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Abstract

We generalize the standard Poisson summation formula for lattices so that it operates on the level of theta series,
allowing us to introduce noninteger dimension parameters (using the dimensionally continued Fourier transform).
When combined with one of the proofs of the Jacobi imaginary transformation of theta functions that does not use the
Poisson summation formula, our proof of this generalized Poisson summation formula also provides a new proof of the
standard Poisson summation formula for dimensions greaterthan2 (with appropriate hypotheses on the function being
summed). In general, our methods work to establish the (Voronoi) summation formulae associated with functions
satisfying (modular) transformations of the Jacobi imaginary type by means of a density argument (as opposed to the
usual Mellin transform approach). Additionally, our result relaxes several of the hypotheses in the standard statements
of these summation formulae. The density result we prove forGaussians in the Schwartz space may be of independent
interest.

Keywords: Summation formulae, Voronoi summation, theta functions, modular transformation

1. Introduction

Consider a latticeΛ ⊂ Rn and a sufficiently well-behaved functionF : Rn → R. [Taking F to belong to
the Schwartz spaceS (Rn) is sufficient, and is what we shall do in our later generalization.] The standard Poisson
summation formula then says that ∑

k∈Λ

F (k) =
1√
detΛ

∑

p∈Λ∗

F̃ (p). (1)

HereΛ∗ is the lattice dual toΛ, detΛ denotes the volume of a Voronoi cell ofΛ, and

F̃ (p) :=

∫

Rn

F (x)e−2πix·pdx

denotes the Fourier transform ofF . (We use a tilde here so that we can reserve the circumflex for our more general,
dimensionally continued Fourier transform.) We wish to construct a dimensionally continued version of this result.

This problem was originally inspired by a condensed matter physics investigation involving the dimensional con-
tinuation of electrostatic lattice sums, computed using the Ewald method (see, e.g., [1] for a modern exposition of this
method). However, the ensuing discussion is a purely mathematical offshoot of this investigation. For one thing, the
results we were able to prove do not include the physically relevant case of a slowly decaying function, even though
we have numerical evidence that the results still hold in this case. Nevertheless, the methods used here might also
be applicable to the dimensional regularization of latticesums: See [2] for an approach using zeta functions and the
Mellin transform.

If we specialize to the case whereF is a radial function, we can obtain a dimensionally continued Poisson summa-
tion formula in terms of the lattice’s theta series—see Theorem 1 for the (particularly simple) version forZd (d > 1).
This result even holds when one uses, instead of a theta series derived from a lattice (or lattice-like object), a function
Υ that merely possesses the appropriate modular transformation properties (with sufficiently strong bounds on the
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growth of its power series coefficients). This more general result is given in Theorem 2. The following Proposition
shows that a large family ofΥs satisfying the hypotheses of Theorem 2 can be constructed from Jacobi theta functions.
This family contains all the theta series given in Chap. 4 of Conway and Sloane [3] (except for the general forms of
those for the root latticeAd and its translates). The final Corollary states the resulting summation formula explicitly.

This relation between modular transformations and summation formulae is not new (though the dimensional con-
tinuation is). The relation has reached its most refined formin the association between automorphic forms and Voronoi
summation formulae (see, e.g., Miller and Schmid [4] for a review of recent work). However, work on this correspon-
dence first arose in the context of transformations related to the functional equation for the zeta function, inspired by
a question by Voronoi on analogues of the Poisson summation formula—see, e.g., [5] and references therein. (We call
particular attention to the work of Ferrar [6].) Additionally, Baake, Frettlöh, and Grimm [7] give a (distributional)ra-
dial Poisson summation formula in their Theorem 3 in a form that is very similar to our dimensionally continued form.
However, they do not show how to dimensionally continue the lattice (or, indeed, mention theta functions explicitly),
and their proof (which relies on the standard Poisson summation formula) only holds for integer dimensions. There are
also discussions of similar formulae—these derived from modular transformations—at the beginning of Chapter 4 of
Iwaniec and Kowalski [8], and in Sec. 10.2 of Huxley [9]—whatHuxley terms the Wilton summation formula. These
formulae are presented in what appears to be a dimensionallycontinued form, though their hypotheses assume integer
dimensions. Regardless, the summation formula in Iwaniec and Kowalski and Huxley’s Wilton summation formula
are derived from cusp forms, while our result (in the language of modular forms) does not require that the constant
term in the form’s Fourier series vanish. (Indeed, we do not mention modular formsquamodular forms at all in the
sequel.)

The work presented here gives a view of these matters that differs from all the other investigations we have seen.
In particular, our method of proof bears no resemblance to any of the other proofs of which we are aware. The other
proofs that begin with a modular transformation rely heavily on the Mellin transform (possibly supplemented with
heavy specialized machinery), while the standard proof of the classical Poisson summation formula uses the lattice’s
periodicity and Fourier series. Our primary analytic tool is a density result for Gaussians in the Schwartz space
(established by basic functional analytic means). The remainder of the proof uses basic real and complex analysis
(primarily Taylor’s theorem, the Lebesgue dominated convergence theorem, and Cauchy’s integral formula) to show
that the dimensionally continued Poisson summation formula holds for the Gaussians (in essence, by reversing the
usual derivation of the Jacobi imaginary transformation using the Poisson summation formula), and that it remains
true in the limit in the Schwartz space.

2. Ingredients

2.1. Theta series

Here we recall various facts about theta series and theta functions that we shall need for the rest of our discussion,
following Chap. 4 of Conway and Sloane [3]. The theta series of a latticeΛ is defined by ,

ΘΛ(q) :=
∑

k∈Λ

q|k|
2

.

(This is often treated as a formal series, but converges forq ∈ C, |q| < 1.) The utility of the theta series stems from the
fact that the coefficient ofql in the expansion ofΘΛ(q) in powers ofq gives the number of points in the intersection
of the lattice and a sphere of radius

√
l centred at the origin. Thus, if we write

ΘΛ(q) =:

∞∑

l=0

Nlq
Al , (2)

then
∑

k∈Λ

f(|k|) =
∞∑

l=0

Nlf(
√
Al).

[Nota bene: We have written the radial functionF asf(| · |), and shall only consider these radial parts in the sequel.]
Examples of dimensionally continued theta series for families of lattices include thed-dimensional cubic latticeZd,
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with ΘZd(q) = ϑd3(q), and the root latticeDd, with ΘDd(q) = [ϑd3(q) + ϑd4(q)]/2. (See Chap. 4 in Conway and
Sloane [3] for further examples.) Here

ϑ2(q) := 2q1/4
∞∑

l=1

ql
2−l, ϑ3(q) := 1 + 2

∞∑

l=1

ql
2

, ϑ4(q) := 1 + 2

∞∑

l=1

(−q)l2 (3)

are Jacobi theta functions (whereϑ2 is defined for future use).
Nota bene: It is often customary to take theta functions and theta series to be functions of a complex variablez,

instead of the nomeq = eiπz that we have used here. We have chosen to regard the nome as fundamental since we are
primarily interested in the expansions of these functions in powers ofq. However, when discussing transformations of
these functions, it is considerably more convenient to regard them as functions ofz. On the few occasions where we
do this, we shall use an overbar to denote the difference, e.g., Θ̄Λ(z) := ΘΛ(e

iπz). (In the literature on summation
formulae derived from automorphic forms, one thinks of our expansions ofΘΛ in q as the Fourier coefficients of̄ΘΛ.)

Since the Poisson summation formula involves the dual lattice, we need to know how to obtain its theta series.
This is given by the Jacobi formula [Eq. (19) in Chap. 4 of Conway and Sloane [3]], which states that

Θ̄Λ∗(z) =
√
detΛ(i/z)d/2Θ̄Λ(−1/z), (4)

whered is the dimension of the lattice. The Jacobi formula is typically proved using the Poisson summation formula
[see, e.g., the discussion leading up to our Eq. (8)]. However, all we need in our discussion is the intimately related
Jacobi imaginary transformation of the Jacobi theta functions (also known as the modular identity or reciprocity
formula for the theta functions), i.e.,

ϑ̄2(−1/z) = (z/i)1/2ϑ̄4(z), ϑ̄3(−1/z) = (z/i)1/2ϑ̄3(z). (5)

(The first of these is also true with the labels2 and4 switched.) The standard proof of these identities is a direct
application of the Poisson summation formula, but there arealternative proofs that are independent of it. For instance,
one such proof is given in Sec. 21.51 of Whittaker and Watson [10], while Bellman’s text [11] discusses several
others—see, in particular, Sec. 30 for Polya’s derivation—in addition to the standard Poisson summation version (in
Sec. 9). Our discussion will thus be independent of the standard Poisson summation formula (with the exception of a
brief appeal to establish Theorem 1 ford = 1).

2.2. The dimensionally continued Fourier transform

We also need to dimensionally continue the Fourier transform. Stein and Weiss give a dimensionally continued
version of the Fourier transform for radial functions in Theorem 3.3 of Chap. IV of [12], viz.,

f̂(p) := 2πp−(d−2)/2

∫ ∞

0

f(r)J(d−2)/2(2πpr)r
d/2dr

=
2πd/2

Γ(d/2)

∫ ∞

0

f(r)0F1(d/2;−π2p2r2)rd−1dr.

(6)

(This reduces to the standard Fourier transform for a radialfunction whend ∈ N.) Here the first equality gives
the expression from Stein and Weiss (Jk is a Bessel function) and the second gives an equivalent (perhaps slightly
neater) expression in terms of the confluent hypergeometriclimit function 0F1. The hypergeometric expression has
the advantage of only involving one appearance ofp (and being manifestly regular atp = 0 for all d ≥ 1), in
addition to showing thed-dimensional polar coordinate measure for radial functions explicitly. We shall thus use the
hypergeometric expression exclusively in the sequel. (Onecan obtain the hypergeometric expression using the Stein
and Weiss derivation—the only difference is that one uses a different special function to evaluate the final integral.1)

For this expression to be well-defined, it is sufficient to take d ≥ 1: One assumesd > 1 when using integral
representations to express the result in terms of either of the two given special functions, and can also check that the

1The integral representation for0F1 we used is 07.17.07.0004.01 on the Wolfram Functions Site [13].
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integral is convergent for allp ∈ R in that case, provided thatf ∈ L1(R+). Additionally, Eq. (6) reduces to the
expected expression ford = 1 [usingJ−1/2(z) =

√
2/πz cos z or 0F1(1/2;−z) = cos(2

√
z)].2 (Stein and Weiss

restrict tod ≥ 2 so that the integral they use in their derivation is well-defined, since they are only considering integer
dimensions.) This restriction tod > 1 is necessary for other parts of our discussion, though we have numerical
evidence that it can be relaxed.

The following result is central to understanding why this dimensionally continued Fourier transform agrees with
the dimensional continuation of the theta series.

Lemma 1. For d ≥ 1, the dimensionally continued Fourier transform (for radial functions) defined in Eq.(6) takes a
GaussianGα(r) := e−αr2 , Reα > 0 to another Gaussian,̂Gα(p) = (π/α)d/2e−π2p2/α.

Remark. Intuitively, this result follows from dimensionally continuing the well-known integer-dimension result. We
should get the same result from direct calculation using Eq.(6) since that expression was obtained using the same
dimensional continuation procedure.

Proof. The cased = 1 is classical. Ford > 1, we use0F1’s defining series,

0F1(d/2;−π2p2r2) =
∞∑

n=0

(−π2p2r2)n

(d/2)nn!
(7)

[(·)n denotes the Pochhammer symbol] and integrate term-by-term, evaluating each integral using the gamma func-
tion.3 The resulting series is the Maclaurin series for the expression we gave forĜα. The term-by-term integration
is justified by the Lebesgue dominated convergence theorem.To see this, we use the same integral representation for
0F1 used in the derivation of Eq. (6), which gives, for anyN ∈ N,

∣∣∣∣∣
N∑

n=0

(−π2p2r2)n

(d/2)nn!

∣∣∣∣∣ ≤ 0F1(d/2;π
2p2r2) ≤ K cosh(2πpr)

∫ 1

0

(1− t2)(d−3)/2dt,

whereK > 0 is a constant.4 This allows us to apply the dominated convergence theorem, since the integral in the final
term is finite ford > 1 and

∫∞

0 cosh(2πpr)|e−αr2 |dr is finite forReα > 0.

Remark. The importance of this result to our discussion comes in its use in obtaining the integer dimension Jacobi
transformation formula (and thus also the Jacobi imaginarytransformations of the Jacobi theta functions) via the
standard Poisson summation formula: For a latticeΛ of dimensionn ∈ N, we have (takingIm z > 0 so that everything
converges)

Θ̄Λ(z) :=
∑

k∈Λ

eiπz|k|
2

=
1√
detΛ

(
i

z

)n/2 ∑

p∈Λ∗

e−iπ|p|2/z =
1√
det Λ

(
i

z

)n/2

Θ̄Λ∗(−1/z),

which can be written as
Θ̄Λ∗(z) =

√
detΛ(i/z)n/2Θ̄Λ(−1/z), (8)

the Jacobi transformation formula. We thus expect that the dimensionally continued dual theta series that we obtain
using this formula will agree with the dimensionally continued Fourier transform to give a dimensionally continued
Poisson summation formula.

2These identities are 03.01.03.0004.01 and 07.17.03.0037.01, respectively, on the Wolfram Functions Site [13].
3The Maclaurin series for0F1 is 07.17.02.0001.01 on the Wolfram Functions Site [13].
4Nota bene: We denote the set of positive integers byN, and the set of nonnegative integers byN0.

4



3. The dimensionally continued Poisson summation formula for Zd

With these results in hand, we can thus write Eq. (1) [for a radial functionF =: f(| · |)] as

∞∑

l=0

Nlf(
√
Al) =

1√
detΛ

∞∑

l=0

N∗
l f̂(

√
A∗

l ),

where the starred quantities come from writing the theta series ofΛ∗ in the power series form given by Eq. (2), and
we calculatef̂ by taking the dimension parameterd to be the dimension of the lattice. (As we shall see later, what is
important is that thed one uses here is the samed that appears in the Jacobi transformation formula.) It is clear that
this equality holds whend ∈ N, by the standard Poisson summation formula. What is perhapssurprising is that the
equality still holds for, e.g.,Λ = Zd, with d ∈ R (d ≥ 1). We shall first prove the result for this simple case (Zd is
self-dual,detZd = 1, andAl = l), where it becomes

Theorem 1. If f ∈ S E(R) (i.e.,f is an even Schwartz function) andd ≥ 1, then

∞∑

l=0

Nlf(
√
l) =

∞∑

l=0

Nlf̂(
√
l), (9)

whereNl is given by the power series expansion of the theta series ofZd, viz.,

Θ(q) = ϑd3(q) =

[
1 + 2

∞∑

k=1

qk
2

]d

=:

∞∑

l=0

Nlq
l,

andf̂ is computed using Eq.(6).

However, the simplifications are primarily notational. As we shall see in the discussion in Sec. 6, the proof works
with minimal modifications for a much larger class ofΘ, including functions that cannot be the theta series of a lattice
(even though they have an integer dimension parameter).

Remark. The restriction thatf be an even function should not be surprising: In integer dimensions, it corresponds to
the lack of a cusp at the origin for the full radial functionF = f(| · |). Moreover, as Miller and Schmid note [4], the
standard one-dimensional Poisson summation formula is a trivial 0 = 0 for odd functions.

4. A Schwartz space density result

Since the proof proceeds by noting that the desired formula holds almost trivially for the Gaussians from Lemma 1,
and then extends to an interesting set of functions [viz.,S E(R)] by density, we start by establishing the requisite
density result.

Lemma 2. Span{x 7→ e−αx2 |α > 0}S (R)
= S

E(R) [i.e., the Schwartz space closure of the given family of Gaus-
sians is all the even Schwartz functions].

Proof. We shall prove this by showing that

X := Span{x 7→ e−αx2 |α > 0}+ Span{x 7→ xe−αx2 |α > 0}

is dense inS (R), so its even part,Span{x 7→ e−αx2 |α > 0}, is thus dense inS E(R). We shall use Corollary IV.3.14
from Conway’s text [14], which states that a linear manifold(hereX ) is dense in a locally convex topological vector
space [hereS (R)] if and only if the only element of the dual of the topologicalvector space that vanishes on all
elements of the linear manifold is the zero element.

It is most convenient to proceed by identifyingS (R) with a sequence space, following Simon [15]. Here the
sequence space is given by the coefficients of the Hermite function expansion of elements ofS (R), and provides a
particularly nice characterization of the tempered distributions [the elements ofS ′(R), the dual ofS (R)]. Namely, if
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an are the Hermite coefficients off ∈ S (R) [i.e.,an :=
∫
R
f(x)hn(x)dx, wherehn is thenth Hermite function], then

ϕ ∈ S ′(R) can be written asϕ(f) =
∑∞

n=0 cnan, wherecn are the Hermite coefficients ofϕ, with |cn| ≤ C(1+n)m

for someC,m > 0. (This is Theorem 3 in Simon [15].) Note that Simon defines theHermite functions to beL2

normalized, so, we have, from the first equation in Sec. 2 of Simon,5

hn(x) :=
e−x2/2

√
π1/22nn!

Hn(x), Hn(x) := (−1)nex
2 dn

dxn
e−x2

,

where theHn are the Hermite polynomials, with generating function6

∞∑

n=0

Hn(x)
tn

n!
= e2tx−t2 .

We can now use this generating function to show that the Hermite coefficients ofx 7→ e−αx2

are given by

an = Nn
dn

dtn

[∫

R

e−(αx2+x2/2−2tx+t2)dx

]∣∣∣∣
t=0

= Nn
dn

dtn
[
√
πβe(β−1)t2 ]

∣∣∣
t=0

,

whereNn := (π1/22nn!)−1/2 is the Hermite functions’ normalization factor andβ := 1/(α + 1/2). We thus have
a2n = N2n(π/β)

1/2(β − 1)n/n!, a2n+1 = 0, by the series expansion of the exponential. [We used Lemma 2.2 in
Chap. 13 of Lang [16] to interchange differentiation and integration. We only need to consider the case wheret lies
in some neighbourhood of0, so thet-derivatives of the integrand are each bounded by a polynomial in x times a
Gaussian inx (for all t in the neighbourhood), and those functions ofx are integrable overR.] Similarly, the Hermite
coefficients ofx 7→ xe−αx2

areb2n = 0 andb2n+1 = N2n+1(π/β
3)1/2(β − 1)n/n!. Thus, we consider

Eβ,±(x) := (β/π)1/2e−αx2 ± (β3/π)1/2xe−αx2

,

which has Hermite coefficients of(±1)nNn(β − 1)⌊n/2⌋/⌊n/2⌋!, where⌊·⌋ denotes the greatest integer less than or
equal to its argument.

Now, for anyϕ ∈ S ′(R), E±(β) := ϕ(Eβ,±) is a holomorphic function ofβ. To see this, we note that

E±(β) =
∞∑

n=0

(±1)ncnNn
(β − 1)⌊n/2⌋

⌊n/2⌋! =
∞∑

n=0

(N2nc2n ±N2n+1c2n+1)
(β − 1)n

n!
, (10)

wherecn are the Hermite coefficients ofϕ. Since thecn are bounded by a polynomial inn, the series converges for
all β ∈ C, giving holomorphy. Thus, ifE±(β) = 0 for all β in an interval (as is the case here), then all ofE±’s power
series coefficients are zero. Applying this result to the twochoices of sign, we obtain (since theNn are never zero)
cn = 0 ∀ n ∈ N0 ⇒ ϕ ≡ 0, which thus proves the lemma.

Remark. This result may be of wider applicability, particularly in harmonic analysis, due to the ubiquity of the
Gaussian. We thus note that the proof of the lemma shows thatα need merely belong to some subset of the right
half-plane with an accumulation point to guarantee density. One could have also proved this result more abstractly
(and without recourse to the Hermite expansion) by a slightly indirect application of the Stone-Weierstrass theorem,
though the basic Hahn-Banach argument (contained in the Corollary from Conway we use) remains the same.7

5Nota bene: Simon defines thehn without the factor of(−1)n (that here comes from ourHn). We have included the(−1)n for notational
simplicity (since we use the standard convention for the Hermite polynomials). This does not have any effect on Simon’s Theorem 3, since it simply
amounts to a sign change of the odd Hermite coefficients.

6This is 05.01.11.0001.01 on the Wolfram Functions Site [13].
7Personal communication from John Roe.
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5. Proof of Theorem 1

We first note that Eq. (9) is clearly true ford = 1 (indeed,d ∈ N) by the standard Poisson summation formula
for lattices (applied toZd). To prove the result ford > 1, we shall first establish that it holds for the Gaussians from
Lemma 1, and then show that the equality still holds in the limit in the Schwartz space topology. The control afforded
by demanding convergence in the Schwartz space makes this quite straightforward. The primary result that needs to
be shown is that two functions that areǫ-close in the Schwartz space topology have dimensionally continued Fourier
transforms that areCǫ-close in a given Schwartz space seminorm (where the constant C depends on the seminorm
under consideration, as well asd).

To show that Eq. (9) holds whenf = Gα, we first consider the left-hand side and note that

∞∑

l=0

Nle
−αl = Θ(e−α). (11)

Convergence is guaranteed becauseΘ is analytic inside the unit disk. [To see thatΘ is analytic inside the unit disk,
note thatϑ3 is analytic there, and, moreover, nonzero, so itsdth power is analytic, as well. It is easiest to see thatϑ3
is nonzero inside the unit disk from its infinite product expansion, given in, e.g., Eq. (35) in Chap. 4 of Conway and
Sloane [3].] Using Lemma 1, the right-hand side of Eq. (9) becomes

(π
α

)d/2 ∞∑

l=0

Nle
−π2l/α =

(π
α

)d/2

Θ(e−π2/α).

Now, the Jacobi imaginary transformation forϑ3 [Eq. (5)] implies that(π/α)d/2Θ(e−π2/α) = Θ(e−α), so we have
thus established the result forGα.

We shall now show that this equality continues to hold in the limit. The equality is clearly true for any finite
linear combination of the Gaussians from Lemma 1, so we use Lemma 2 to approximate an arbitraryf ∈ S E(R)
by a finite linear combination of these Gaussians,g. Specifically, we have‖f − g‖n,m < ǫ ∀ n,m ∈ N0, where
‖f‖n,m := supx∈R

|xnf (m)(x)| is the family of seminorms that gives the Schwartz space topology. (We denote the
mth derivative off by f (m).) We wish to bound the difference between the two sides of Eq.(9) by a constant timesǫ.
We have ∣∣∣∣∣

∞∑

l=0

Nlf(
√
l)−

∞∑

l=0

Nlf̂(
√
l)

∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑

l=0

Nl(f − g)(
√
l)

∣∣∣∣∣+
∣∣∣∣∣
∞∑

l=0

Nl(f̂ − ĝ)(
√
l)

∣∣∣∣∣ , (12)

where we used the fact that the dimensionally continued Poisson summation formula holds forg, along with the
triangle inequality. We can bound the two sums on the right-hand side by constants timesǫ using the assumption about
the closeness off to g in the Schwartz space topology and the fact thatNl grows at most polynomially withl. The
latter fact also shows that the two sums on the left converge for f ∈ S (R).

5.1. Bounds on the growth ofNl and on the right-hand side of Eq.(12)

We obtain the polynomial bound onNl using Cauchy’s integral formula with the contourCR, a circle of radius
R ∈ (0, 1), centred at the origin (and oriented counterclockwise):

|Nl| =
∣∣∣∣
1

2πi

∫

CR

ϑd3(z)

zl+1
dz

∣∣∣∣ =
1

2π

∣∣∣∣
∫ 2π

0

ϑd3(Re
iθ)

Rleilθ
dθ

∣∣∣∣ ≤
2d

Rl(1 −R)d
.

Here we have used|ϑ3(q)| ≤ 2/(1−|q|) (for |q| < 1, obtained using the geometric series). The right-hand sideattains
its minimum [forR ∈ (0, 1)] atR = l/(l+ d), so we have

|Nl| ≤ 2d(1 + d/l)l(1 + l/d)d ≤ Cdl
d,

whereCd > 0 is some constant (and the second inequality only holds forl ≥ 1). [We have used the fact that
(1 + 1/r)r < e for r > 0.]

If we write h := f − g, then this bound implies that|Nlh(
√
l)| ≤ Cdl

d|h(
√
l)| ≤ ǫCd/l

2 (for l ≥ 1), where
the second inequality follows from the fact thath is ǫ-close to0 in the Schwartz space topology. [Explicitly, we have
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|x2d+4h(x)| ≤ ǫ ∀ x > 1 ⇒ ld|h(
√
l)| ≤ ǫ/l2 ∀ l ∈ N. The first inequality comes from noticing that for anyγ ≥ 0,

we have|xγh(x)| ≤ |x⌈γ⌉h(x)| ≤ ǫ for x ≥ 1, where⌈·⌉ denotes the smallest integer greater than or equal to its
argument.] We shall show that|p2nĥ(p)| ≤ Kdǫ ∀ n ∈ N, p ∈ R (whereKd is somen-dependent constant), so we
have|p2d+4ĥ(p)| ≤ Kdǫ ∀ p ∈ R. We can thus apply the same argument to the second sum and hence bound both
sums by constants timesǫ (since

∑∞
l=1 l

−2 is finite), showing that the dimensionally continued Poisson summation
formula is true in the limit [since we will have shown that theright-hand side of Eq. (12) is bounded by a constant
timesǫ].

5.2. Bound on|p2nĥ(p)|
To prove the bound on|p2nĥ(p)|, we first dimensionally continue some standard Fourier results.

Lemma 3. If we define thed-dimensional Laplacian for radial functions by

△df(r) := f ′′(r) +
d− 1

r
f ′(r), (13)

then, ford > 1,

i) Fp(r) := 0F1(d/2;−π2p2r2) satisfies△dFp = −4π2p2Fp, so

ii) △̂n
df(p) = (−1)n(2πp)2nf̂(p) for f ∈ S (R).

Proof. Parti follows from the fact thatya(r) := 0F1(a; r) satisfiesry′′a (r) + ay′a(r) = ya(r).8 [Alternatively, it can
be obtained by direct calculation using Eq. (7), justifyingterm-by-term differentiation using analyticity.] Partii is
then obtained by induction, applying Eq. (6) to△n−1

d f and integrating by parts twice. [The boundary terms at infinity
vanish becausef ∈ S (R); those at0 vanish becaused > 1 (or cancel amongst themselves).]

We can thus write|p2nĥ(p)| = (2π)−2n|△̂n
dh(p)|. Then, since we shall show below that|rk△n

dh(r)| ≤ Dǫ, where
D is some (n- andd-dependent constant), we obtain [using Eq. (6) and the fact that0F1(a; r) is a bounded function of
r, as was seen in the proof of Lemma 1]

|p2nĥ(p)| ≤ C
∫ ∞

0

|△n
dh(r)|rd−1dr

≤ C
[∫ 1

0

|△n
dh(r)|dr +

∫ ∞

1

|△n
dh(r)|rd−1dr

]

≤ CD
[
1 +

∫ ∞

1

rd−1−sdr

]
ǫ,

whereC > 0 is some (n- andd-dependent) constant and we used|rk△n
dh(r)| ≤ Dǫ with k = 0 andk = s. We can

chooses > d, so the integral in the final term is finite, thus giving the desired result.

5.3. Bound on|rk△n
dh(r)|

To see that|rk△n
dh(r)| is bounded by some (n- andd-dependent) constant (calledD above), we first note that we

can use induction to write

△n
dh(r) =

2n∑

j=1

aj
h(j)(r)

r2n−j
(14)

for some (n- andd-dependent) constantsaj (and an arbitrary differentiableh). Thus, for|r| ≥ 1, we have|rk△n
dh(r)| ≤

ǫ
∑2n

j=1 aj . For |r| < 1, matters are considerably more subtle, and we have to rely onthe fact thath is even to see
that△n

dh remains bounded at the origin. The argument goes as follows:We write h = P + R, whereP is h’s

8This differential equation for0F1 is 07.17.13.0003.01 on the Wolfram Functions Site [13].
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(2n)th-degree Maclaurin polynomial (necessarily even, sinceh is) andR is the associated remainder. We then have
|rk△n

dh(r)| ≤ |rk△n
dP(r)| + |rk△n

dR(r)|. Since△d maps even polynomials to even polynomials [as can be seen
from Eq. (14)],|rk△n

dP(r)| is bounded by a (k-, n-, andd-dependent) constant timesǫ for |r| ≤ 1. [Since the co-
efficients ofP are given by derivatives ofh, they are bounded by constants timesǫ, by hypothesis.] To deal with
|rk△n

dR(r)|, we first need to establish an identity for derivatives ofR, viz., (for j ≤ 2n)

R(j)(r) =
h(2n+1)(ξj)

(2n+ 1− j)!
r2n+1−j ,

for someξj ∈ (0, r). This follows from differentiatingh = P +R j times, and comparing the resulting expression
with the (2n − j)th order Maclaurin expansion (with Lagrange remainder) ofh(j). The polynomial pieces are the
same, while the remainder pieces give the two sides of the equality. Combining this identity with Eq. (14), we obtain

△n
dR(r) = r

2n∑

j=1

bjh
(2n+1)(ξj),

where thebj are (n- andd-dependent) constants. This shows that|rk△n
dR(r)| is bounded by an (n- andd-dependent)

constant timesǫ for |r| ≤ 1, so|rk△n
dh(r)| is, as well, proving the desired result, and hence the theorem.

Remark. The restrictions onf andd in the statement of the theorem are surely not optimal: Thereis numerical
evidence that the given result holds ford ∈ C, Re d > 0 and less smoothf [e.g.,f(r) = e−|r|3]. (The evidence also
extends to the generalization given in Theorem 2 and is provided by a MATHEMATICA notebook, available online.9)
While one could use a slightly larger function space thanS E(R) without any change to the proof—the proof does not
need control over‖f − g‖n,m for all n andm—we did not investigate this in any detail: The resulting function space
would still require a fair amount of differentiability (while we have numerical evidence that the formula remains true
for at least some functions with a cusp at the origin), and faster decay than the standard Poisson summation formula.
Moreover, the closure of the family of Gaussians in this lessrestrictive topology would almost surely be more recondite
thanS E(R).

6. Generalization of Theorem 1

Since there are other families of lattices with dimensionally continued theta series besidesZd (e.g., the root lattice
Dd mentioned in Sec. 2.1), it is reasonable to expect that Theorem 1 can be generalized by replacingΘ with some
more general functionΥ. In fact, we have the following

Theorem 2. Assume that we have a functionΥ andd > 1 such that

i) We can write

Υ(q) =

∞∑

l=0

Nlq
Al ,

where

1. Al+1 > Al, A0 ≥ 0.

2.
∑∞

l=1A
−m
l <∞ for somem ∈ N.

3. There existsL ∈ N andC, n > 0 such that|Nl| ≤ CAn
l for all l ≥ L,

4. TheAl are such that the series converges inside the unit disk.10

9The notebook is available athttp://gravity.psu.edu/ ˜ nathanjm/Dim_cont_PSF_test.nb .
10The ratio test and the given bound onNl provide sufficient conditions for convergence inside the unit disk, viz.,Al+1 − Al ≥ δ for some

δ > 0 and liml→∞ Al+1/Al = 1. (These are satisfied by the specific examples we consider.) However, one could relax the requirement of
convergence to some subset of the unit disk, as the remark following Lemma 2 reveals.

9
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ii) If we define
Ῡ∗(z) := (i/z)d/2Ῡ(−1/z)

(recall the overbar notation introduced in thenota benein Sec. 2.1), then we can write

Υ∗(q) =

∞∑

l=0

N∗
l q

A∗

l ,

with the same hypotheses about the series as in parti.

Then, for anyf ∈ S E(R), we have the summation formula

∞∑

l=0

Nlf(
√
Al) =

∞∑

l=0

N∗
l f̂(

√
A∗

l ),

where we computêf using Eq.(6) (with thed used in partii ).

Remark. The definition ofΥ∗ is just the dimensionally continued Jacobi transformation[Eq. (4)] ofΥ with the factor
of

√
detΥ omitted. (We leave off this factor, since it would just cancel against the one present in the standard Poisson

summation formula [cf. Eq. (1)].)

Proof. The proof is almost the same as that for Theorem 1 (replacingΘ byΥ, and noting that we can no longer appeal
to the standard Poisson summation formula ford = 1, so we simply exclude that case). Our hypotheses are such that
the only new part is checking that

∑∞
l=0 |Nlh(

√
Al)| → 0 asǫ→ 0 if h is ǫ-close to0 in the Schwartz space topology

[and similarly for
∑∞

l=0 |N∗
l h(

√
A∗

l )|]. To do this, we simply note that we have|Nlh(
√
Al)| ≤ CAn

l |h(
√
Al)|, by

hypothesis, and thatx2(n+m)|h(x)| ≤ ǫ ∀ x ∈ R ⇒ An
l |h(

√
Al)| ≤ ǫ/Am

l , from which the desired result follows
immediately. (The same argument holds for the starred quantities, since the hypotheses are identical.)

Remark. This theorem can likely be interpreted as a trace formula forthe dimensionally continued, spherically
symmetric Laplacian [Eq. (13)], since the kernel of the dimensionally continued Fourier transform is an eigenfunction
of this operator (see Lemma 3). See, e.g., Sec. 1.3 (particularly Theorem 1.3) of Uribe [17] for a presentation of the
standard Poisson summation formula for an integer dimension lattice as a trace formula for the Laplacian.

It is not clear how to construct the most generalΥ satisfying the hypotheses of Theorem 2.11 Nevertheless, it is easy
enough to write down a reasonably general, yet fairly simplefamily of functions that does satisfy these hypotheses,
viz., finite linear combinations of products of the three basic theta functions given in Eq. (3). Specifically, we can
consider products of the form

Υd(q) :=

M∏

m=1

ϑλm

2 (qsm)ϑρm

3 (qtm)ϑσm

4 (qum), (15)

whereλm, ρm, σm ≥ 0,
∑M

m=1(λm + ρm + σm) = d, andsm, tm, um ∈ Q+. The extension to finite linear
combinations ofΥds with the samed is trivial, by linearity. One can write all the theta series given in Chap. 4 of
Conway and Sloane [3] as such finite sums ofΥds, except for the general form of the theta series of the root lattice
Ad and its translates. In fact, theorems in Conway and Sloane (Theorems 7, 15, and 17 in Chap. 7 and Theorem 5 in
Chap. 8) show that the theta series of large classes of lattices can be written in such a form. However, the expression in
terms ofΥds is considerably more general, since one only requiresλm, ρm, σm ∈ N0 to reproduce the theta series in
Conway and Sloane, while here they can be arbitrary nonnegative real numbers. One can also use the general template
provided by Eq. (15) to construct other admissibleΥs from, e.g., automorphic forms, or other such functionsψ that
satisfy the relation̄ψ(−1/z) = (z/i)ηφ̄(z) for someη ∈ R (whereφ andψ are well-behaved enough that the power
series of theΥ constructed using these functions satisfies the hypothesesof Theorem 2).

We now want to establish the following

11However, Ryavec characterizes all admissibleΥs (under certain assumptions) ford = 1 in [18]. We also call attention to the work of
Córdoba [19, 20], who shows that in integer dimensions, large classes of generalized Poisson summation formulae arisefrom the standard Poisson
summation formula applied to the finite disjoint union of (integer dimensional) lattices.
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Proposition. Υd [defined in Eq.(15)] satisfies the requirements given in the statement of Theorem 2.

Proof. First note that the Jacobi imaginary transformations of thetheta functions [given in Eq. (5)] imply that

Υ∗
d(q) =

M∏

m=1

ϑσm

2 (q1/um)ϑρm

3 (q1/tm)ϑλm

4 (q1/sm)√
sλm

m tρm

m uσm

m

, (16)

so the arguments we give forΥd can be applied toΥ∗
d immediately. Now, we have

Al = (l +A)/V, A :=

M∑

m=1

V λmsm/4

whereV is the least common denominator ofsm, tm, andum (for all m). [We have the additive constantA due to the
overall factor ofq1/4 in ϑ2(q).] Thus the first required property (positivity and monotonicity of theAl) is obviously
true, and the second (convergence of the series whose terms areA−m

l ) is clearly true form = 2 (andL = 1), as
before.

For the third property (polynomial boundedness of theNl), we use the same Cauchy’s integral formula argument
used in Sec. 5.1. HereNl is given by thelth term in the Maclaurin expansion ofΥd(q

V )/qA, so we have

|Nl| =
∣∣∣∣∣
1

2πi

∫

CR

M∏

m=1

ϑλm

2 (zV sm)ϑρm

3 (zV tm)ϑσm

4 (zV um)

zV λmsm/4zl+1
dz

∣∣∣∣∣

≤ 2d
M∏

m=1

1

Rl(1−RV sm)λm(1−RV tm)ρm(1−RV um)σm

≤ 2d

Rl(1−R)d
,

whereCR is the same contour used previously. We have used the geometric series to obtain the bound|τ(q)| ≤
2/(1− |q|), whereτ(q) is any ofϑ2(q)/q1/4, ϑ3(q), orϑ4(q). Additionally, we have used the fact thatκ ≥ 1, where
κ is any ofV sm, V tm, orV um, so |1 − Rκ| ≥ 1 − R, sinceR ∈ (0, 1). We also recalled thatλm, ρm, σm ≥ 0 and∑M

m=1(λm + ρm + σm) = d. Since there is anR ∈ (0, 1) such that2d/[Rl(1 − R)d] ≤ Cdl
d (for l ≥ 1), as was

shown in Sec. 5.1, we are done.
The fourth property (convergence of theq-series in the unit disk) follows from the analyticity and lack of zeros of

the theta functions inside the unit disk, as in the argument given below Eq. (11). Specifically,Υ(qV )/qA is an analytic
function ofq inside the unit disk; the lack of zeros can be seen from the infinite product representations ofϑ2 andϑ4
given, e.g., in Eqs. (34) and (36) in Chap. 4 of Conway and Sloane [3].

For clarity, we present the summation formula given by the Proposition and Theorem 2 explicitly (and without any
reference to the transformation formula) as the following

Corollary. Let Φ be a finite linear combination ofΥds (from Eq.(15); all with the samed > 1) and letΨ be the
analogous linear combination of theΥ∗

ds given in Eq.(16) (i.e., with the same parameters and coefficients as for the
Υds). If we write

Φ(q) =:

∞∑

l=0

Nlq
Al , Ψ(q) =:

∞∑

l=0

Plq
Bl ,

then, for anyf ∈ S E(R), we have
∞∑

l=0

Nlf(
√
Al) =

∞∑

l=0

Plf̂(
√
Bl),

wheref̂ is computed using Eq.(6).

Remark. This result shows that one can apply this extended Poisson summation formula to lattice-like objects whose
theta series have coefficients of both signs, so they do not exist as a lattice, even thoughd ∈ N: For a trivial example,
considerd = 2 andΦ(q) = ϑ24(q) = 1 − 4q + 4q2 + · · · . Of course, this is in some sense too trivial, since one can
writeϑ24 = 2ΘD2 −ΘZ2 , and then apply the standard Poisson summation formula to each of those lattices to establish
the result in this case (cf. the discussion in Córdoba [20]). However, in more complicated higher-dimensional cases, it
will likely not be clear how to construct the lattice(s) associated with the theta series (if they indeed exist).
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