2% — ¢?).

Equation is represented by the system of linear equations

A

Kuv, = F, (24)

where
K=(I-X*-YZ2-2}+YZ,)—4AXZ, +4Y Z, - 2XY, (25)

F=(f(xo,40), F@1,90)s s f (@i, %0)s L (@0, v1)s F@1,51)s oy f(@gs Yn)) T

and the unknown vector v, € Rm+1n2+1),
After solving system of linear equations , we compute the vector u,
of approximate values of u as follows:

Uy = (f — X2 ?2)1)0.

We have compared the approximate solutions with the exact solution by
computing the maximal error E(ny,ny) = max jes |[Uo]«ij) — u(i, y))]
and the average error F,(ny,ng) = m > igyer |[talwi =z yj)l.
The values of ' and FE, for different number of partition points are given

in table 3, and the plot of the approximate solution u, is given in figure 1.
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(n1,n) | (10,10) | (15,15)
E(ny,ny) | 0.0064 | 0.002
E,(n1,n9) | 2.56e-04 | 2.63e-05

Table 3. Maximal and average error of the Lie-algebraic method for problem , .

Figure 1. Plot of the approximate solution u, to problem , .
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