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Abstract

We show that some more results from the literature are particular cases of the so-called
”invariance under twisting” for twisted tensor products of algebras, for instance a result of
Beattie–Chen–Zhang that implies the Blattner-Montgomery duality theorem.

Introduction

If A and B are (associative unital) algebras and R : B⊗A → A⊗B is a linear map satisfying
certain axioms (such an R is called a twisting map) then A ⊗ B becomes an associative unital
algebra with a multiplication defined in terms of R and the multiplications of A and B; this
algebra structure on A⊗B is denoted by A⊗RB and called the twisted tensor product of A and
B afforded by R (cf. [2], [11]).

A very general result about twisted tensor products of algebras was obtained in [8]. It states
that, if A⊗RB is a twisted tensor product of algebras and on the vector space A we have one more
algebra structure denoted by A′ and we have also two linear maps ρ, λ : A → A⊗B satisfying a
set of conditions, then one can define a new map R′ : B⊗A′ → A′⊗B by a certain formula, this
map turns out to be a twisting map and we have an algebra isomorphism A′ ⊗R′ B ≃ A⊗R B.
This result was directly inspired by the invariance under twisting of the Hopf smash product
(and thus it was called invariance under twisting for twisted tensor products of algebras), but
it contains also as particular cases a number of independent and previously unrelated results
from Hopf algebra theory, for instance Majid’s theorem stating that the Drinfeld double of a
quasitriangular Hopf algebra is isomorphic to an ordinary smash product (cf. [9]), a result of
Fiore–Steinacker–Wess from [5] concerning a situation where a braided tensor product can be
”unbraided”, and also a result of Fiore from [4] concerning a situation where a smash product
can be ”decoupled”.

The aim of this paper is to show that some more results from the literature can be regarded
as particular cases of invariance under twisting. Among them is a result from [1] concerning
twistings of comodule algebras (which implies the Blattner-Montgomery duality theorem) and a
generalization (obtained in [3]) of Majid’s theorem mentioned before, in which quasitriangularity
is replaced by a weaker condition, called semiquasitriangularity (a concept introduced in [6]).

∗Research partially supported by the CNCSIS project ”Hopf algebras, cyclic homology and monoidal cate-
gories”, contract nr. 560/2009, CNCSIS code ID−69.
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1 Preliminaries

We work over a commutative field k. All algebras, linear spaces etc. will be over k; unadorned
⊗ means ⊗k. By ”algebra” we always mean an associative unital algebra. We will denote by
∆(h) = h1 ⊗ h2 the comultiplication of a Hopf algebra H.

We recall from [2], [11] that, given two algebras A, B and a k-linear map R : B⊗A → A⊗B,
with notation R(b⊗ a) = aR ⊗ bR, for a ∈ A, b ∈ B, satisfying the conditions aR ⊗ 1R = a⊗ 1,
1R ⊗ bR = 1 ⊗ b, (aa′)R ⊗ bR = aRa

′

r ⊗ bRr
, aR ⊗ (bb′)R = aRr

⊗ brb
′

R, for all a, a′ ∈ A and
b, b′ ∈ B (where r is another copy of R), if we define on A ⊗ B a new multiplication, by
(a⊗ b)(a′ ⊗ b′) = aa′R ⊗ bRb

′, then this multiplication is associative with unit 1⊗ 1. In this case,
the map R is called a twisting map between A and B and the new algebra structure on A⊗B

is denoted by A⊗R B and called the twisted tensor product of A and B afforded by R.

Theorem 1.1 ([8]) Let A⊗R B be a twisted tensor product of algebras, and denote the multi-
plication of A by a ⊗ a′ 7→ aa′. Assume that on the vector space A we have one more algebra
structure, denoted by A′, with the same unit as A and multiplication denoted by a⊗ a′ 7→ a ∗ a′.
Assume that we are given two linear maps ρ, λ : A → A ⊗ B, with notation ρ(a) = a(0) ⊗ a(1)
and λ(a) = a[0] ⊗ a[1], such that ρ is an algebra map from A′ to A⊗R B, λ(1) = 1 ⊗ 1 and the
following relations hold, for all a, a′ ∈ A:

λ(aa′) = a[0] ∗ (a
′

R)[0] ⊗ (a′R)[1](a[1])R, (1.1)

a(0)[0] ⊗ a(0)[1]a(1) = a⊗ 1, (1.2)

a[0](0) ⊗ a[0](1)a[1] = a⊗ 1. (1.3)

Then the map R′ : B ⊗A′ → A′ ⊗B, R′(b⊗ a) = (a(0)R)[0] ⊗ (a(0)R)[1]bRa(1), is a twisting map
and we have an algebra isomorphism A′ ⊗R′ B ≃ A⊗R B, a⊗ b 7→ a(0) ⊗ a(1)b.

Given an algebra A, another algebra structure A′ on the vector space A (as in Theorem 1.1)
may sometimes be obtained by using the following result:

Proposition 1.2 ([8]) Let A,B be two algebras and R : B ⊗ A → A ⊗ B a linear map, with
notation R(b ⊗ a) = aR ⊗ bR, for all a ∈ A and b ∈ B. Assume that we are given two linear
maps, µ : B ⊗ A → A, µ(b ⊗ a) = b · a, and ρ : A → A ⊗ B, ρ(a) = a(0) ⊗ a(1), and denote
a ∗ a′ := a(0)(a(1) · a

′), for all a, a′ ∈ A. Assume that the following conditions are satisfied:

ρ(1) = 1⊗ 1, 1 · a = a, a(0)(a(1) · 1) = a, (1.4)

b · (a ∗ a′) = a(0)R(bRa(1) · a
′), (1.5)

ρ(a ∗ a′) = a(0)a
′

(0)R
⊗ a(1)Ra

′

(1), (1.6)

for all a, a′ ∈ A and b ∈ B. Then (A, ∗, 1) is an associative unital algebra.

2 The examples

2.1 Twisting comodule algebras

Let H be a finite dimensional Hopf algebra and A a right H-comodule algebra, with multipli-
cation denoted by a⊗a′ 7→ aa′ and comodule structure denoted by A → A⊗H, a 7→ a<0>⊗a<1>.
Let ν : H → End(A) be a convolution invertible linear map, with convolution inverse denoted
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by ν−1. For h ∈ H and a ∈ A, we denote ν(h)(a) = a · h ∈ A. For a, a′ ∈ A we denote
a ∗ a′ = (a · a′<1>)a

′

<0> ∈ A. Assume that, for all a, a′ ∈ A and h ∈ H, the following conditions
are satisfied:

a · 1H = a, 1A · h = ε(h)1A, (2.1)

(a · h2)<0> ⊗ (a · h2)<1>h1 = a<0> · h1 ⊗ a<1>h2, (2.2)

(a ∗ a′) · h = (a · a′<1>h2)(a
′

<0> · h1). (2.3)

Then, by [1], Proposition 2.1, (A, ∗, 1A) is also a right H-comodule algebra (with the same
H-comodule structure as for A), denoted in what follows by Aν , and moreover ν−1 satisfies the
relations (2.2) and (2.3) for Aν , that is, for all a, a

′ ∈ A and h ∈ H, we have

(ν−1(h2)(a))<0> ⊗ (ν−1(h2)(a))<1>h1 = ν−1(h1)(a<0>)⊗ a<1>h2, (2.4)

ν−1(h)(aa′) = ν−1(a′<1>h2)(a) ∗ ν
−1(h1)(a

′

<0>). (2.5)

Theorem 2.1 ([1]) There exists an algebra isomorphism Aν#H∗ ≃ A#H∗.

We will prove that Theorem 2.1 is a particular case of Theorem 1.1.
We take in Theorem 1.1 the algebra A to be the original H-comodule algebra A, the second

algebra structure A′ on A to be the comodule algebra Aν , and B = H∗. We consider A#H∗ as
the twisted tensor product A ⊗R H∗, where R : H∗ ⊗ A → A ⊗H∗, R(ϕ ⊗ a) = ϕ1 · a ⊗ ϕ2 =
a<0> ⊗ ϕ ↼ a<1>, for all ϕ ∈ H∗ and a ∈ A, where ↼ is the right regular action of H on H∗.
Define the map ρ : Aν → A#H∗, ρ(a) =

∑
i a · ei#ei := a(0)⊗a(1), where {ei} and {ei} are dual

bases in H and H∗. We will prove that ρ is an algebra map. First, by using (2.1), it is easy to
see that ρ(1A) = 1A#ε. We prove that ρ is multiplicative. For a, a′ ∈ A, we have:

ρ(a ∗ a′) =
∑

i

(a ∗ a′) · ei ⊗ ei

(2.3)
=

∑

i

(a · a′<1>(ei)2)(a
′

<0> · (ei)1)⊗ ei,

which applied on some h ∈ H on the second component gives (a · a′<1>h2)(a
′

<0> · h1). On the
other hand, we have

ρ(a)ρ(a′) =
∑

i,j

(a · ei#ei)(a′ · ej#ej)

=
∑

i,j

(a · ei)((e
i)1 · (a

′ · ej)#(ei)2e
j),

which applied on some h ∈ H on the second component gives
∑

i(a · ei)((e
i)1(e

i)2(h1) · (a
′ · h2))

=
∑

i

(a · ei)(e
i((a′ · h2)<1>h1)(a

′ · h2)<0>)

= (a · (a′ · h2)<1>h1)(a
′ · h2)<0>

(2.2)
= (a · a′<1>h2)(a

′

<0> · h1),
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showing that ρ is indeed multiplicative.
Define now the map λ : A → A⊗H∗, λ(a) =

∑
i ν

−1(ei)(a)⊗ei := a[0]⊗a[1]. First, it is obvious
that λ(1A) = 1A ⊗ ε, because ν−1 satisfies also the condition (2.1). We need to prove now that
the relations (1.1), (1.2) and (1.3) are satisfied. It is easy to prove (1.2) and (1.3), because ν−1

is the convolution inverse of ν. We prove now now (1.1). We have λ(aa′) =
∑

i ν
−1(ei)(aa

′)⊗ei,
which applied on some h ∈ H on the second component gives ν−1(h)(aa′). On the other hand,
we have

a[0] ∗ (a
′

R)[0] ⊗ (a′R)[1](a[1])R = a[0] ∗ (a
′

<0>)[0] ⊗ (a′<0>)[1](a[1] ↼ a′<1>)

=
∑

i,j

ν−1(ei)(a) ∗ ν
−1(ej)(a

′

<0>)⊗ ej(ei ↼ a′<1>),

which applied on some h ∈ H on the second component gives ν−1(a′<1>h2)(a) ∗ ν
−1(h1)(a

′

<0>),
and this is equal to ν−1(h)(aa′) because of the relation (2.5). Thus, all hypotheses of Theorem
1.1 are fulfilled, so we obtain the twisting map R′ : H∗ ⊗Aν → Aν ⊗H∗, which looks as follows:

R′(ϕ⊗ a) = (a(0)R)[0] ⊗ (a(0)R)[1]ϕRa(1)

= a(0)<0>[0]
⊗ a(0)<0>[1]

(ϕ ↼ a(0)<1>
)a(1)

=
∑

i

(a · ei)<0>[0]
⊗ (a · ei)<0>[1]

(ϕ ↼ (a · ei)<1>)e
i

=
∑

i,j

ν−1(ej)((a · ei)<0>)⊗ ej(ϕ ↼ (a · ei)<1>)e
i,

which applied on some h ∈ H on the second component gives
∑

i ν
−1(h1)((a · ei)<0>)ϕ((a · ei)<1>h2)e

i(h3)

= ν−1(h1)((a · h3)<0>)ϕ((a · h3)<1>h2)

(2.2)
= ν−1(h1)(a<0> · h2)ϕ(a<1>h3)

= ν−1(h1)(ν(h2)(a<0>))ϕ(a<1>h3)

= a<0>ϕ(a<1>h).

Thus, we obtained R′(ϕ⊗ a) = a<0>⊗ϕ ↼ a<1>, for all ϕ ∈ H∗ and a ∈ A, that is R′ = R and
Aν ⊗R′ H∗ = Aν#H∗, and so Theorem 1.1 provides the algebra isomorphism Aν#H∗ ≃ A#H∗,
a⊗ ϕ 7→ a(0) ⊗ a(1)ϕ =

∑
i a · ei ⊗ eiϕ, which is exactly Theorem 2.1.

2.2 External homogenization

Let H be a Hopf algebra and A a right H-comodule algebra, with comodule structure denoted
by a 7→ a(0) ⊗ a(1). We also denote a(0)⊗ a(1) ⊗ a(2) = a(0)(0) ⊗ a(0)(1) ⊗ a(1) = a(0)⊗ a(1)1 ⊗ a(1)2 .

The external homogenization of A, introduced in [10] and denoted by A[H], is an H-comodule
algebra structure on A ⊗H, with multiplication (a ⊗ h)(a′ ⊗ h′) = aa′(0) ⊗ S(a′(1))ha

′

(2)h
′. By

[10], A[H] is isomorphic as an algebra to the ordinary tensor product A⊗H.
We want to obtain this as a consequence of Theorem 1.1, actually, we will see that the data

in Theorem 1.1 lead naturally to the multiplication of A[H]. Indeed, we will apply Theorem
1.1 to the following data: A is the original comodule algebra we started with, B = H, R is
the usual flip between A and H, A′ = A as an algebra, ρ is the comodule structure of A and

4



λ : A → A ⊗ H is given by λ(a) = a(0) ⊗ S(a(1)) := a[0] ⊗ a[1]. It is very easy to see that the
hypotheses of Theorem 1.1 are fulfilled, so we obtain the twisting map R′ : H ⊗ A → A ⊗ H

given by

R′(h⊗ a) = (a(0))[0] ⊗ (a(0))[1]ha(1)

= a(0)(0) ⊗ S(a(0)(1) )ha(1)

= a(0) ⊗ S(a(1))ha(2),

and obviously A⊗R′ H = A[H]. Thus, as a consequence of Theorem 1.1, we obtain the algebra
isomorphism from [10]: A[H] ≃ A⊗H, a⊗ h 7→ a(0) ⊗ a(1)h.

2.3 Doubles of semiquasitriangular Hopf algebras

Let H be a finite dimensional Hopf algebra and r ∈ H ⊗H an invertible element, denoted by
r = r1⊗ r2, with inverse r−1 = u1⊗u2. Consider the Drinfeld double D(H), which is the tensor
productH∗⊗H endowed with the multiplication (ϕ⊗h)(ϕ′⊗h′) = ϕ(h1 ⇀ ϕ′ ↼ S−1(h3))⊗h2h

′,
for all h, h′ ∈ H and ϕ,ϕ′ ∈ H∗, where ⇀ and ↼ are the regular actions of H on H∗.

Define the maps

f : D(H) → H∗ ⊗H, f(ϕ⊗ h) = ϕ ↼ S−1(u1)⊗ u2h,

g : H∗ ⊗H → D(H), g(ϕ ⊗ h) = ϕ ↼ S−1(r1)⊗ r2h.

It is obvious that f and g are linear isomorphisms, inverse to each other, so we can transfer the
algebra structure of D(H) to H∗⊗H via these maps. It is natural to ask under what conditions
on r this algebra structure on H∗ ⊗ H is a twisted tensor product between H and a certain
algebra structure on H∗.

We claim that this is the case if r satisfies the following conditions:

∆(r1)⊗ r2 = R1 ⊗ r1 ⊗R2r2, (2.6)

r1 ⊗∆(r2) = R1r1 ⊗ r2 ⊗R2, (2.7)

R1 ⊗R2
2r

1 ⊗R2
1r

2 = R1 ⊗ r1R2
1 ⊗ r2R2

2, (2.8)

where R1 ⊗ R2 is another copy of r. We will obtain this result as a consequence of Theorem
1.1, combined with Proposition 1.2. Note that the above conditions are part of the axioms of
a so-called semiquasitriangular structure (cf. [6]), and that if r satisfies also the other axioms
in [6] then it was proved in [3] that D(H) is isomorphic as a Hopf algebra to a Hopf crossed
product in the sense of [7].

We take A = H∗, with its ordinary algebra structure, B = H, and R : H ⊗H∗ → H∗ ⊗H,
R(h⊗ ϕ) = h1 ⇀ ϕ ↼ S−1(h3)⊗ h2, hence A⊗R B = D(H). Then define the maps

µ : H ⊗H∗ → H∗, µ(h⊗ ϕ) = h · ϕ := h1 ⇀ ϕ ↼ S−1(h2),

ρ : H∗ → H∗ ⊗H, ρ(ϕ) = ϕ(0) ⊗ ϕ(1) := ϕ ↼ S−1(r1)⊗ r2,

λ : H∗ → H∗ ⊗H, λ(ϕ) = ϕ[0] ⊗ ϕ[1] := ϕ ↼ S−1(u1)⊗ u2.

The corresponding product ∗ on H∗ provided by Propositin 1.2 is given by

ϕ ∗ ϕ′ = ϕ(0)(ϕ(1) · ϕ
′)

= (ϕ ↼ S−1(r1))(r2 · ϕ′)

5



= (ϕ ↼ S−1(r1))(r21 ⇀ ϕ′ ↼ S−1(r22)).

We need to prove that the relations (1.4)–(1.6) hold. We note first that as consequences of (2.6)
and (2.7) we obtain ε(r1)r2 = r1ε(r2) = 1 = ε(u1)u2 = u1ε(u2), hence we have ρ(ε) = λ(ε) =
ε⊗ 1 and also we obtain immediately 1 · ϕ = ϕ and ϕ(0)(ϕ(1) · ε) = ϕ, for all ϕ ∈ H∗, thus (1.4)
holds. We prove now (1.5). We compute:

h · (ϕ ∗ ϕ′) = h1 ⇀ (ϕ ∗ ϕ′) ↼ S−1(h2)

= (h1 ⇀ ϕ ↼ S−1(h4r
1))(h2r

2
1 ⇀ ϕ′ ↼ S−1(h3r

2
2)),

ϕ(0)R(hRϕ(1) · ϕ
′) = (ϕ ↼ S−1(r1))R(hRr

2 · ϕ′)

= (h1 ⇀ ϕ ↼ S−1(h3r
1))(h2r

2 · ϕ′)

= (h1 ⇀ ϕ ↼ S−1(h4r
1))(h2r

2
1 ⇀ ϕ′ ↼ S−1(h3r

2
2)), q.e.d.

In order to prove (1.6), we prove first the following relation:

r1 ⊗ r21 ⊗ r23R
1 ⊗ r22R

2 = R1
2r

1 ⊗ r21 ⊗R1
1r

2
2 ⊗R2. (2.9)

We compute (denoting by r = R
1 ⊗R

2 = ρ1 ⊗ ρ2 two more copies of r):

r1 ⊗ r21 ⊗ r23R
1 ⊗ r22R

2 (2.7)
= R

1r1 ⊗ r2 ⊗R
2
2R

1 ⊗R
2
1R

2

(2.8)
= R

1r1 ⊗ r2 ⊗R1
R

2
1 ⊗R2

R
2
2

(2.7)
= R

1ρ1r1 ⊗ r2 ⊗R1ρ2 ⊗R2
R

2,

R1
2r

1 ⊗ r21 ⊗R1
1r

2
2 ⊗R2 (2.6)

= R
1r1 ⊗ r21 ⊗R1r22 ⊗R2

R
2

(2.7)
= R

1ρ1r1 ⊗ r2 ⊗R1ρ2 ⊗R2
R

2,

and we see that the two terms coincide. Now we prove (1.6); we compute:

ρ(ϕ ∗ ϕ′) = (ϕ ∗ ϕ′) ↼ S−1(R1)⊗R2

= (ϕ ↼ S−1(R1
2r

1))(r21 ⇀ ϕ′ ↼ S−1(R1
1r

2
2))⊗R2,

ϕ(0)ϕ
′

(0)R
⊗ ϕ(1)Rϕ

′

(1) = (ϕ ↼ S−1(r1))(ϕ′ ↼ S−1(R1))R ⊗ r2RR
2

= (ϕ ↼ S−1(r1))(r21 ⇀ ϕ′ ↼ S−1(r23R
1))⊗ r22R

2,

and the two terms are equal because of (2.9).
Thus, we can apply Proposition 1.2 and we obtain that (H∗, ∗, ε) is an associative algebra,

which will be denoted in what follows by H∗.
We will prove now that the hypotheses of Theorem 1.1 are fulfilled, for A′ = H∗. Note

first that the relations (1.4) and (1.6) proved before imply that ρ is an algebra map from H∗

to H∗ ⊗R H. We have already seen that λ(ε) = ε ⊗ 1, so we only have to check the relations
(1.1)–(1.3). To prove (1.1), we compute (we denote r−1 = U1 ⊗U2 = U

1 ⊗U
2 some more copies

of r−1):

λ(ϕϕ′) = (ϕϕ′) ↼ S−1(u1)⊗ u2

6



= (ϕ ↼ S−1(u12))(ϕ
′ ↼ S−1(u11))⊗ u2

(2.6)
= (ϕ ↼ S−1(u1))(ϕ′ ↼ S−1(U1))⊗ u2U2,

ϕ[0] ∗ (ϕ
′

R)[0] ⊗ (ϕ′

R)[1](ϕ[1])R = (ϕ ↼ S−1(u1)) ∗ (ϕ′

R ↼ S−1(U1))⊗ U2u2R

= (ϕ ↼ S−1(u1)) ∗ (u21 ⇀ ϕ′ ↼ S−1(U1u23))⊗ U2u22

= (ϕ ↼ S−1(r1u1))(r21u
2
1 ⇀ ϕ′ ↼ S−1(r22U

1u23))⊗ U2u22
(2.7)
= (ϕ ↼ S−1(r1u1U1))(r21u

2 ⇀ ϕ′ ↼ S−1(r22U
1
U
2
2))⊗ U2

U
2
1

(2.8)
= (ϕ ↼ S−1(r1u1U1))(r21u

2 ⇀ ϕ′ ↼ S−1(r22U
2
1U

1))⊗ U
2
2U

2

(2.7)
= (ϕ ↼ S−1(r1U1))(ϕ′ ↼ S−1(r2U2

1U
1))⊗ U

2
2U

2

(2.7)
= (ϕ ↼ S−1(u1))(ϕ′ ↼ S−1(U1))⊗ u2U2,

and we see that the two terms are equal. The remaining relations (1.2) and (1.3) are very easy
to prove and are left to the reader. Thus, we can apply Theorem 1.1 and we obtain the twisting
map R′ : H ⊗H∗ → H∗ ⊗H,

R′(h⊗ ϕ) = (ϕ(0)R)[0] ⊗ (ϕ(0)R )[1]hRϕ(1) = h1 ⇀ ϕ ↼ S−1(u1h3r
1)⊗ u2h2r

2,

and the algebra isomorphism H∗ ⊗R′ H ≃ H∗ ⊗R H = D(H), given by

ϕ⊗ h 7→ ϕ(0) ⊗ ϕ(1)h = ϕ ↼ S−1(r1)⊗ r2h,

which is exactly the linear isomorphism g defined before. Thus, we have proved that if r satisfies
the conditions (2.6)–(2.8) then D(H) is isomorphic as an algebra to a twisted tensor product
between H∗ and H.
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