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1. Introduction

The celebrated theory of linear response of systems close to equilibrium has been

developed in the first half of the XX century, and has proven highly successful in

describing a very wide range of macroscopic phenomena, particularly thanks to the

usefulness of the Fluctuation-Dissipation Theorems (FDT) [1]. In the second half of the

XX century, numerous generalizations have been proposed to extend the classical theory

beyond the linear regime, by considering the microscopic evolution as represented by

deterministic dynamical systems, by dynamical systems perturbed by some appropriate

noise, or by purely stochastic processes, which reach a nonequilibrium steady state.

In particular, relations known as Fluctuation Relations have been introduced together

with different nonequilibrium generalizations of the FDT. One then investigates the

variations of these dynamics under certain perturbations. Remarkably, it turns out that

rather different approaches lead to similar results, cf. Ref.[2] for recent reviews of the

historical developments and of the recent results. The recent developments, however, do

not constitute a consistent and comprehensive theory yet, therefore a variety of different

approaches is worthy investigating. For instance, Ruelle has shown [3] that, for uniformly

hyperbolic dynamical systems, the linear response away from equilibrium is very similar

to the linear response close to equilibrium: the Kramers-Kronig dispersion relations hold,

and the FDT survives in a modified form, which accounts for the oscillations around

the relevant attractors. If the chaotic hypothesis does not hold, Ruelle concludes that

two new phenomena may arise. The first is a violation of linear response, in the sense

that the nonequilibrium steady state does not depend differentiably on parameters.

The second phenomenon is a violation of the dispersion relations: the susceptibility

has singularities in the upper half complex plane. These ‘acausal’ singularities are

actually due to ‘energy nonconservation’: for a small periodic perturbation of the

system, the amplitude of the linear response is arbitrarily large. This means that the

steady state of the dynamical system under study is not ‘inert’ but can give energy

to the outside world, something rather different from the behavior of an equilibrium

state. This approach is based on the smoothness property of SRB measures [4] along

the unstable fibres of the attractors, something hardly realizable in the phase space

probability distribution of physically relevant nonequilibrium systems. Therefore, this

approach is limited to the properties of systems whose departure from the ideal uniform

hyperbolicity does not seriously affect the observed behavior [3]. From a different

perspective, Vulpiani et al. [5] have studied the response of dynamical systems to finite

amplitude perturbation, assuming that their phase space probability distributions are

not singular with respect to the Lebesgue measure, hence have an integrable density.

These authors found that a generalized fluctuation-response relation holds, and it links

the average relaxation towards the steady state to the invariant measure of the system.

Furthermore, this approach points out the relevance of the amplitude of the initial

perturbation, something which does not pertain to the approach mentioned above. The

use of regular distributions is justified by considering that any physical phenomenon
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is affected by some noise, capable of smoothing out the singularities produced by the

dissipative deterministic dynamics. However, one may also like to consider the noise

as emerging from a projection procedure [6], or may investigate the possibility that the

distribution (not necessarily invariant) be expressed in terms of appropriate expansions

around a reference one. In this work we pursue the latter approach and propose a

method which resembles the Chapman-Enskog technique [7] for the Boltzmann Equation

(BE), which is suitable for the generalized Liouville Equation (LE) of deterministically

thermostatted particle systems. The method takes inspiration from the Bogolyubov

hypothesis [8] of time scales separation and postulates that the dynamics of the single-

particle distribution function is driven by the dynamics of a set of selected fields [9].

Analogously, in the context of many-particle systems, one can conjecture that the

dynamics of the phase space probability density is triggered by the dynamics of some

averaged phase space quantities. In particular, in the theory of the BE, the notion of

slow variables was corroborated by the assumption of local equilibrium. At the level of

the LE, on the other hand, a similar notion can be introduced under the assumption of

a weakly dissipative dynamics, in order to let the resulting probability density be not

too far from the Gibbsian density, which is required for the application of the method.

2. The Chapman-Enskog method of solving the Boltzmann Equation

In this Section we review some of the main features of the Chapman-Enskog method,

which we intend, next, to employ, in Sec.3, in the context of thermostatted particle

systems, to study the evolution of the probability density in the full phase space. The

approach, introduced by Enskog and popularized in a modified version by Chapman and

Cowling [7], consists of a mathematical procedure meant to approximate the solution

of the BE. The method deserves a special mention in kinetic theory of gases since the

Boltzmann pioneering works, as it allows to derive the Navier-Stokes-Fourier equations

of hydrodynamics from the BE, by elucidating and making use of concepts, such as

the scaling (hydrodynamic) limit of a kinetic equation, the notion of local equilibrium

and the time scales separation, which led to the systematic construction of projection

operator methods in statistical mechanics as well as to the later development of special

large deviation methods in the theory of stochastic processes [10]. Let us start by writing

down the BE, which (in absence of external forces) reads:

∂tf = −v · ∇f + C(f) (1)

where f = f(r,v, t) is the one particle distribution function, depending on position

r, particle velocity v and time t and C(f) is a nonlinear integral collision operator. By

rescaling the BE with characteristic time and length scales, the Knudsen number ǫ = λ
L

arises naturally from (1), which, in dimensionless form, becomes:

∂tf = −v · ∇f +
1

ǫ
C(f) (2)
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where L denotes a macroscopic length scale (e.g. the sice of the system) and λ is the

mean free path, i.e. the average distance covered by a moving particle between successive

collisions with other moving particles. In the limit ǫ→ 0, which is commonly referred to

as the hydrodynamic limit, the fluid becomes dense enough that the dynamics, described

by (2), is dominated by the effect of the collisions. By introducing the notion of local

equilibrium, (i.e. the existence of macroscopic regions each of which is in an equilibrium

state which may be different from the equilibrium states found in other regions) it

is possible to define, locally, a set of selected variables x, known as hydrodynamic

fields (which correspond to the collision invariants: number of particles density n(r, t),

momentum density n(r, t)u(r, t), and kinetic energy density e(r, t) = 3
2
n(r, t)kBT (r, t)),

which enter the definition of Maxwell-Boltzmann statistics:

fLM(r,v, t) = n(r, t)(
m

2πkBT (r, t)
)
3
2 e

−m(v−u(r,t))2

2kBT (r,t) (3)

where m is the mass of the particle. The local Maxwellians (3) are not, in general,

solutions of (1). Nevertheless, in the hydrodynamic limit, where the length scale of the

spacial inhomogeneities, L ∼ ǫ−1, tends to diverge, they offer a good approximation to

the exact solution. In fact, it is evident from Eq. (2) that for ǫ→ 0 the last term on the

right becomes singular. Then, the only way to avoid the singularity is that the collision

term itself vanishes, which is guaranteed by the form of the local Maxwellians. It is

worth to notice that Eq. (2) can also be considered, in the Fourier-Laplace space, as an

eigenvalue problem for the operator Λ = C(f)− iǫk · v. As discussed in Ref. [11], some

technical problems arise when one attempts to solve the eigenvalue problem away from

the strict hydrodynamic limit ǫ → 0, and alternative techniques, based on projection

operators, have been recently made available [12]. However, in those circumstances

where ǫ ≪ 1, it makes sense to attempt a perturbative method to solve Eq. (2), by

introducing the following expansion:

f =

∞∑
l=0

ǫlf (l) (4)

Thus, by inserting (4) into (2), one may define a microscopic time derivative ∂microt f as:

∂microt f = −v · ∇[
∞∑
l=0

f (l)ǫl] +
1

ǫ
C(

∞∑
l=0

f (l)ǫl) (5)

Following [12], in the theory of the BE it is also possible to introduce a macroscopic

time derivative, ∂macrot f , provided that the assumption of local equilibrium holds.

The idea is to employ the notion of normal solutions, which allows to express the

spatial and temporal dependence of the terms f (l) through the hydrodynamic fields,

f (l)(r,v, t) = f (l)(x(r, t),v). By applying a sort of chain rule, we can, then, write:

∂macrot f =
∂(
∑∞

j=0 ǫ
jf (j))

∂x
∂tx (6)
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The time derivative of the hydrodynamics fields, in (6), is found to be given by:

∂tx =

∞∑
k=0

ǫk∂
(k)
t x (7)

where ∂
(k)
t x = −

∫
w(v)v · ∇f (k)d3v and where the w’s are lower order Sonine

polynomials of v. The method, then, requires to equalize the two time derivatives

∂microt f and ∂macrot f (supplemented by (7)). The equality, in fact, provides a cascade of

equations for the various terms of the expansion f (l)(x(r, t),v), whose leading order is

represented by the family of Maxwellians (3), and whose first correction, f (1), can be

obtained [7] from:

∂f (0)

∂x

∫
w(v)v · ∇f (0)(v)d3v = v · ∇f (0) − C(f (1)) (8)

The lowest order of the equations of hydrodynamics (7) is known as Euler

hydrodynamics and features vanishing transport coefficients, whereas, by adding

the first correction f (1), one obtains the dissipative Navier-Stokes-Fourier equations,

which are endowed with constitutive expressions for the stress tensor and the

heat flux [12]. However, higher order corrections of the Chapman-Enskog method,

resulting in hydrodynamic equations with higher derivatives (Burnett and super-Burnett

hydrodynamic equations) face severe difficulties both from theoretical, as well as from

the practical point of view and various regularization methods have been suggested

[9, 13].

3. Dissipative Liouville Equation with external forcing and nonequilibrium

response

The method discussed in the previous Section and applied in the context of kinetic

theory can be extended to Hamiltonian particle systems, as it is formally possible to

construct perturbative techniques to solve the LE. Such perturbation theories allow

to compute the higher order corrections to the phase space counterpart of the local

equilibrium in the BE and lead to expressions of transport coefficients in terms of the

detailed microscopic dynamics. The standard method which succeeds in this derivation

was originally proposed by Green and Kubo [14]. Any perturbation theory based on an

expansion of the probability density in powers of a small parameter ǫ needs to extend and

justify the assumption of local equilibrium in phase space and to prove that higher order

corrections are suitable to refine the lower order approximations. This is a delicate

issue, as, formally, there is no indication of the convergence of such an expansion

in phase space and, mostly, there is no analog of the Caflish Theorem [15], formally

proving that a proper truncation of the series (4) approximates the solution to the BE.

Furthermore, as pointed out by the Authors in [16], in order to obtain finite transport

coefficients, one needs to postulate a strong decay property of the time autocorrelations

of mass, momentum and energy currents. We intend to show, here, that, in the context
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of externally driven thermostatted particles systems, the analogy with kinetic theory

can be, to some extent, retained and most of the concepts formerly employed in the

derivation of hydrodynamics from the BE, can be used to obtain nonequilibrium response

formulae from the LE. In particular, the dimensionless parameter ǫ which arises after a

proper rescaling of the LE, does not constitute just a mathematical book-keeping device

which is eventually set to unity, but it can be endowed with a physical content, such as

it was in the case of the BE. We consider a particle system, held, for time t ∈ (−∞, 0],

in equilibrium with an external bath at temperature T . At time t = 0 an external force

Fext, starts acting and, hence, some energy is ”pumped” inside the system. At the same

time a deterministic thermostat is switched on in order to remove part (or the whole)

of the energy provided by the external force, and to achieve, on a large time scale,

a nonequilibrium steady state. The dynamics we have in mind are the deterministic

thermostatted dynamics of nonequilibrium molecular dynamics [17]. In particular, we

refer to those systems for which the dimensionless LE takes the form:

ρ̇ = −Γ̇ · ∇ρ+ ǫκρ (9)

with:

Γ̇ = Γ̇0 + ǫR(Γ) = S · ∇H0 + ǫR(Γ) (10)

where S is the symplectic matrix, H0 is the Hamiltonian of the many-particle system,

Γ̇0 denotes the corresponding Hamiltonian contribution to the dynamics and R(Γ) is the

term which spoils the conservativity of the equations of motion. Furthermore, in (9),

we introduced a shorthand notation for the phase space contraction rate: κ = −∇ · Γ̇

and ǫ is a dimensionless parameter which is proportional to the intensity of the external

driving. A paradigmatic example, where the parameter ǫ attains a sensible structure, is

provided by the Gaussian thermostatted Lorentz gas of hard spheres, with Hamiltonian

H0(Γ) =
p2

2m
. By adding an external force, here represented by Fext = qE, with q the

electric charge and E the external electric field, and the thermostat, both entering the

definition of R, in (10), one finds: R = qE−α(p)p, where m the mass of the particle and

α =
qE·p
p2

= κ(Γ). For simplicity, we consider just a single particle and we also do not

take the presence of scatterers explicitly into account, as it does not contribute to the

phase space contraction rate, which, as discussed below, is the only observable we are

going to be concerned with, in our model. By rescaling all dimensional quantities with

proper characteristic scales, the resulting dimensionless LE takes precisely the structure

indicated in (9), and, in analogy with the definition of the Knudsen number introduced

in Sec. 2, the parameter ǫ is, then, given by the ratio of the energy absorbed by the

thermostat, ∆Ediss, to a characteristic energy of the system K:

ǫ =
EL

v2
∼

∆Ediss
K

(11)

where denotes E a typical intensity of the applied electric field, L a reference

length scale, v a characteristic velocity of the dynamics and K may be identified by the

kinetic energy of the system or, in systems enjoying local thermodynamic equilibrium,



Nonequilibrium Response from the dissipative Liouville Equation 7

may be also related to the temperature T of the system. We observe that in the

Zubarev’s seminal papers [18], an infinitesimal source term, corresponding to our ǫ,

was introduced ad hoc in the construction of the nonequilibrium statistical operator

from the LE, whereas, here, in the context of thermostatted particle systems, a small

parameter arises naturally after the adimensionalization. The parameter ǫ can be small

or large, depending on the details of the coupling with the thermostat. It is well known

that, in strongly dissipative systems (ǫ≫ 1), the support of the invariant measure is an

attractor endowed with a very thin fractal structure, which appears strongly at variance

with a regular distribution. On the other hand, in the limit of weak dissipation (i.e.:

weak coupling with the thermostat), ǫ ≪ 1, it makes sense to attempt a perturbative

technique to solve Eq. (9), qhich is performed by expanding ρ in powers of ǫ:

ρ =

∞∑
l=0

ǫlρ(l) (12)

where ρ(0) obeys a purely conservative equilibrium dynamics (unaffected by the external

field and by the thermostat):

ρ(0)(t) = e−Λtρ(0)(0) (13)

with Λ = Γ̇0 · ∇ the Liouvillian operator. Let us point out, here, the analogy with Sec.

2. In the context of the BE, we have already remarked that, in the limit ǫ→ ∞, it holds

f → fLM , i.e., the local equilibria (3) are a good approximation of the exact statistics

of the system. Similarly, we find, here, that for vanishing ǫ, ρ → ρ(0), i.e. the density

reduces to the purely Hamiltonian contribution.

With (10) and (12), Eq. (9) transforms into:

ρ̇ = −Γ̇0 · ∇(ρ(0) + ǫρ(1) + ...)− ǫ(R · ∇ − κ)(ρ(0) + ǫρ(1) + ...) (14)

Moreover, if the assumption of time scales separation holds, one may wish to

decompose the dynamics of the probability density into a contribution (expressed via a

projection operator P , to be defined below in (16)) which is solely dependent on some

relevant slow variables, plus a contribution given in terms of an orthogonal projector

Q = 1 − P (with 1 the identity operator), which features the dynamics of the fast

variables. The decomposition of the dynamics of the density as induced by a specific

choice of the projector P was provided by Robertson [20]:

ρ̇ = P ρ̇+

∫ t

0

K(t, t′)ρ(t′)dt′ (15)

where the term K(t, t′)ρ(t′) includes the contribution of fluctuations of the

overwhelming majority of the fast degrees of freedom and makes Eq. (15) essentially

nonlocal in time. One may be tempted to investigate under which general conditions the

memory kernel in (15) becomes negligible. The answer is that the full dynamics of the

probability density ρ̇, in (9), can be properly approximated by the projected part P ρ̇ in

(15), for those systems characterized by a rapid decay of fluctuations of the fast degrees
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of freedom. This approximation, which is referred to in the literature as the adiabatic

approximation [21], paves the way to determine a manifold of slow variables in the

phase space. As already shown in previous works addressing the BE [12], the adiabatic

approximation, which postulates a decomposition between fast and solw variables, has

no immediate connection with the order of magnitude of the parameter ǫ. In fact, the

standard Chapman-Enskog technique, which relies on the adiabatic approximation in

order to compare (5) with (6), works properly just for ǫ ≪ 1; on the other hand, the

method discussed in [9, 12], which also disregards the contribution of the dynamics

of the fast variables in (15), was shown to correspond to an exact summation of the

Chapman-Enskog expansion and does not impose any constraint on the magnitude of

ǫ. Now, in the spirit of the standard Chapman-Enskog technique, we may assume that

the probability density ρ is a sufficiently smooth function whose time dependence is

parameterized through a set of N phase space functions 〈Aµ〉(t), with µ = 1, ..., N . We

apply, then, the chain rule (summation over repeated indices is assumed) and write:

P ρ̇ =
∞∑
j=0

ǫj
δρ(j)

δ〈Aµ〉
∂t〈Aµ〉 (16)

The dynamics of 〈Aµ〉 (provided that the boundary terms, in the integration by

parts, are negligible) is found to be given by:

∂t〈Aµ〉 =
∞∑
k=0

ǫk∂
(k)
t 〈Aµ〉 (17)

where:

∂
(k)
t 〈Aµ〉 =

∫
∇Aµ · Γ̇ρ

(k)dΓ = 〈∇Aµ · Γ̇〉
(k) (18)

with Γ̇ given by (10). Therefore, we obtain:

P ρ̇ =
∞∑

j,k=0

ǫ(j+k)∂
(k)
t ρ(j) (19)

with:

∂
(k)
t ρ(j) =

δρ(j)

δ〈Aµ〉
∂
(k)
t 〈Aµ〉 (20)

It is now time to specify the various observables 〈Aµ〉. A crucial aspect of many

nonequilibrium theories is, in fact, concerned with the definition of a proper set of

coarse-grained variables triggering the dynamics of certain phenomena of interest. In

the context of thermostatted many-particle systems, we suggest to consider the average

phase space contraction rate 〈κ〉. The latter appear to be a promising candidate, as it is

a dynamical quantity which, in the steady state, attains a constant value related, in the

thermodynamic limit, to the steady entropy production of Irreversible Thermodynamics

[22]. Then, the protocol we follow is to reconstruct the dynamics of the probability
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density by matching, at any order of ǫ, the original microscopic dynamics given by (14)

with the projected dynamics (19). Thus, we obtain the following equation:
∞∑

j,k=0

ǫ(j+k)∂
(k)
t ρ(j) = −

∞∑
l=0

ǫlΓ̇0 · ∇ρ
(l) −

∞∑
m=0

ǫ(m+1)(R · ∇ − κ)ρ(m) (21)

Since ρ(0) evolves according to purely Hamiltonian dynamics, at the first order, ǫ1,

Eq. (21) gives:

−Γ̇0 · ∇ρ
(1) − (R · ∇ − κ)ρ(0) =

δρ(1)

δ〈κ〉
〈∇κ · Γ̇0〉

(0) (22)

Equation (22) addresses and defines the first order deviation from the reference

Hamiltonian dynamics, by taking into account the effect of the external field and the

phase space contraction induced by the thermostat. A remark is in order when discussing

the derivative of the probability density ρ(k) with respect to a generic variable 〈Aµ〉.

The evaluation of the average is, in principle, performed through the knowledge of the

full probability density. This is avoided, in the Chapman-Enskog theory, by requiring

that the collision invariants are defined only through the local Maxwellians (3). In the

present context, instead, the assumption of weak coupling limit (ǫ ≪ 1) is used to

justify the equivalence: 〈Aµ〉 ≃
∑k

i=0 ǫ
i〈Aµ〉

(i). It is worth to mention that a historically

relevant approximate solution of (22), is given by the quasi-equilibrium (or maximum-

entropy) approximation. The technique employs a maximization of the Gibbs entropy,

S(t) =
∫
ρ log ρdΓ, under some given constraints, and works at full equilibrium, i.e. for

ǫ = 0 and in the limit t→ ∞ (this is, in fact, a method to derive the canonical ensemble

in equilibrium statistical mechanics, cf. Ref. [6]). Nevertheless, it is not obvious that

the technique also applies for ǫ > 0, although some authors [19, 20] consider it a valid

principle in general. Furthermore, a major drawback of this maximization method,

outside equilibrium, is that the set of variables and the corresponding constraints

are usually not known (typical candidates are the invariants of motion and quantities

prescribed by the boundary conditions). We can avoid employing this approximation,

as, due to the specific choice of variables we made, we can attempt to tackle analytically

Eq. (22). In the limit t → ∞ and for ǫ ≪ 1, we seek a solution of (22) taking the

modified Gibbs form:

ρ ≃ ρ(0) + ǫρ(1) = e−[βH0(Γ)−ǫψκκ(Γ)] (23)

where the ψκ’s are Lagrange multipliers depending on the value of the chosen parameter

〈κ〉. Let us observe that the functional form of ρ in (23) resembles the expression

proposed, through a different method, also in [23]. For the projected time derivative in

(22), one finds:

δρ(1)

δ〈κ〉
〈∇κ · Γ̇0〉

(0) ≃ ρκ(Γ)〈∇κ · Γ̇0〉
(0) ∂ψκ

∂〈κ〉(1)
(24)
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On the other hand, the computation of the microscopic time derivative,

corresponding to the left hand side of (22), gives:

Γ̇0 · ∇ρ
(1) = (Γ̇0 · ∇κ)ρψκ (25)

Then, by inserting (24) and (25) into (22), and by integrating over the whole phase

space, we obtain a differential equation for the ψκ’s:

∂ψκ

∂〈κ〉(1)
〈κ〉(1) = −ψκ[1 +O(ǫ)] (26)

Therefore, up to the first order in ǫ, the density in (23) attains the form:

ρ ≃ e
−[βH0(Γ)−ǫ

κ(Γ)

〈κ〉(1)
]

(27)

For small external fields, the expression (27) can be further linearized in the

nonequilibrium parameter ǫ, which enables us to deduce the nonequilibrium steady state

ensemble average of a generic (smooth enough) observable A for a weakly dissipative

thermostatted particle system:

〈A〉 ≃ 〈A〉eq + ǫ
〈Aκ〉eq

〈κ〉(1)
(28)

Eq. (28) is our main result, showing that the steady state average of an observable

A comprises a first order nonequilibrium correction proportional to the equilibrium

correlation function between phase space contraction rate and the observable itself.

The response formula above can be interpreted as the adiabatic limit of the Green-

Kubo formula [1], such that the fast degrees of freedom have been projected out and

the time integral of the equilibrium time-correlation function is replaced by an effective

equilibrium correlation function. Eq. (28) corresponds to a first order projection, on a

manifold of slow variables, of the FDT for deterministic dissipative particle systems.

By setting A = κ and by recalling that E = σj, with j = q〈p〉, we used Eq. (28)

to compute, for instance, the electrical conductivity σ(Ex) of a Gaussian thermostatted

periodic Lorentz gas driven by an external field Ex parallel to the x−axis. The numerical

analysis performed by Lloyd et al. in Ref.[24] shows that the σ(Ex) decreases nonlinearly

with the field strength Ex, which could not be justified in terms of standard linear

response theory and was understood as a typical nonlinear (higher order) effect. In

turn, Eq. (28) predicts, at the first order, the power law relation σ ∼ 1√
Ex

see Fig. (1).

Let us point out that our method applies, by construction, to dissipative systems, hence

the external field must not vanish. Consequently, the agreement with experimental or

numerical data is expected to be sensible in a range where the external field is finite and

not exceedingly strong (as our result is pertinent to a first order perturbation theory).

These expectations are, in fact, corroborated by the results shown in Fig. (2). This

tends to suggest, a posteriori, that, in nonequilibrium response theory for thermostatted

particle systems, the adiabatic limit stands as a plausible physical approximation.
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Figure 1. Electrical conductivity σ vs. electric field Ex.

Black dots : numerical results of Lloyd et al. [24].

Blue line: adiabatic approximation of the Liouville Equation
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Figure 2. Magnification of Fig. (1) in the range where the theory

best fits the numerical data.

4. Conclusions

We remark that the novelty of the proposed approach stems from a suitable

combination of a perturbation theory with a projection operator technique in the

context of deterministically thermostatted particle systems with nonvanishing phase

space contraction rate. Our work aimed to show that the hypothesis of a time scales

separation in a thermostatted particle system enables to express the expectation value

of an observable solely in terms of few selected relevant variables (in our case the average

phase space contraction rate) which drive the dynamics of the probability density. The

issue of determining response formulae in terms of few relevant observables is crucial

to establish a bridge between a macroscopic hydrodynamic-like description and the

underlying Liouville Equation. Alternative derivations which lead to response formulae

deduced from the exact Liouville propagator, without resorting to any projection

technique, are known [25]. We believe it is convenient to also look at approximate

formulae which might offer a complementary point of view and might be, in some cases,

of more immediate application, as we showed above in computing the conductivity
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of the Lorentz gas. It is also worth to notice that, regardless of the intensity of the

external field, for any finite field the steady state attractor has a lower dimension than

the embedding space. Thus, since the support of the steady state measure lies on the

attractor, the measure is not smooth and one has to resort to SRB measures [4]. On

the other hand, the procedure of projecting out the fast degrees of freedom, is believed

to ensure regularity to the resulting density, as also discussed in [26]. Therefore, the

suggested technique seems, also, to corroborate the applicability of the method proposed

by Vulpiani et al. in [2], without invoking unstable manifolds of Anosov systems or

introducing any noise occurring in not isolated physical systems
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[9] M. Colangeli, I.V. Karlin, M. Kröger, From hyperbolic regularization to exact hydrodynamics

for linearized Grad equations, Phys. Rev. E Vol. 75, 051204; M. Colangeli, I.V. Karlin, M.
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