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Abstract

We generalize the standard Poisson summation formula filcda so that it operates on the level of theta series,
allowing us to introduce noninteger dimension parametesing the dimensionally continued Fourier transform).
When combined with one of the proofs of the Jacobi imaginaydformation of theta functions that does not use the
Poisson summation formula, our proof of this generalizeéd$om summation formula also provides a new proof of the
standard Poisson summation formula for dimensions gréea (with appropriate hypotheses on the function being
summed). In general, our methods work to establish the @@jcsummation formulae associated with functions
satisfying (modular) transformations of the Jacobi imagyrtype by means of a density argument (as opposed to the
usual Mellin transform approach). Additionally, our reselaxes several of the hypotheses in the standard statemen
of these summation formulae. The density result we prov&tarssians in the Schwartz space may be of independent
interest.

Keywords: Summation formulae, Voronoi summation, theta functionsgotar transformation

1. Introduction

Consider a lattice\ ¢ R™ and a sufficiently well-behaved functiofl : R* — R. [Taking F' to belong to
the Schwartz space’(R") is sufficient, and is what we shall do in our later generallima} The standard Poisson
summation formula then says that

SRk = Jdlﬂ S Fp). )

kEA pEA*

HereA* is the lattice dual ta\, det A denotes the volume of a Voronoi cell af and
F(p) = / F(z)e 2™ @ Pdy

denotes the Fourier transform 6t (We use a tilde here so that we can reserve the circumflexuiomore general,
dimensionally continued Fourier transform.) We wish tostomct a dimensionally continued version of this result.
This problem was originally inspired by a condensed mattsies investigation involving the dimensional con-
tinuation of electrostatic lattice sums, computed usirgBlwvald method (see, e.d], [1] for a modern exposition of this
method). However, the ensuing discussion is a purely madtieah offshoot of this investigation. For one thing, the
results we were able to prove do not include the physicalBvest case of a slowly decaying function, even though
we have numerical evidence that the results still hold is t@ise. Nevertheless, the methods used here might also
be applicable to the dimensional regularization of latoes: See[[Z] for an approach using zeta functions and the
Mellin transform.
If we specialize to the case wheféis a radial function, we can obtain a dimensionally contthReisson summa-
tion formula in terms of the lattice’s theta series—see Tl for the (particularly simple) version f@r (d > 1).
This result even holds when one uses, instead of a theta skmived from a lattice (or lattice-like object), a functio
T that merely possesses the appropriate modular transfieomatoperties (with sufficiently strong bounds on the
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growth of its power series coefficients). This more genezalilt is given in Theoreim 2. The following Proposition
shows that a large family of s satisfying the hypotheses of Theoffdm 2 can be constructedacobi theta functions.
This family contains all the theta series given in Chap. 4 ohway and Sloan£|[3] (except for the general forms of
those for the root latticel; and its translates). The final Corollary states the requirmmation formula explicitly.

This relation between modular transformations and sunumdtirmulae is not new (though the dimensional con-
tinuation is). The relation has reached its most refined farthe association between automorphic forms and Voronoi
summation formulae (see, e.g., Miller and Schrhid [4] fonaew of recent work). However, work on this correspon-
dence first arose in the context of transformations relaiebe functional equation for the zeta function, inspired by
a question by Voronoi on analogues of the Poisson summaiiomfla—see, e.g.|:|[5] and references therein. (We call
particular attention to the work of Ferrat [6].) AdditiohalBaake, Frettloh, and GrimrE|[7] give a (distributioned}
dial Poisson summation formula in their Theorem 3 in a forat th very similar to our dimensionally continued form.
However, they do not show how to dimensionally continue #tde (or, indeed, mention theta functions explicitly),
and their proof (which relies on the standard Poisson suiomgdrmula) only holds for integer dimensions. There are
also discussions of similar formulae—these derived fronduafar transformations—at the beginning of Chapter 4 of
Iwaniec and Kowalski]S], and in Sec. 10.2 of HuxIEi/ [9]—withaixley terms the Wilton summation formula. These
formulae are presented in what appears to be a dimensiamaltinued form, though their hypotheses assume integer
dimensions. Regardless, the summation formula in Iwanieckowalski and Huxley’s Wilton summation formula
are derived from cusp forms, while our result (in the languagmodular forms) does not require that the constant
term in the form’s Fourier series vanish. (Indeed, we do nemntion modular formgjuamodular forms at all in the
sequel.)

The work presented here gives a view of these matters tHatslffom all the other investigations we have seen.
In particular, our method of proof bears no resemblance yooéithe other proofs of which we are aware. The other
proofs that begin with a modular transformation rely hgawih the Mellin transform (possibly supplemented with
heavy specialized machinery), while the standard proofiefdlassical Poisson summation formula uses the lattice’s
periodicity and Fourier series. Our primary analytic to®lai density result for Gaussians in the Schwartz space
(established by basic functional analytic means). The nedes of the proof uses basic real and complex analysis
(primarily Taylor’s theorem, the Lebesgue dominated cogwece theorem, and Cauchy’s integral formula) to show
that the dimensionally continued Poisson summation foanmallds for the Gaussians (in essence, by reversing the
usual derivation of the Jacobi imaginary transformatioingishe Poisson summation formula), and that it remains
true in the limit in the Schwartz space.

2. Ingredients

2.1. Theta series

Here we recall various facts about theta series and thetdiduns that we shall need for the rest of our discussion,
following Chap. 4 of Conway and Sloane [3]. The theta serfeslattice A is defined by ,

Onlq) =Y _ ",
keEA

(This is often treated as a formal series, but converges o€, |¢| < 1.) The utility of the theta series stems from the
fact that the coefficient of’ in the expansion 0B, (¢) in powers ofq gives the number of points in the intersection
of the lattice and a sphere of radiy¢ centred at the origin. Thus, if we write

Oalg) =1 Y_ Nig™, 2
=0

then -

STFED =)0 Nif(VA).

keA 1=0
[Nota beneWe have written the radial functiafi as f(| - |), and shall only consider these radial parts in the sequel.]
Examples of dimensionally continued theta series for f@sibf lattices include thé-dimensional cubic lattic&?,
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with ©.(q) = 94(q), and the root latticeD?, with © pa(q) = [94(q) + 94(q)]/2- (See Chap. 4 in Conway and
Sloanel[B] for further examples.) Here

s 2 2. 2 > 2
2(g) :==2¢"*> " U3(g)=142) ¢, Walg) =142 (—9) 3
=1 =1 =1

are Jacobi theta functions (whefegis defined for future use).

Nota bene It is often customary to take theta functions and thetaeseto be functions of a complex variahlge
instead of the nome = e~ that we have used here. We have chosen to regard the nomedasrfental since we are
primarily interested in the expansions of these functionsawers of;. However, when discussing transformations of
these functions, it is considerably more convenient tongtfaem as functions of. On the few occasions where we
do this, we shall use an overbar to denote the difference,@.dz) := O, (e!™#). (In the literature on summation
formulae derived from automorphic forms, one thinks of oyansions 0B, in ¢ as the Fourier coefficients 6f,.)

Since the Poisson summation formula involves the duatktiive need to know how to obtain its theta series.
This is given by the Jacobi formula [Eq. (19) in Chap. 4 of Cagnand Sloaneﬂ3]], which states that

On-(2) = Vdet A(i/2) 720, (-1/2), (4)

whered is the dimension of the lattice. The Jacobi formula is tyfygaroved using the Poisson summation formula
[see, e.g., the discussion leading up to our Efy. (8)]. Howelewe need in our discussion is the intimately related
Jacobi imaginary transformation of the Jacobi theta fumsti(also known as the modular identity or reciprocity
formula for the theta functions), i.e.,

a(=1/2) = (2/1)/*9a(2), 3(=1/2) = (2/1)/*95(2). (%)

(The first of these is also true with the labélsand4 switched.) The standard proof of these identities is a tlirec
application of the Poisson summation formula, but therealiegnative proofs that are independent of it. For instance
one such proof is given in Sec. 21.51 of Whittaker and Wat@j, [while Bellman’s textl_L_1|1] discusses several
others—see, in particular, Sec. 30 for Polya’s derivatiama€dition to the standard Poisson summation version (in
Sec. 9). Our discussion will thus be independent of the stahBoisson summation formula (with the exception of a
brief appeal to establish Theor€in 1 fbe 1).

2.2. The dimensionally continued Fourier transform

We also need to dimensionally continue the Fourier transfaBtein and Weiss give a dimensionally continued
version of the Fourier transform for radial functions in ©hem 3.3 of Chap. IV 011I1|2], viz.,

o) = 2™ D02 [0 Ty o)

(6)
d/2
= 27;/2 / Fr)oFi(d/2; —m2p?r?)ri~dr.
(This reduces to the standard Fourier transform for a rddiation whend € N.) Here the first equality gives
the expression from Stein and Weisk; (s a Bessel function) and the second gives an equivalenh@psrslightly
neater) expression in terms of the confluent hypergeometicfunction o F;. The hypergeometric expression has
the advantage of only involving one appearance ¢and being manifestly regular at = 0 for all d > 1), in
addition to showing th&-dimensional polar coordinate measure for radial fundtiexplicitly. We shall thus use the
hypergeometric expression exclusively in the sequel. (€meobtain the hypergeometric expression using the Stein
and Weiss derivation—the only difference is that one usaffexreint special function to evaluate the final mte@)al

For this expression to be well-defined, it is sufficient toetdk> 1: One assumeg > 1 when using integral
representations to express the result in terms of eithdreofvto given special functions, and can also check that the

1The integral representation fgi; we used is 07.17.07.0004.01 on the Wolfram Functions [S&g [1
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integral is convergent for ajp € R in that case, provided thgt € L'(R.). Additionally, Eq. [) reduces to the
expected expression far= 1 [using J_;/5(z) = \/2/mzcosz Or o F1(1/2; —z) = cos(2y/z)]{1 (Stein and Weiss
restrict tod > 2 so that the integral they use in their derivation is well-dedi, since they are only considering integer
dimensions.) This restriction téd > 1 is necessary for other parts of our discussion, though we hamerical
evidence that it can be relaxed.

The following result is central to understanding why thisidnsionally continued Fourier transform agrees with
the dimensional continuation of the theta series.

Lemma 1. For d > 1, the dimensionally continued Fourier transform (for raldianctions) defined in E(B) takes a
Gaussiarg, (r) := ¢ =*"*, Rea > 0 to another Gaussiarg, (p) = (/a)%/2e=7"7"/2,

Remark. Intuitively, this result follows from dimensionally contiing the well-known integer-dimension result. We
should get the same result from direct calculation using(@ypsince that expression was obtained using the same
dimensional continuation procedure.

Proof. The casel = 1 is classical. Forl > 1, we usey F}’s defining series,

222)

oF1(d/2; —m?p*r?) = Z %
n=0 ne

)

[(-)» denotes the Pochhammer symbol] and integrate term-by-®rafuating each integral using the gamma func-
tiond The resulting series is the Maclaurin series for the exjmasge gave forG,. The term-by-term integration

is justified by the Lebesgue dominated convergence theofersee this, we use the same integral representation for
oF} used in the derivation of Ed.](6), which gives, for aNyc N,

N ( ,n.2p2,r,2) .
Z (d/2)nn! < oF1(d)2; mp*r?) < Kcosh(?wpr)/ (1 — 2)d=3)/2gy,
n=0 nil:

0

whereK > 0is a constarfl. This allows us to apply the dominated convergence theori@cg the integral in the final
term is finite ford > 1 and f;* cosh(2mpr)|e=*""|dr is finite forRe a > 0. O

Remark. The importance of this result to our discussion comes ingtsin obtaining the integer dimension Jacobi
transformation formula (and thus also the Jacobi imagitiemysformations of the Jacobi theta functions) via the
standard Poisson summation formula: For a lattic# dimensiom € N, we have (takingm z > 0 so that everything

converges)
.\ n/2

zﬂ'z\}’c\2 (1) —ir|p|? /z —
€ e
];\ vdet A EZA vdet A

which can be written as

On-(2) = Vet A(i/2)"?O5(—1/2), (8)

the Jacobi transformation formula. We thus expect that theedsionally continued dual theta series that we obtain
using this formula will agree with the dimensionally contéd Fourier transform to give a dimensionally continued
Poisson summation formula.

2These identities are 03.01.03.0004.01 and 07.17.03.0D3®@spectively, on the Wolfram Functions Site [13].
3The Maclaurin series fasF is 07.17.02.0001.01 on the Wolfram Functions Sité [13].
“Nota bene We denote the set of positive integersiiyand the set of nonnegative integersiy.



3. Thedimensionally continued Poisson summation formulafor Z¢

With these results in hand, we can thus write 4. (1) [for dalddnction " =: f(| - |)] as

Zsz(\/Zl) VAT Z
=0 et A

=0

where the starred quantities come from writing the theteeseaf A* in the power series form given by Egl (2), and
we calculatef by taking the dimension parametéto be the dimension of the lattice. (As we shall see later tugha
important is that thel one uses here is the sami¢hat appears in the Jacobi transformation formula.) Itésicthat
this equality holds wher € N, by the standard Poisson summation formula. What is perbizgpsising is that the
equality still holds for, e.g.A = Z?, with d € R (d > 1). We shall first prove the result for this simple cag¢ {s
self-dualdet Z¢ = 1, and4; = 1), where it becomes

Theorem 1. If f € .7E(R) (i.e., f is an even Schwartz function) add> 1, then

zzvlf zzvlf ©

whereN, is given by the power series expansion of the theta serigé,ofiz.,

o0 d o0
O(q) = 1+2Zq’“2] =) Nig,
k=1 =0

and f is computed using Eq8).

However, the simplifications are primarily notational. Ae shall see in the discussion in Sekc. 6, the proof works
with minimal modifications for a much larger class@®@fincluding functions that cannot be the theta series ofteéat
(even though they have an integer dimension parameter).

Remark. The restriction thaf be an even function should not be surprising: In integer dsians, it corresponds to
the lack of a cusp at the origin for the full radial functiéh= f(| - |). Moreover, as Miller and Schmid note [4], the
standard one-dimensional Poisson summation formula igialtt = 0 for odd functions.

4. A Schwartz space density result

Since the proof proceeds by noting that the desired formuléstalmost trivially for the Gaussians from Lemima 1,
and then extends to an interesting set of functions [wiZ5(R)] by density, we start by establishing the requisite
density result.

S(R
Lemma 2. Span{z — e~**|a > 0} ®_ ZE(R) [i.e., the Schwartz space closure of the given family of Gaus
sians is all the even Schwartz functions].

Proof. We shall prove this by showing that
X := Span{x e_o‘m2|a > 0} + Span{z — xe_w2|oz >0}

is dense in(R), so its even par§pan{z — ¢~**|a > 0}, is thus dense i”E(R). We shall use Corollary IV.3.14
from Conway'’s textlL_1|4] which states that a linear manifgiidreX’) is dense in a locally convex topological vector
space [here”(R)] if and only if the only element of the dual of the topologisaictor space that vanishes on all
elements of the linear manifold is the zero element.

It is most convenient to proceed by identifying(R) with a sequence space, following Sim[15]. Here the
sequence space is given by the coefficients of the Hermitgtibmexpansion of elements of (R), and provides a
particularly nice characterization of the tempered disttions [the elements o’ (R), the dual of(R)]. Namely, if
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an are the Hermite coefficients ¢fe . (R) [i.e., a,, := [, f(x)hn(2x)dz, whereh,, is thenth Hermite function], then
€ &'(R) can be written ag(f) = >~ cna,, Wherec,, are the Hermite coefficients ¢f with |c,| < C(1+n)™
for someC,m > 0. (This is Theorem 3 in Simorh__LlLS].) Note that Simon defineskeemite functions to bd.?
normalized, so, we have, from the first equation in Sec. 2 wiosld

) = — ) Hy() = (~1)1ee* o=
nx.—\/mnx, n(x) = e dx"e ,

where theH,, are the Hermite polynomials, with generating fundfion
o0
t" 42
ZHH(CC)H = et
n=0

We can now use this generating function to show that the Hercoiefficients ofc +— e are given by

an =N, d—n {/ e_(w2+w2/2_2m+t2)dx} ZNanZ [\/W—ﬁe(ﬁ_l)tQ]
R

™ dtn

t=0 t=0’
whereN,, := (7'/22"n!)~1/2 is the Hermite functions’ normalization factor afd= 1/(a + 1/2). We thus have
aon = Non(m/B)Y/2(B —1)"/n!, asns1 = 0, by the series expansion of the exponential. [We used Lemghan?2
Chap. 13 of LandIJ|6] to interchange differentiation aneégration. We only need to consider the case whdies

in some neighbourhood @f, so thet-derivatives of the integrand are each bounded by a polyalomiz times a
Gaussian in: (for all ¢ in the neighbourhood), and those functiong:@fre integrable oveR.] Similarly, the Hermite

coefficients ofr — ze=*" areb,,, = 0 andbay,1 = Nany1(m/82)1/2(8 — 1) /nl. Thus, we consider
Epi(2) = (B/m) 27" + (8% /) 2w,

which has Hermite coefficients ¢f-1)"A,, (8 — 1)1/21 /|n/2]!, where|- | denotes the greatest integer less than or
equal to its argument.
Now, for anyy € ./ (R), £+(B) := ¢(Es,+) is a holomorphic function of. To see this, we note that

> — [n/2] e o n
££(9) = S endy T = 5 Wanean £ Namiacanin) (10
n=0 ' n=0 :

wherec,, are the Hermite coefficients o¢f. Since ther,, are bounded by a polynomial im, the series converges for
all g € C, giving holomorphy. Thus, i€4. () = 0 for all 5 in an interval (as is the case here), then alfofs power
series coefficients are zero. Applying this result to the thoices of sign, we obtain (since thé, are never zero)
cn =0V n € Ny = ¢ =0, which thus proves the lemma. O

Remark. This result may be of wider applicability, particularly iratmonic analysis, due to the ubiquity of the
Gaussian. We thus note that the proof of the lemma showsntimeted merely belong to some subset of the right
half-plane with an accumulation point to guarantee dengitye could have also proved this result more abstractly
(and without recourse to the Hermite expansion) by a slghtlirect application of the Stone-Weierstrass theorem,
though the basic Hahn-Banach argument (contained in thell@or from Conway we use) remains the sdfne.

5Nota bene Simon defines thé., without the factor of —1)™ (that here comes from oui,,). We have included thé—1)™ for notational
simplicity (since we use the standard convention for thetiterpolynomials). This does not have any effect on Simohsdfem 3, since it simply
amounts to a sign change of the odd Hermite coefficients.

6This is 05.01.11.0001.01 on the Wolfram Functions $ité.[13]

“Personal communication from John Roe.



5. Proof of Theorem[]

We first note that Eq[{9) is clearly true fdr= 1 (indeed,d € N) by the standard Poisson summation formula
for lattices (applied t&<). To prove the result foid > 1, we shall first establish that it holds for the Gaussians from
Lemmdl, and then show that the equality still holds in thétlimthe Schwartz space topology. The control afforded
by demanding convergence in the Schwartz space makes fhésstpaightforward. The primary result that needs to
be shown is that two functions that ar€lose in the Schwartz space topology have dimensionatiyimeed Fourier
transforms that ar€'e-close in a given Schwartz space seminorm (where the cdnStalepends on the seminorm
under consideration, as well ds

To show that Eq[{9) holds wheh= G, we first consider the left-hand side and note that

> Ner ' =0(e). (11)
=0

Convergence is guaranteed beca@sis analytic inside the unit disk. [To see thatis analytic inside the unit disk,
note thatys is analytic there, and, moreover, nonzero, salitspower is analytic, as well. It is easiest to see that

is nonzero inside the unit disk from its infinite product empian, given in, e.g., Eq. (35) in Chap. 4 of Conway and
SIoanelI_B].] Using Lemmi@ 1, the right-hand side of 4. (9)dmees

()" S = () e,

=0

Now, the Jacobi imaginary transformation fiby [Eq. (8)] implies that(w/a)d/QG)(e"fz/”) = O(e™®), so we have
thus established the result fGy, .

We shall now show that this equality continues to hold in th@t! The equality is clearly true for any finite
linear combination of the Gaussians from Lendma 1, so we usemaf2 to approximate an arbitrafy ¢ .7F(R)
by a finite linear combination of these GaussiapnsSpecifically, we havdl f — g/, < €V n,m € Ny, where
| £lln,m = sup,ep |27 f™(z)] is the family of seminorms that gives the Schwartz spaceltgyo (We denote the
mth derivative off by f("™).) We wish to bound the difference between the two sides oy a constant times
We have

SNV =Y NFVD < YN -9 (VD)| + DN - 9 (VD) (12)
1=0 1=0 1=0 1=0

where we used the fact that the dimensionally continuedsBoisummation formula holds far, along with the
triangle inequality. We can bound the two sums on the rigiritehside by constants timesising the assumption about
the closeness of to g in the Schwartz space topology and the fact tNagrows at most polynomially witth. The

latter fact also shows that the two sums on the left convergg £ .7 (R).

5.1. Bounds on the growth of, and on the right-hand side of EL2)

We obtain the polynomial bound aN; using Cauchy’s integral formula with the contalis, a circle of radius
R € (0, 1), centred at the origin (and oriented counterclockwise):

RRYS- CIPNIE Y (i e
270 Je, 21 27 | Jo

Rleild = RI(1-R)<
Here we have uselds(q)| < 2/(1— |q|) (for |¢| < 1, obtained using the geometric series). The right-handatidéens
its minimum [forR € (0,1)]at R = /(I + d), so we have

|N:| =

IN)| < 241 + d/1) (1 + 1/d)* < Cal,

whereC; > 0 is some constant (and the second inequality only holdd fer 1). [We have used the fact that
(1+1/r)" <eforr>0.]

If we write i := f — g, then this bound implies thatV;(v1)| < Cyl¢|h(V1)| < €Cy/1% (for I > 1), where
the second inequality follows from the fact thats e-close to0 in the Schwartz space topology. [Explicitly, we have
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|24 h(x)| < eV > 1= 14h(V/1)] < ¢/I> V1 € N. The first inequality comes from noticing that for amy> 0,

we have|z"h(z)| < |z["Th(z)| < efor z > 1, where[-] denotes the smallest integer greater than or equal to its
argument.] We shall show thgi?"h(p)| < KseV n € N, p € R (whereK, is somen-dependent constant), so we
have|p2@t4h(p)| < K4e V p € R. We can thus apply the same argument to the second sum anel Iemad both
sums by constants times(since_;~, (=2 is finite), showing that the dimensionally continued Poissammation
formula is true in the limit [since we will have shown that thght-hand side of Eq[{12) is bounded by a constant
timese].

5.2. Bound orp®*h(p)|
To prove the bound ofp™h(p)|, we first dimensionally continue some standard Fouriertgsu

Lemma 3. If we define thel-dimensional Laplacian for radial functions by

Daf () = 1) + =L ), (13)

T
then, ford > 1,

) Fp(r) = oF1(d/2; —m?p*r?) satisfies\ g F, = —4n2p*F,, SO

i) Anf(p) = (=1)"(27p)>" f(p) for f € Z(R).

Proof. Parti follows from the fact thay,(r) := oF} (a; r) satisfiesy” (r) + ay’,(r) = ya(r)B [Alternatively, it can
be obtained by direct calculation using E. (7), justifytegm-by-term differentiation using analyticity.] Paitis
then obtained by induction, applying EQl (6)Aﬁd“1f and integrating by parts twice. [The boundary terms at ityfini
vanish becausg¢ € .(R); those aD vanish becausé > 1 (or cancel amongst themselves).] O

We can thus writép2™h(p)| = (2#)*2"|@(p)|. Then, since we shall show below thelt A h(r)| < De, where
D is some {- andd-dependent constant), we obtain [using E§. (6) and thelfat £ (a; ) is a bounded function of
r, as was seen in the proof of Lemfa 1]

) <C [ 1m0 tar
0

1 [e’e)
<C [/ AL R(r)|dr +/ |A3h(r)|rd71dr
0 1

<CD [1+/ rd_l_sdr} €,
1

whereC > 0 is some f- andd-dependent) constant and we usetdA7h(r)| < De with k = 0 andk = s. We can
chooses > d, so the integral in the final term is finite, thus giving theids$result.

5.3. Bound orir* A7h(r)|
To see thatr® Amh(r)| is bounded by somex andd-dependent) constant (call@above), we first note that we

can use induction to write ,
. ()
Agh(r) = Z L ey (14)
j=1

for some - andd-dependent) constants (and an arbitrary differentiable). Thus, for|r| > 1, we haver* Amh(r)| <
€ Z?Zl a;. For|r| < 1, matters are considerably more subtle, and we have to retgefact that: is even to see
that A7k remains bounded at the origin. The argument goes as folliMeswrite . = P + R, whereP is h’s

8This differential equation fog /7 is 07.17.13.0003.01 on the Wolfram Functions Sité [13].
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(2n)th-degree Maclaurin polynomial (necessarily even, sinct® andR is the associated remainder. We then have
[rEARR(r)| < [rEARP(r)| + [rEATR(r)|. Since/A, maps even polynomials to even polynomials [as can be seen
from Eq. [I3)],|r*AnP(r)| is bounded by ak-, n-, andd-dependent) constant timedor |r| < 1. [Since the co-
efficients of P are given by derivatives of, they are bounded by constants timkedy hypothesis.] To deal with

|k AnR(r)|, we first need to establish an identity for derivativeRofviz., (forj < 2n)

R (1) = (3D, p2ntl—j
2n+1— ) ’

for someg; € (0,r). This follows from differentiating» = P + R j times, and comparing the resulting expression
with the (2n — j)th order Maclaurin expansion (with Lagrange remainder)@f. The polynomial pieces are the
same, while the remainder pieces give the two sides of thaliéguCombining this identity with Eq[{14), we obtain

2n
NGR(r) =r Y bihCril(g)),
j=1

where theh; are (- andd-dependent) constants. This shows {h&\"?R(r)| is bounded by ani- andd-dependent)
constant times for |r| < 1, so|r* A%h(r)| is, as well, proving the desired result, and hence the theore O

Remark. The restrictions orf andd in the statement of the theorem are surely not optimal: Tieraimerical
evidence that the given result holds fbe C, Red > 0 and less smootfi [e.g., f(r) = e*‘”g]. (The evidence also
extends to the generalization given in Theofém 2 and is geavby a MATHEMATICA notebook, available onlirﬁa.
While one could use a slightly larger function space ti¥8h(R) without any change to the proof—the proof does not
need control oveff f — g|....m for all n andm—we did not investigate this in any detail: The resultingdtion space
would still require a fair amount of differentiability (Wleiwe have numerical evidence that the formula remains true
for at least some functions with a cusp at the origin), antefagecay than the standard Poisson summation formula.
Moreover, the closure of the family of Gaussians in this fesfictive topology would almost surely be more recondite
than.7E(R).

6. Generalization of Theorem[d

Since there are other families of lattices with dimensibynzdntinued theta series besidé$ (e.g., the root lattice
D? mentioned in Se¢._2.1), it is reasonable to expect that Emeldr can be generalized by replacidgwith some
more general functioff. In fact, we have the following

Theorem 2. Assume that we have a functitnandd > 1 such that

i) We can write
T(g)=>_ Ng™,
=0

where

1. Al+1 > A, AO > 0.

2. 32, A7™ < oo for somem € N.

3. There existd, € NandC,n > 0 such thaiN;| < CA foralll > L,
4. TheA, are such that the series converges inside the uniﬂﬂisk.

9The notebook is available [attp://gravity.psu.edu/ ~nathanjm/Dim_cont_PSF _test.nb

10The ratio test and the given bound 87 provide sufficient conditions for convergence inside the disk, viz., A;1 1 — A; > § for some
6 > 0 andlim;_,, A;+1/A; = 1. (These are satisfied by the specific examples we considenjever, one could relax the requirement of
convergence to some subset of the unit disk, as the remaokvfoly Lemmd2 reveals.

9


http://gravity.psu.edu/~nathanjm/Dim_cont_PSF_test.nb

i) If we define B B
T*(2) := (i/2)Y*Y(~1/2)

(recall the overbar notation introduced in theta benén Sec[2.11), then we can write
o0
T(q) = > Nigh,
=0

with the same hypotheses about the series as inipart

Then, for anyf € .7E(R), we have the summation formula
Yo NF(WVA) =Y N A,
1=0 1=0

where we computé using Eq.(8) (with thed used in parii).

Remark. The definition ofT* is just the dimensionally continued Jacobi transformafiem (4)] of T with the factor
of vdet T omitted. (We leave off this factor, since it would just caregainst the one present in the standard Poisson
summation formula [cf. Eq[{1)].)

Proof. The proof is almost the same as that for Thedrém 1 (repla@ibg T, and noting that we can no longer appeal
to the standard Poisson summation formuladet 1, so we simply exclude that case). Our hypotheses are sutch tha
the only new part is checking that,~ , |N;h(v/A;)| — 0 ase — 0 if h is e-close to0 in the Schwartz space topology
[and similarly for}~°  |N;h(,/A})[]. To do this, we simply note that we hay®,h(\/A;)| < CA}'|h(v/A)|, by
hypothesis, and that>"+™)|h(z)| < eV = € R = AP|h(v/A;)| < ¢/A}", from which the desired result follows
immediately. (The same argument holds for the starred giemince the hypotheses are identical.) O

Remark. This theorem can likely be interpreted as a trace formulatlierdimensionally continued, spherically

symmetric Laplacian [Eq[{13)], since the kernel of the disienally continued Fourier transform is an eigenfunction
of this operator (see Lemna 3). See, e.g., Sec. 1.3 (patigdrheorem 1.3) of Uribéﬂ?] for a presentation of the
standard Poisson summation formula for an integer dimarattice as a trace formula for the Laplacian.

Itis not clear how to construct the most genéfalatisfying the hypotheses of TheoreffllNevertheless, itis easy
enough to write down a reasonably general, yet fairly sinfigheily of functions that does satisfy these hypotheses,
viz., finite linear combinations of products of the threeibdiseta functions given in EqJ3). Specifically, we can
consider products of the form

M
Yalg) == [] 93 (@ )95 (" )95 (g"™), (15)
m=1

where\,,,, pm,om > 0, Zf‘n/lzl(/\m + pm + Om) = d, and s, tm, uym € Q4. The extension to finite linear
combinations ofY ;s with the samel is trivial, by linearity. One can write all the theta seridgem in Chap. 4 of
Conway and Sloan£|[3] as such finite sums(gf, except for the general form of the theta series of the aiticé
A% and its translates. In fact, theorems in Conway and Sloaheqfems 7, 15, and 17 in Chap. 7 and Theorem 5 in
Chap. 8) show that the theta series of large classes ofait&n be written in such a form. However, the expression in
terms ofY';s is considerably more general, since one only requise$., om € Ny to reproduce the theta series in
Conway and Sloane, while here they can be arbitrary nonivegatl numbers. One can also use the general template
provided by Eq.[(T5) to construct other admissitfle from, e.g., automorphic forms, or other such functigrihat
satisfy the relation)(—1/z) = (z/i)"¢(z) for somen € R (wheres and are well-behaved enough that the power
series of thél’ constructed using these functions satisfies the hypotloéSdworent 2).

We now want to establish the following

LHowever, Ryavec characterizes all admissilfle (under certain assumptions) fdr= 1 in [18]. We also call attention to the work of
Cordobal[19, 20], who shows that in integer dimensiongidatasses of generalized Poisson summation formulaefesisethe standard Poisson
summation formula applied to the finite disjoint union oftéger dimensional) lattices.

10



Proposition. Y, [defined in Eq(18)] satisfies the requirements given in the statement of Thel@re

Proof. First note that the Jacobi imaginary transformations ofltle¢a functions [given in Eq5)] imply that

M
. 9om 1/Um 9Pm 1/tm 19)\771 1/8m

9
me1 V syt ugr

so the arguments we give fdi,; can be applied t&; immediately. Now, we have

M
A=+ AV, A=) Vs, /4
m=1

whereV is the least common denominator%f, t,,,, andu,, (for all m). [We have the additive constadtdue to the
overall factor ofg'/4 in ¥5(¢).] Thus the first required property (positivity and monottyi of the 4;) is obviously
true, and the second (convergence of the series whose teems &) is clearly true form = 2 (andL = 1), as
before.

For the third property (polynomial boundedness of ¥i¢, we use the same Cauchy’s integral formula argument
used in Sed. 5l 1. Hem, is given by thdth term in the Maclaurin expansion &f;(¢")/q*, so we have

M s m Om u
1 / I 9y (2Vem)oge (Vi) (V)
27TZ Cr el

|Nl| = SV AmSm /4141

M 1 2d
<24 <
— ml_:[1 Rl(l _ RVsm))\m(l _ RVtm)pm(l _RVum)a'm — Rl(l _ R)d’

whereCp, is the same contour used previously. We have used the georseties to obtain the bound(q)| <

2/(1 — |q|), wherer(q) is any ofd,(q)/q'/*, ¥3(q), or ¥4(q). Additionally, we have used the fact that> 1, where
kis any ofVs,,, Vit,,, or Vu,,, so|l — R*| > 1 — R, sinceR € (0,1). We also recalled that,,, p.,, 0., > 0 and
SM (A + pm + om) = d. Since there is a® € (0,1) such thaR?/[R!(1 — R)4] < C4i? (for I > 1), as was
shown in Sed. 511, we are done.

The fourth property (convergence of theseries in the unit disk) follows from the analyticity andkeof zeros of
the theta functions inside the unit disk, as in the argumiserngoelow Eq.[(Il1). Specificall{i(¢"")/q* is an analytic
function ofq inside the unit disk; the lack of zeros can be seen from theitafproduct representations & and,
given, e.g., in Egs. (34) and (36) in Chap. 4 of Conway andlﬁcﬁ]. O

For clarity, we present the summation formula given by trapBsition and Theoreld 2 explicitly (and without any
reference to the transformation formula) as the following

Corollary. Let ® be a finite linear combination df ;s (from Eq.(I5); all with the samel > 1) and let¥ be the
analogous linear combination of tHg%s given in Eq(18) (i.e., with the same parameters and coefficients as for the
T;s). If we write

O(q) =: »_ Nig™, U(g) =Y _ Pg™,
=0 =0
then, for anyf € .#E(R), we have

S NSV = 3 PA/B),
=0 1=0

wheref is computed using EqB).

Remark. This result shows that one can apply this extended Poissomstion formula to lattice-like objects whose
theta series have coefficients of both signs, so they do nsttaa lattice, even thoughe N: For a trivial example,
considerd = 2 and®(q) = ¥3(q) = 1 — 4q + 4¢*> + - - -. Of course, this is in some sense too trivial, since one can
write 93 = 20 p2 — ©52, and then apply the standard Poisson summation formulatoafahose lattices to establish
the result in this case (cf. the discussion in Cordoba [20bwever, in more complicated higher-dimensional cases, i
will likely not be clear how to construct the lattice(s) asisbed with the theta series (if they indeed exist).
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