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ABSTRACT

The total embedding distributions of a graph is consisted of the orientable embeddings and non-
orientable embeddings and have been know for few classes of graphs. The genus distribution of
Ringel ladders is determined in [Discrete Mathematics 216 (2000) 235-252] by E.H. Tesar. In
this paper, the explicit formula for non-orientable embeddings of Ringel ladders is obtained.

Key words: Graph embedding; Ringel ladders; Overlap matrix; Chebyshev polynomials;
2000 Mathematics Subject Classification: 05C10, 30B70, 42C05

1. BACKGROUND

One enumerative aspect of topological graph theory is to count genus distributions of a graph.
The history of genus distribution began with J. Gross in 1980s. Since then, it has been attracted
a lot of attentions, for the details, we may refer to [1, 8, 9, 10, 11, 13, 16, 17, 19, 22, 26, 28,
31, 32, 33, 34, 35, 36, 37, 38] etc (We only list a few). However, for the total embedding
distributions, only few classes are known. For example, Chen, Gross and Rieper [2] computed
the total embedding distribution for necklaces of type (r,0), close-end ladders and cobblestone
paths, Kwak and Shim [21] computed for bouquets of circles and dipoles. In [3], Chen, Liu
and Wang calculated the total embedding distributions of all graphs with maximum genus 1.
Furthermore, in [4], Chen, Mansour and Zou obtained explicit formula for total embedding
distributions for the necklaces of type (r, s), closed-end ladders and cobblestone path.

It is assumed that the reader is somewhat familiar with the basics of topological graph theory
as found in Gross and Tucker [12]. A graph G = (V(G), E(G)) is permitted to have both loops
and multiple edges. A surface is a compact closed 2-dimensional manifold without boundary.
In topology, surfaces are classified into O,,, the orientable surface with m(m > 0) handles and
N,,, the nonorientable surface with n(n > 0) crosscaps. A graph embedding into a surface
means a cellular embedding.

A spanning tree of a graph G is a tree on its edges has the same order as G. The number
co-tree edges of a spanning tree of G is called the Betti number, B(G), of G. A rotation at a
vertex v of a graph G is a cyclic order of all edges incident with v. A pure rotation system P
of a graph G is the collection of rotations at all vertices of G. A general rotation system is a
pair (P, \), where P is a pure rotation system and A is a mapping E(G) — {0,1}. The edge
e is said to be twisted (respectively, untwisted) if A(e) = 1 (respectively, A(e) = 0). It is well
known that every orientable embedding of a graph G can be described by a general rotation
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system (P, \) with A(e) = 0 for all e € E(G). By allowing A to take the non-zero value, we
can describe nonorientable embeddings of G, see [2, 30] for more details. A T-rotation system
(P, A) of G is a general rotation system (P, A) such that A(e) =0, for all e € E(T).

Theorem 1.1. (see [2, 30]) Let T be a spanning tree of G and (P, \) a general rotation system.
Then there exists a general rotation system (P/, X) such that

(1) (P',\') yields the same embedding of G as (P,)), and
(2) X (e) =0, for all e € E(T).

Two embeddings are considered to be the same if their T-rotation systems are combinatorially
equivalent. Fix a spanning tree T of a graph G. Let ®Z be the set of all T-rotation systems of

G. It is known that
05 =29 [ (do—1).
veV(G)
Suppose that in these |®%| embeddings of G, there are a;, i = 0,1,..., embeddings into ori-
entable surface O; and b;, j = 1,2,..., embeddings into nonorientable surface N;. We call the

polynomial
e . e .
IE(xy) = aiw' + )by
i=0 j=1

the T'-distribution polynomial of G. By the total genus polynomial of G, we shall mean the

polynomial
Ia(z,y) = > gix' + > _ firf,
i=0 i=1

where g; is the number of embeddings (up to equivalence) of G into the orientable surface O; and
fi is the number of embeddings (up to equivalence) of G into the nonorientable surface N;. We
call the first (respectively, second) part of Ig(x,y) the genus polynomial (respectively, crosscap
number polynomial) of G and denoted by g (z) = Y 0, gix® (vespectively, fa(y) = Yooy fiyh).
Clearly, Ig(x,y) = ga(z) + fa(y). This means the number of orientable embeddings of G is
[I,c(dy—1)!, while the number of non-orientable embeddings of G is (2806 1) [Toeq(do—1)
Let T be a spanning tree of G and (Pl, /\l) be a T-rotation system. Let e1,ez,...,eg(g) be the
cotree edges of T. The overlap matriz of (P',\') is the 8 x 8 matrix M = [m;;] over GF(2)
such that m;; = 1 if and only if either ¢ # j and the restriction of the underlying pure rotation

system to T' + e; + e; is nonplanar, or ¢ = j and e; is twisted. The following theorem due to
Mohar.

Theorem 1.2. (see [24]) Let (P, \) be a general rotation system for a graph, and let M be
the overlap matrixz. Then the rank of M equals twice the genus, if the corresponding embedding
surface is orientable, and it equals the crosscap number otherwise. It is independent of the
choice of a spanning tree.

An n-rung closed-end ladder L, can be obtained by taking the graphical cartesian product of
an n-verter path with the complete graph Ks, and then doubling both its end edges. Figure 1
presents a 4-rung closed-end ladder.

Ringel ladders, R,, are the graphs used by Ringel and Youngs in their proof of the Heawood
Map Coloring Theorem. In fact, A Ringel ladder, R,,, can be formed by subdividing the end-
rungs of the closed-end ladder, L,,, and adding an edge between these two new vertices. Figure
2 shows the Ringel ladder Rjy.
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FI1GURE 1. The 4-rung closed-end ladder L,

8

FIGURE 2. The Ringel ladder R4

2. HOMOGENEOUS RECURRENCE RELATION AND CHEBYSHEV POLYNOMIALS

To begin with the discussion, we give some concepts of the n-th Chebyshev polynomials of
the second kind which is related to the solution of the recurrence relation. Let the recurrence
function U, (z) be

Un(z) = 22Up_1(z) — Up—2(x)

with the initial conditions Uyp(z) = 1, Uy (x) = 2z, then we derived the n-th Chebyshev polyno-
mials with the second kind U, (x) (see [27]). For instance, Us(x) = 42? — 1, Uz(z) = 8z — 4x,
Us(r) = 162* — 1222 + 1. Moreover, we have the identity that

[n/2]
) AEED M (A [SIERES
k=0

Now, we will build the relation between the recurrence relation and the Chebyshev polynomials

with the second kind. Let P,(z) = > Cp(m)z™, satisfy the following
m=0
Po(z) = a1(2) Pa-1(2) + a2(2) Pr—2(2),

q
where a;(z) = Y a;, 12" for i = 1,2. and the initial conditions Py(z) = co, and Pi(z), Pa(z)

can be derived b_y the initial values of Cy,(m).
Let Qn(z) Pn(2) , then it is easy to verify that

T Waz2)i"

A= 1B o) -0z
Qn(2) ml_cgn,() Qn_a(2)
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with the initial conditions Qo(z) = Py(z) = ¢o, Q1(z) = Plf(z) and Q2(z) = P2(2). Using the

as(z)i —az(z)"

fact that Up(x) = 1, Uy(x) = 2z, Us(x) = 42 — 1, by induction on n = 0, 1,2, we obtain that

a1(z) a1(z) a1(z)
2 n(2) = AU, (———=— ————— )4+ CU,—o(——=),
where A, B, and C are determined by the initial conditions.
Thus we have

3 Pule) = <mz’>mvn<%> + BU"*(%) i CU"‘“%)'

)+ BU,—1(

Using the fact that

We can derive that

() Vi) Ul = 3 (" Y

2y/as(z)i >0

Since a1(z) is a polynomial of degrees less than g, then (a;(z))" "2/ can be expressed as the
type of power series. Plug the above formula into (3) and comparing the coefficient 2™ in both
sides and we can obtain the explicit formulae C,,(m) for 0 < m < n.

3. TOTAL EMBEDDING DISTRIBUTIONS OF RINGEL LADDERS

3.1. The rank-distribution polynomial of Closed-end ladders. we adopt the notations
of [1], the overlap of matrix of Closed-end ladders L, has the following form M XY ( see [1]
for more details).

Let X = (z1,72,...,2,) € (GF(2))" and Y = (y1,92,--.,Yn—1) € (GF(2))"~!. We define the
tridiagonal matrix M;5Y as

Tl Y1
Y1 T2 Yo 0
MXY = Y2 T3 Y3
0 Yn—2 Tn-1 Yn—1

Yn—1 T

Furthermore, we define .%, ={M;>Y | X € (GF(2))" and Y € (GF(2))"~'}, which is the set of
all matrices over GF(2) that are of the type M X*Y". We define the rank-distribution polynomial
to be the polynomial %, (2) = > 7, D, (j)2%, where D, (j), 7 = 0,1,...,n, is the number of
different assignment of the variables z;,y;, where j =1,2,--- ,nand k =1,2,--- ,n —1, for
which the matrix MXY in %, has rank j. Similarly, Let &, = {M2Y | Y € (GF(2))""'}, and
On(2) =350 On (7)27 be the rank-distribution polynomial of 0, ;where O, (5), j =0,1,...,n,
is the number of different assignment of the variables yi, where k € {1,2,...,n — 1}, for which
the matrix M) in <7, has rank j.

Lemma 3.1. (see [4]) The polynomial O, (z) satisfies the recurrence relation
On(2) = On_1(2) + 2220, _5(2)
with the initial conditions 01(z) =1 and Oz(z) = 2% + 1.
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Theorem 3.2. (see [1]) For alln > 1,
Ouz) =Y (” _.j) 2 2% % (“ -2 _j)2j 204,
>0 7 o
Corollary 3.3. For all 1 >m < [Z].

On(2m+1) =0,
_(n—m m_(n—m—=1\ .
o= ("2 ()

Lemma 3.4. (see [1]) The polynomial £,(z) satisfies the recurrence relation
Zn(2) = (1 +22)%0_1(2) + 4222, 2(2)

with the initial conditions £ (z) = 1+ z and La(z) = 42° + 32 + 1.

Theorem 3.5. (see [1]) For alln > 1,

. 1422\ i 1422\ 1 1422
2H@_@”)P%(4n )+2mﬁ( Mz) 2%*( uz>y

where Us(t) is the s-th Chebyshev poynomial of the second kind and i* = —1.

Corollary 3.6. (see [1]) For alln >1 and 0 <m < n,

/2N 2 (/2 N 19
—9om __om—1
v =23 (") ) - S (T (E)

7=0 7=0 J
[(m—2)/2] . .
L gm-1 Z <n—2—j><n—2—2j)'
= j n—m

3.2. The overlap matrix of Ringel ladders. We adopt the same notation used by Ringel
[27, p.17]. A cubic graph at each vertex has two cyclic orderings of its neighbors. One of
these two cyclic orderings is denoted as clockwise and the other counterclockwise. We color the
vertex black, if that vertex has the clockwise ordering of its neighbors, otherwise, we will color
the counterclockwise vertices white. This will bring convenient to embed a cubic graph into
surfaces, as we can draw an imbedding on the plane and only need to color the vertices black
and white.

Definition 3.7. An edge is called matched if it has the same color at both ends, otherwise it
is called unmatched.

We fix a spanning tree T of R,_; shown as the thicker lines in Figure 3, that is to say, the
cotree edges are e, a1, ag, - ,Gn.

Property 3.8. Two cotree edges e and a;, for i = 1,2,--- ,n, overlap if and only if the edge
¢; s unmatched.

Property 3.9. Two cotree edges a; and a;y1,fori=1,2,--- ,n—1, overlap if and only if the
edge b; is unmatched.
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uz 2wz 0wy Up—1 """ U,

FIGURE 3.

It is easy to see that the overlap matrix of R,,—; has the following form.

Zo Z1 zZ9 z3 N Zn—1 Zn

21 1 Y1

Z2 Y1 T2 Y2 0

X,Y,Z .
Mn+1 = z3 Y2 I3 . N
Yn—2
Zn—1 0 Yn—2 Tp—1 Yn—1
Zn Yn—1 T

where X = (z9,21,...,2,) € (GF2)", Y = (y1,¥2,---,Yn-1) € (GF(2))"! and Y =
(21,225, 2n) € (GF(2))"1. Note that x9 = 1 if and only if the edge e is twisted, z; = 1 if
and only if the edge a; is twisted, for all ¢ = 1,2,...,n, y; = 1 if and only if b; is unmatched.
forall j =1,2,...,n—1, and z; = 1 if and only if ¢; is unmatched, for all k =1,2,...,n.

Property 3.10. For a fized matriz of the form Mfflf’z, there are exactly 2 different T-rotation

systems corresponding to that matrix.

. . X,Y,Z i
Proof. Given a matrix M;/7"”, the values of 21, 22, , 2, and y1, %2, -+ , yn—1 are determined.

e z; = (. If we color the vertex v; black, by Property 3.8, the color of vs is black. Since the
values of 22, -+, 2, and y1,¥y2, - ,Yn—1 are given, by Property 3.8 and Property 3.9,
all the colors of vg, ug, -+ , vy, Up, Vn41 are determined. That is to say, all the rotations
of vertices of R,, is determined. Otherwise the vertex v; is colored white, by Property
3.8, the color of vs is also white, by the values of z3,--- , 2, and y1,y2, -+ ,yn—1 and
by Property 3.8 and Property 3.9, the color all vertices of R,, is determined.

e z; = 1, Similar discuss like the case z; = 0, the details are omitted.

O

Now, we denote %Z,+1 be the set of all matrices over GF(2) that are of the form Mf_:lfz The
we calculate the rank distribution of the set %, 1.

Let Zp1(2) = Zyi& Cn11(5)27 be the rank-distribution polynomial of the set %, 1. In other
words, for j =0,1,...,n+ 1, C,t1(j) is the number of different assignment of the variables z;,
i=0,1,--- . n,yx, k=1,2,--- ,n—1,and z, [ =1,2,--- ,n for which the matrix Mf_:lfz in

Hp+1 has rank j.
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Similarly, Let 2,41 be the set of all matrices over GF(2) that are of the form MSJ;);’Z. The
we calculate the rank distribution of the set £2,,1. Let 2, 1(z) = Z?;rg D, 11(j)27 be the
rank-distribution polynomial of the set @, 1. In other words, for j =0,1,...,n+1, Dp41(j) is
the number of different assignment of the variables yx, k =1,2,--- ,n—1,and z;, [ =1,2,--- |n

for which the matrix Mno _{I’Z in #,41 has rank j.

Lemma 3.11. The polynomial &, (z) (n > 3) satisfies the recurrence relation
(5) Proi1(2) = Po(2) + 822 P, _1(2) + 21220, 1 (2).

with the initial condition Py(z) = 22 +1, P3(2) = 722+ 1 and P4(z) = 122* +1922 + 1 where
On—1(z) is rank-distribution polynomial of closed-end ladders Ly _o.

Proof. To obtain the relation between &, 11(z) and 2, (z), we consider the four different ways
to assign the variables y,—1 and 2z, in the matrix MZ+Zl
Case 1: y,—1 =0.
e Subcase 1: z, = 0. Then the rank of MZ+Zl is the same as the upper left n x n
submatrix, which is a matrix of the form M}*Z?. We conclude that this case contributes
to the polynomial &, 11(z) by a term 2,(z).
e Subcase 2: z, = 1. It is easy to sea that, no matter what assignments of the variables

21,22, , Zn—1, We can transform M};rzl to the following form.
0 0 0 O e 0 1
0 0 wun
0 Y1 0 Y2
My =120 y2 0 . ;
: : Yn—2
0 Yn—2 0 0
1 0 0

We firstly delete the first column and the last column then delete the first row and the last row
of My, then we obtain a matrix which is a overlap matrix of closed ladders L,,_5. Since there
are 2"~ ! different assignments of the variables 21, 22, - - , Zn—1, it contributes to the polynomial
Pri1(2) by a term 271220, 4 (2).

Case 2:y,_1 = 1. If z, = 1, we first add the last row to the first low, then add the last column
to the fist column. A similar discussion for y,,_2 and z,_1, we transform M:;Lzl to the following
form.

0 Z1 zZ2 Zn—2 0 0
2 0w

Z9 Y1 0

M = . s
Yn—3
Zn—2 Yn—3 0 0

0 0 0 1
0 1 0

Note that the upper left (n —1) x (n — 1) submatrix of Ms, which is a matrix of the form MZ_Zl
There are 23 different assignments of the variables 9, _2, z,_1 and z, in the matrix M}l/ 2 In
this case, it contributes to the polynomial &2, 1(z) by a term 8222, (). O
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Lemma 3.12. The polynomial %,(z) (n > 3) satisfies the recurrence relation
(6) Rpi1(2) = (42 4+ 1)RBn(2) +162°R0_1(2) +2"2° L0 1(2).

with the initial condition %o(z) = 422 + 32 + 1, B3(z) = 282° + 2822 + 72 + 1, where £, _1(2)
s rank-distribution polynomial of closed-end ladders L,,_s.

Proof. To obtain the relation between %,,11(z) and %, (z), we consider the eight different ways
to assign the variables x,,, y,—1 and z, in the matrix Miil’ .
Case 1: z,, = 0.
e Subcase 1: y,—1 = 2z, = 0. Then the rank of Mfflf’z is the same as the upper left
n x n submatrix, which is a matrix of the form MY, We conclude that this case
contributes to the polynomial %, 1(z) by a term %, (z).
e Subcase 2: y,_1 = z, = 1. We first add the last row to the first low, then add the last
column to the fist column. If z,,_1; = 1, we add the last column to the n-th column. A

.. . . XY.Z .
similar discussion for y,—o and z,_1, we transform M;7"” to the following form.

i) z1 ) N Zn—2 0 0
21 1 Y1

22 Y1 T2

M= ;
Yn—3
Zn—2 Yn—3 Tn—2 O
0 0 0 1
0 1 0

Note that the upper left (n — 1) x (n — 1) submatrix, which is a matrix of the form
Mf_”{’z. There are 23 different assignments of the variables ,_1, yn—2 and z,_1, in
these case it contributes to the polynomial %,,11(z) by a term 822%,,_1(z).

e Subcase 3: y,_1 = 1,z, = 0. Similarly discuss like subcase 2, it contributes to the
polynomial %,,11(z) by a term 822%,,_1(z).
e Subcase 4: y,_1 = 0,2, = 1. It is easy to sea that, no matter what assignments of

the variables xq, 21, 22, , Zn—1, Wwe can transform Mr)fﬁ/’z to the following form.
0 0 0 O e 0 1
0 1w
0 y1 22 w2
M, = 0 Y2 T3 )
: Yn—2
0 Yn—2 Tn-1 0
1 0 0

We firstly delete the first column and the last column then delete the first row and the last
row of Mj, then we obtain a matrix which is a overlap matrix of closed ladders L,,_o. Since
there are 2" different assignments of the variables zq, 21,22, -+, 2n—1, it contributes to the
polynomial %Z,,11(z) by a term 2"22.%,_1(z).

Case 2: z, = 1. If z,, = 1, we first add the last column to the first column then add the last
row to the first row. Similarly, if y,—1 = 1, we add the last column to the n-th column and add
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the last row to the n-th row. As last we can transfer the matrix Mr)fﬁ/’z to the matrix My of
following form.

Zo zZ1 Z9 z3 . Zn—1 0
21 1 W%
22 Yy T2 Y2

Ms = Z3 Y2 w3 )
Yn—2 O
Zn—1 Yn—2 Tp—1 O
0 0 1

Note that the upper left n x n submatrix of My, which is a matrix of the form MXY:Z. There
are 22 different assignments of the variables y,_1 and z, in the matrix Mf Y>Z Tn this case, it
contributes to the polynomial %, 1(z) by a term 42%,(z). O

Theorem 3.13. For alln > 2,

1 2241 1 1722 -1 1
gn =(2v2iz)" Un - n— + n—2\7T"" =~
(2) =( \/_ZZ) { (4\/512) 4/2iz 1(4\/§iz 1622 2(4\/§zz)}
+2"71220,_1(2).

where Us(t) is the s-th Chebyshev poynomial of the second kind, i*> = —1 and O, _1(z) is rank-
distribution polynomial of closed-end ladders Ly _o.

Proof. Note that

(7) Ppi1(2) = Pp(2) + 822D, _1(2) + 2" 1220, 1 (2).
We first consider the homogeneous recurrence relation part of (11).

(8) Pi1(2) = P(2) + 822 P, _1(2).

By the method of subsection 2, we have a solution of (12).

. ai(z) a1(z) a1(2)
P, (2) = (Waz(2))" < AU, (——— n—1(—F—= n—2(—F——
9) (2) = (Vaz(2)i) { Un(3 72(2)1.)+BU (5 ag(z)i>+CU (5 72(2)2.)}
Now, let Y,,(z) = 2" f(2)0,(z) be one special solution of &, (z), plug it into (11), using the
relation

On(2) = (14 22)0,_1(2) + 4220, _5(2),

it leads to
Yo (2) =2""1220, 1(2) = Z 27710, 1 (m)z™ 2.
m>0
Thus,
(10)

) + BU,—1( )+ CU,—o( +2"71220, 1 (2).

n 1 1 1
Po(z) = (2V2zi) {Un(m 7750 m)}
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Plug the initial values H5(z), ¥5(z) into (14), it follows that

—822{(2(2\/1§iz)+B) ﬁ+(0—1)}+2z2:z2+1

~16v3i* { (A + B) (—gk — D)+ 552)(C - D +422(2 +1) =722 + 1.

2V/2iz 2v/2iz
By simple computation, we immediately obtain
7—22—1 71722—1
42z 1622

Then according to the identity (1), the formula (14) is as follows

Pu(x) =3 <”;j> (822)7 — 22—;1 5 <”_]1 _j) (822)

720 3>0
1722 —1 —2—3 .
- ZT Z <” ; j> (822) 4271220, (2).
j=0
Comparing the coefficient of 2™ in both sides, thus for all n > 2 and 0 < m < n, we have the
following result.

Theorem 3.14. For alln > 2,
n 1+4z 2224+ 72+1 1+4z 3422 — 2 —1 1+4z
Fn(2) =(428)"  Un( ) — Un—1( )+ 3 n—a( )
32z
+2"22.%, 1(2).

where Ug(t) is the s-th Chebyshev poynomial of the second kind, i* = —1 and £,_1(z) is
rank-distribution polynomial of closed-end ladders L, _o.

Proof. Note that

8iz 8iz 81z 81z

(11) R (2) = (42 + DRp_1(2) + 162°R0_o(2) + 2" 1222, _o(2).
We first consider the homogeneous recurrence relation part of (11).
(12) R (2) = (42 + 1) Rp_1(2) + 1622 %, _»(2).

By the method of subsection 2, we have a solution of (12).

(13)  Fulz) = (Varl2)i)" {AUn(%) B CUn—2<#¢%),->}

Now, let Y,,(2) = 2" f(2)-%.(%) be one special solution of %, (z), plug it into (11), using the
relation
Ln(2) = (14+22) L, 1(2) + 42228, 5(2),

it leads to f(z) = ﬁﬁzizzl)w

Thus we obtain a special solution of non-homogeneous recurrence (11)

Yo(2) = 272220 1(2) = ) 2"Cpy(m)2™ 2.

m>0
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Thus,

(14)  Rn(2) = (4z0)" {Un( )} +2"22. %, 1(2).

Plug the initial values %s(z), Z3(z) into (14), it follows that

—1622{(2(&2) + B) Un () + C — 1} +422(1 4+ 2) =422 + 32 + 1

8iz 8iz

—64i23 {(2(3E2) + B) Ua(1£22) + Uy (1E22)(C — 1)} 4+ 82%(42% + 32 + 1)
= 2823 + 2822 + Tz + 1.

By simple computation, we immediately obtain

—222—T72-1
8iz

73422—2—1

B= » O= 3222

Then according to the identity (1), the formula (14) is as follows

2224+ 7241
- X

(19 i) =3 (") ke aa - B

>0\ J

> (" —i- j) (14 42)""12% (42)%

>0 J

3422 —z—1 n—2-—j n—9—94 oy
G Z< ; )(1+4z) i (42)%

320

+2"22. %, 1(2).

Comparing the coefficient of z™ in both sides of (15), thus for all n > 2 and 0 < m < n, we
have the following result.

Corollary 3.15. For alln >2 and 0 < m <n,

L% ) ) 1 252] ) .
n—73\[(n—25\ . n—j7—1\/n—-1-=25\ ,._
=3 ()G ()G
i=o N\ J =0 J
L5t . . L] . .
_z n—j—1\/n—-1-2j 4m_1_1 n—j7j—1\/n—-1-2j gm
2 « J n—m 2j j n—m-—1
g
17 <n—j.—2)(n—2—2]>4m2+1 Z (n—j.—2)(n—2—2j>4ml
— J n—m 2 = 7 n—m-—1

J:
L5 n—j3—2\/n—2-2j3
+ ( J )( 3)4’” +2"D, 1 (m — 2).
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[ing
(]
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where

/2 N 2 0/ )N 19
— om __om~—1
v = 2 () G20 ()N

7=0 7=0 J
[(m—2)/2] . .
L gm-1 Z <n—2—j><n—2—2j)'
= i n—m

Theorem 3.16. The total genus polynomial of Ringel ladders R,_1 is as follows:

n+1

g, . (2,9) =2 Cop1(i)y’ —To(Rn-1, ¥*) +Io(Rn_1, )
=0

where Io(Ry—1,x) is the genus polynomial of Ringel ladder R, _1, which has been derived by
E.H. Tesar [35].

Proof. By Property 3.10, the theorem follows. |

For instance, the above theorem gives

I, (z,y) =2 + 14z + 14y + 42y* + 56y°,

I, (z,y) =2 + 382 4 242% + 22y + 12212 + 424y + 392y*,

Ip,(x,y) =2 4 70z + 18422 4 30y + 242y? + 1448y> + 3272y* + 294445,
Ir,(z,y) =2 + 118z 4 648x% + 256>

+ 38y 4 410y? + 34963> + 12952y* + 26880%y° + 207365,
I, (z,y) =2 + 198z + 165627 + 22402>
+ 46y + 642y2 + 7240y> + 36808y + 120832y° + 207168y° + 147456y .
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