1

TOTAL EMBEDDING DISTRIBUTIONS OF RINGEL LADDERS

Yichao Chen, Lu Ou, Qian Zou

College of mathematics and econometrics, Hunan University, 410082 Changsha, China

ycchen@hnu.edu.cn, 50371081@qq.com, Joe_king520@qq.com

ABSTRACT

The total embedding distributions of a graph is consisted of the orientable embeddings and nonorientable embeddings and have been know for few classes of graphs. The genus distribution of Ringel ladders is determined in [Discrete Mathematics 216 (2000) 235-252] by E.H. Tesar. In this paper, the explicit formula for non-orientable embeddings of Ringel ladders is obtained.

Key words: Graph embedding; Ringel ladders; Overlap matrix; Chebyshev polynomials; **2000 Mathematics Subject Classification**: 05C10, 30B70, 42C05

1. BACKGROUND

One enumerative aspect of topological graph theory is to count genus distributions of a graph. The history of genus distribution began with J. Gross in 1980s. Since then, it has been attracted a lot of attentions, for the details, we may refer to [1, 8, 9, 10, 11, 13, 16, 17, 19, 22, 26, 28, 31, 32, 33, 34, 35, 36, 37, 38] etc (We only list a few). However, for the total embedding distributions, only few classes are known. For example, Chen, Gross and Rieper [2] computed the total embedding distribution for necklaces of type (r, 0), close-end ladders and cobblestone paths, Kwak and Shim [21] computed for bouquets of circles and dipoles. In [3], Chen, Liu and Wang calculated the total embedding distributions of all graphs with maximum genus 1. Furthermore, in [4], Chen, Mansour and Zou obtained explicit formula for total embedding distributions for the necklaces of type (r, s), closed-end ladders and cobblestone path.

It is assumed that the reader is somewhat familiar with the basics of topological graph theory as found in Gross and Tucker [12]. A graph G = (V(G), E(G)) is permitted to have both loops and multiple edges. A surface is a compact closed 2-dimensional manifold without boundary. In topology, surfaces are classified into O_m , the orientable surface with $m(m \ge 0)$ handles and N_n , the nonorientable surface with n(n > 0) crosscaps. A graph embedding into a surface means a cellular embedding.

A spanning tree of a graph G is a tree on its edges has the same order as G. The number co-tree edges of a spanning tree of G is called the *Betti number*, $\beta(G)$, of G. A rotation at a vertex v of a graph G is a cyclic order of all edges incident with v. A pure rotation system P of a graph G is the collection of rotations at all vertices of G. A general rotation system is a pair (P, λ) , where P is a pure rotation system and λ is a mapping $E(G) \rightarrow \{0, 1\}$. The edge e is said to be twisted (respectively, untwisted) if $\lambda(e) = 1$ (respectively, $\lambda(e) = 0$). It is well known that every orientable embedding of a graph G can be described by a general rotation

¹The work was partially supported by NNSFC under Grant No. 10901048

system (P, λ) with $\lambda(e) = 0$ for all $e \in E(G)$. By allowing λ to take the non-zero value, we can describe nonorientable embeddings of G, see [2, 30] for more details. A *T*-rotation system (P, λ) of G is a general rotation system (P, λ) such that $\lambda(e) = 0$, for all $e \in E(T)$.

Theorem 1.1. (see [2, 30]) Let T be a spanning tree of G and (P, λ) a general rotation system. Then there exists a general rotation system (P', λ') such that

- (1) (P', λ') yields the same embedding of G as (P, λ) , and
- (2) $\lambda'(e) = 0$, for all $e \in E(T)$.

Two embeddings are considered to be the *same* if their *T*-rotation systems are combinatorially equivalent. Fix a spanning tree *T* of a graph *G*. Let Φ_G^T be the set of all *T*-rotation systems of *G*. It is known that

$$|\Phi_G^T| = 2^{\beta(G)} \prod_{v \in V(G)} (d_v - 1)!.$$

Suppose that in these $|\Phi_G^T|$ embeddings of G, there are a_i , $i = 0, 1, \ldots$, embeddings into orientable surface O_i and b_j , $j = 1, 2, \ldots$, embeddings into nonorientable surface N_j . We call the polynomial

$$I_G^T(x,y) = \sum_{i=0}^{\infty} a_i x^i + \sum_{j=1}^{\infty} b_j y^j$$

the *T*-distribution polynomial of G. By the total genus polynomial of G, we shall mean the polynomial

$$I_G(x,y) = \sum_{i=0}^{\infty} g_i x^i + \sum_{i=1}^{\infty} f_i y^i,$$

where g_i is the number of embeddings (up to equivalence) of G into the orientable surface O_i and f_i is the number of embeddings (up to equivalence) of G into the nonorientable surface N_i . We call the first (respectively, second) part of $I_G(x, y)$ the genus polynomial (respectively, crosscap number polynomial) of G and denoted by $g_G(x) = \sum_{i=0}^{\infty} g_i x^i$ (respectively, $f_G(y) = \sum_{i=1}^{\infty} f_i y^i$). Clearly, $I_G(x, y) = g_G(x) + f_G(y)$. This means the number of orientable embeddings of G is $\prod_{v \in G} (d_v - 1)!$, while the number of non-orientable embeddings of G is $(2^{\beta(G)} - 1) \prod_{v \in G} (d_v - 1)!$. Let T be a spanning tree of G and (P', λ') be a T-rotation system. Let $e_1, e_2, \ldots, e_{\beta(G)}$ be the cotree edges of T. The overlap matrix of (P', λ') is the $\beta \times \beta$ matrix $M = [m_{ij}]$ over GF(2) such that $m_{ij} = 1$ if and only if either $i \neq j$ and the restriction of the underlying pure rotation system to $T + e_i + e_j$ is nonplanar, or i = j and e_i is twisted. The following theorem due to Mohar.

Theorem 1.2. (see [24]) Let (P, λ) be a general rotation system for a graph, and let M be the overlap matrix. Then the rank of M equals twice the genus, if the corresponding embedding surface is orientable, and it equals the crosscap number otherwise. It is independent of the choice of a spanning tree.

An *n*-rung closed-end ladder L_n can be obtained by taking the graphical cartesian product of an *n*-vertex path with the complete graph K_2 , and then doubling both its end edges. Figure 1 presents a 4-rung closed-end ladder.

Ringel ladders, R_n , are the graphs used by Ringel and Youngs in their proof of the Heawood Map Coloring Theorem. In fact, A *Ringel ladder*, R_n , can be formed by subdividing the endrungs of the closed-end ladder, L_n , and adding an edge between these two new vertices. Figure 2 shows the Ringel ladder R_4 .

FIGURE 1. The 4-rung closed-end ladder L_4

FIGURE 2. The Ringel ladder R_4

2. Homogeneous recurrence relation and Chebyshev Polynomials

To begin with the discussion, we give some concepts of the *n*-th Chebyshev polynomials of the second kind which is related to the solution of the recurrence relation. Let the recurrence function $U_n(x)$ be

$$U_n(x) = 2xU_{n-1}(x) - U_{n-2}(x)$$

with the initial conditions $U_0(x) = 1$, $U_1(x) = 2x$, then we derived the *n*-th Chebyshev polynomials with the second kind $U_n(x)$ (see [27]). For instance, $U_2(x) = 4x^2 - 1$, $U_3(x) = 8x^3 - 4x$, $U_4(x) = 16x^4 - 12x^2 + 1$. Moreover, we have the identity that

(1)
$$U_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} {\binom{n-k}{k}} (-1)^k (2x)^{n-2k}.$$

Now, we will build the relation between the recurrence relation and the Chebyshev polynomials with the second kind. Let $P_n(z) = \sum_{m=0}^n C_n(m) z^m$, satisfy the following

$$P_n(z) = a_1(z)P_{n-1}(z) + a_2(z)P_{n-2}(z),$$

where $a_i(z) = \sum_{k=0}^q a_{i,k} z^k$ for i = 1, 2. and the initial conditions $P_0(z) = c_0$, and $P_1(z)$, $P_2(z)$ can be derived by the initial values of $C_n(m)$. Let $Q_n(z) = \frac{P_n(z)}{(\sqrt{a_2(z)}i)^n}$, then it is easy to verify that

$$Q_n(z) = \frac{a_1(z)}{\sqrt{a_2(z)}i} Q_{n-1}(z) - Q_{n-2}(z)$$

with the initial conditions $Q_0(z) = P_0(z) = c_0$, $Q_1(z) = \frac{P_1(z)}{\sqrt{a_2(z)i}}$ and $Q_2(z) = \frac{P_2(z)}{-a_2(z)}$. Using the fact that $U_0(x) = 1$, $U_1(x) = 2x$, $U_2(x) = 4x^2 - 1$, by induction on n = 0, 1, 2, we obtain that

(2)
$$Q_n(z) = AU_n(\frac{a_1(z)}{2\sqrt{a_2(z)i}}) + BU_{n-1}(\frac{a_1(z)}{2\sqrt{a_2(z)i}}) + CU_{n-2}(\frac{a_1(z)}{2\sqrt{a_2(z)i}}),$$

where A, B, and C are determined by the initial conditions. Thus we have

(3)
$$P_n(z) = (\sqrt{a_2(z)}i)^n A U_n(\frac{a_1(z)}{2\sqrt{a_2(z)}i}) + B U_{n-1}(\frac{a_1(z)}{2\sqrt{a_2(z)}i}) + C U_{n-2}(\frac{a_1(z)}{2\sqrt{a_2(z)}i}).$$

Using the fact that

$$U_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} {\binom{n-k}{k}} (-1)^k (2x)^{n-2k}.$$

We can derive that

(4)
$$(i\sqrt{a_2(z)})^n U_n(\frac{a_1(z)}{2\sqrt{a_2(z)i}}) = \sum_{j\ge 0} \binom{n-j}{j} (a_1(z))^{n-2j}$$

Since $a_1(z)$ is a polynomial of degrees less than q, then $(a_1(z))^{n-2j}$ can be expressed as the type of power series. Plug the above formula into (3) and comparing the coefficient z^m in both sides and we can obtain the explicit formulae $C_n(m)$ for $0 \le m \le n$.

3. TOTAL EMBEDDING DISTRIBUTIONS OF RINGEL LADDERS

3.1. The rank-distribution polynomial of Closed-end ladders. we adopt the notations of [4], the overlap of matrix of Closed-end ladders L_{n-1} has the following form $M_n^{X,Y}$ (see [4] for more details).

Let $X = (x_1, x_2, \ldots, x_n) \in (GF(2))^n$ and $Y = (y_1, y_2, \ldots, y_{n-1}) \in (GF(2))^{n-1}$. We define the tridiagonal matrix $M_n^{X,Y}$ as

$$M_n^{X,Y} = \begin{pmatrix} x_1 & y_1 & & & \\ y_1 & x_2 & y_2 & & \mathbf{0} \\ & y_2 & x_3 & y_3 & & \\ & \mathbf{0} & & & y_{n-2} & x_{n-1} & y_{n-1} \\ & & & & & y_{n-1} & x_n \end{pmatrix}$$

Furthermore, we define $\mathscr{L}_n = \{M_n^{X,Y} \mid X \in (GF(2))^n \text{ and } Y \in (GF(2))^{n-1}\}$, which is the set of all matrices over GF(2) that are of the type $M_n^{X,Y}$. We define the *rank-distribution polynomial* to be the polynomial $\mathscr{L}_n(z) = \sum_{j=0}^n D_n(j)z^j$, where $D_n(j)$, $j = 0, 1, \ldots, n$, is the number of different assignment of the variables x_j, y_k , where $j = 1, 2, \cdots, n$ and $k = 1, 2, \cdots, n-1$, for which the matrix $M_n^{X,Y}$ in \mathscr{L}_n has rank j. Similarly, Let $\mathscr{O}_n = \{M_n^{0,Y} \mid Y \in (GF(2))^{n-1}\}$, and $\mathscr{O}_n(z) = \sum_{j=0}^n O_n(j)z^j$ be the *rank-distribution polynomial* of \mathscr{O}_n , where $O_n(j), j = 0, 1, \ldots, n$, is the number of different assignment of the variables y_k , where $k \in \{1, 2, \ldots, n-1\}$, for which the matrix M_n^Y in \mathscr{A}_n has rank j.

Lemma 3.1. (see [4]) The polynomial $\mathcal{O}_n(z)$ satisfies the recurrence relation

$$\mathcal{O}_n(z) = \mathcal{O}_{n-1}(z) + 2z^2 \mathcal{O}_{n-2}(z)$$

with the initial conditions $\mathcal{O}_1(z) = 1$ and $\mathcal{O}_2(z) = z^2 + 1$.

Theorem 3.2. (see [4]) For all $n \ge 1$,

$$\mathcal{O}_n(z) = \sum_{j \ge 0} \binom{n-j}{j} 2^j \ z^{2j} - \sum_{j \ge 0} \binom{n-2-j}{j} 2^j \ z^{2j+2}$$

Corollary 3.3. For all $1 \ge m \le \left\lfloor \frac{n}{2} \right\rfloor$.

$$\begin{split} \mathcal{O}_n(2m+1) &= 0, \\ \mathcal{O}_n(2m) &= \binom{n-m}{m} \cdot 2^m - \binom{n-m-1}{m-1} \cdot 2^{m-1}. \end{split}$$

Lemma 3.4. (see [4]) The polynomial $\mathscr{L}_n(z)$ satisfies the recurrence relation

 $\mathscr{L}_n(z) = (1+2z)\mathscr{L}_{n-1}(z) + 4z^2 \mathscr{L}_{n-2}(z)$

with the initial conditions $\mathscr{L}_1(z) = 1 + z$ and $\mathscr{L}_2(z) = 4z^2 + 3z + 1$.

Theorem 3.5. (see [4]) For all $n \ge 1$,

$$\mathscr{L}_{n}(z) = (2iz)^{n} \left[U_{n} \left(\frac{1+2z}{4iz} \right) + \frac{i}{2} U_{n-1} \left(\frac{1+2z}{4iz} \right) - \frac{1}{2} U_{n-2} \left(\frac{1+2z}{4iz} \right) \right],$$

where $U_s(t)$ is the s-th Chebyshev poynomial of the second kind and $i^2 = -1$.

Corollary 3.6. (see [4]) For all $n \ge 1$ and $0 \le m \le n$,

$$D_n(m) = 2^m \sum_{j=0}^{[m/2]} {\binom{n-j}{j} \binom{n-2j}{n-m}} - 2^{m-1} \sum_{j=0}^{[(m-1)/2]} {\binom{n-1-j}{j} \binom{n-1-2j}{n-m}} + 2^{m-1} \sum_{j=0}^{[(m-2)/2]} {\binom{n-2-j}{j} \binom{n-2-2j}{n-m}}.$$

3.2. The overlap matrix of Ringel ladders. We adopt the same notation used by Ringel [27, p.17]. A cubic graph at each vertex has two cyclic orderings of its neighbors. One of these two cyclic orderings is denoted as clockwise and the other *counterclockwise*. We color the vertex *black*, if that vertex has the *clockwise* ordering of its neighbors, otherwise, we will color the counterclockwise vertices *white*. This will bring convenient to embed a cubic graph into surfaces, as we can draw an imbedding on the plane and only need to color the vertices black and white.

Definition 3.7. An edge is called matched if it has the same color at both ends, otherwise it is called unmatched.

We fix a spanning tree T of R_{n-1} shown as the thicker lines in Figure 3, that is to say, the cotree edges are e, a_1, a_2, \dots, a_n .

Property 3.8. Two cotree edges e and a_i , for $i = 1, 2, \dots, n$, overlap if and only if the edge c_i is unmatched.

Property 3.9. Two cotree edges a_i and a_{i+1} , for $i = 1, 2, \dots, n-1$, overlap if and only if the edge b_i is unmatched.

FIGURE 3.

It is easy to see that the overlap matrix of R_{n-1} has the following form.

$$M_{n+1}^{X,Y,Z} = \begin{pmatrix} x_0 & z_1 & z_2 & z_3 & \dots & z_{n-1} & z_n \\ z_1 & x_1 & y_1 & & & \\ z_2 & y_1 & x_2 & y_2 & \mathbf{0} \\ z_3 & y_2 & x_3 & \ddots & \\ \vdots & & \ddots & \ddots & y_{n-2} \\ z_{n-1} & \mathbf{0} & y_{n-2} & x_{n-1} & y_{n-1} \\ z_n & & & y_{n-1} & x_n \end{pmatrix}$$

where $X = (x_0, x_1, \ldots, x_n) \in (GF(2))^n$, $Y = (y_1, y_2, \ldots, y_{n-1}) \in (GF(2))^{n-1}$ and $Y = (z_1, z_2, \ldots, z_n) \in (GF(2))^{n-1}$. Note that $x_0 = 1$ if and only if the edge e is twisted, $x_i = 1$ if and only if the edge a_i is twisted, for all $i = 1, 2, \ldots, n, y_j = 1$ if and only if b_j is unmatched. for all $j = 1, 2, \ldots, n-1$, and $z_k = 1$ if and only if c_k is unmatched, for all $k = 1, 2, \ldots, n$.

Property 3.10. For a fixed matrix of the form $M_{n+1}^{X,Y,Z}$, there are exactly 2 different T-rotation systems corresponding to that matrix.

Proof. Given a matrix $M_{n+1}^{X,Y,Z}$, the values of z_1, z_2, \cdots, z_n and $y_1, y_2, \cdots, y_{n-1}$ are determined.

- z₁ = 0. If we color the vertex v₁ black, by Property 3.8, the color of v₂ is black. Since the values of z₂, ..., z_n and y₁, y₂, ..., y_{n-1} are given, by Property 3.8 and Property 3.9, all the colors of v₂, u₂, ..., v_n, u_n, v_{n+1} are determined. That is to say, all the rotations of vertices of R_n is determined. Otherwise the vertex v₁ is colored white, by Property 3.8, the color of v₂ is also white, by the values of z₂, ..., z_n and y₁, y₂, ..., y_{n-1} and by Property 3.8 and Property 3.9, the color all vertices of R_n is determined.
- $z_1 = 1$, Similar discuss like the case $z_1 = 0$, the details are omitted.

Now, we denote \mathscr{R}_{n+1} be the set of all matrices over GF(2) that are of the form $M_{n+1}^{X,Y,Z}$. The we calculate the rank distribution of the set \mathscr{R}_{n+1} .

Let $\mathscr{R}_{n+1}(z) = \sum_{j=0}^{n+1} C_{n+1}(j) z^j$ be the rank-distribution polynomial of the set \mathscr{R}_{n+1} . In other words, for $j = 0, 1, \ldots, n+1, C_{n+1}(j)$ is the number of different assignment of the variables x_i , $i = 0, 1, \ldots, n, y_k, k = 1, 2, \cdots, n-1$, and $z_l, l = 1, 2, \cdots, n$ for which the matrix $M_{n+1}^{X,Y,Z}$ in \mathscr{R}_{n+1} has rank j.

Similarly, Let \mathscr{P}_{n+1} be the set of all matrices over GF(2) that are of the form $M_{n+1}^{O,Y,Z}$. The we calculate the rank distribution of the set \mathscr{P}_{n+1} . Let $\mathscr{P}_{n+1}(z) = \sum_{j=0}^{n+1} D_{n+1}(j)z^j$ be the rank-distribution polynomial of the set \mathscr{O}_{n+1} . In other words, for $j = 0, 1, \ldots, n+1, D_{n+1}(j)$ is the number of different assignment of the variables $y_k, k = 1, 2, \cdots, n-1$, and $z_l, l = 1, 2, \cdots, n$ for which the matrix $M_{n+1}^{O,Y,Z}$ in \mathscr{P}_{n+1} has rank j.

Lemma 3.11. The polynomial $\mathscr{P}_n(z)$ $(n \geq 3)$ satisfies the recurrence relation

(5)
$$\mathscr{P}_{n+1}(z) = \mathscr{P}_n(z) + 8z^2 \mathscr{P}_{n-1}(z) + 2^{n-1} z^2 \mathscr{O}_{n-1}(z).$$

with the initial condition $\mathscr{P}_2(z) = z^2 + 1$, $\mathscr{P}_3(z) = 7z^2 + 1$ and $\mathscr{P}_4(z) = 12z^4 + 19z^2 + 1$ where $\mathscr{O}_{n-1}(z)$ is rank-distribution polynomial of closed-end ladders L_{n-2} .

Proof. To obtain the relation between $\mathscr{P}_{n+1}(z)$ and $\mathscr{P}_n(z)$, we consider the four different ways to assign the variables y_{n-1} and z_n in the matrix $M_{n+1}^{Y,Z}$. **Case 1:** $y_{n-1} = 0$.

- Subcase 1: $z_n = 0$. Then the rank of $M_{n+1}^{Y,Z}$ is the same as the upper left $n \times n$ submatrix, which is a matrix of the form $M_n^{Y,Z}$. We conclude that this case contributes to the polynomial $\mathscr{P}_{n+1}(z)$ by a term $\mathscr{P}_n(z)$.
- Subcase 2: $z_n = 1$. It is easy to sea that, no matter what assignments of the variables z_1, z_2, \dots, z_{n-1} , we can transform $M_{n+1}^{Y,Z}$ to the following form.

$$M_1 = \begin{pmatrix} 0 & 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & y_1 & & & & & \\ 0 & y_1 & 0 & y_2 & & & & \\ 0 & y_2 & 0 & \ddots & & & \\ \vdots & & \ddots & \ddots & y_{n-2} & & \\ 0 & & & y_{n-2} & 0 & 0 & \\ 1 & & & & 0 & 0 & \end{pmatrix}$$

We firstly delete the first column and the last column then delete the first row and the last row of M_1 , then we obtain a matrix which is a overlap matrix of closed ladders L_{n-2} . Since there are 2^{n-1} different assignments of the variables z_1, z_2, \dots, z_{n-1} , it contributes to the polynomial $\mathscr{P}_{n+1}(z)$ by a term $2^{n-1}z^2\mathscr{O}_{n-1}(z)$.

Case 2: $y_{n-1} = 1$. If $z_n = 1$, we first add the last row to the first low, then add the last column to the fist column. A similar discussion for y_{n-2} and z_{n-1} , we transform $M_{n+1}^{Y,Z}$ to the following form.

$$M = \begin{pmatrix} 0 & z_1 & z_2 & \dots & z_{n-2} & 0 & 0 \\ z_1 & 0 & y_1 & & & & \\ z_2 & y_1 & 0 & \ddots & & & \\ \vdots & & \ddots & \ddots & y_{n-3} & & \\ z_{n-2} & & y_{n-3} & 0 & 0 & & \\ 0 & & & 0 & 0 & 1 & \\ 0 & & & & 1 & 0 & \end{pmatrix}$$

Note that the upper left $(n-1) \times (n-1)$ submatrix of M_2 , which is a matrix of the form $M_{n-1}^{Y,Z}$. There are 2^3 different assignments of the variables y_{n-2} , z_{n-1} and z_n in the matrix $M_n^{Y,Z}$. In this case, it contributes to the polynomial $\mathscr{P}_{n+1}(z)$ by a term $8z^2 \mathscr{P}_n(z)$. **Lemma 3.12.** The polynomial $\mathscr{R}_n(z)$ $(n \geq 3)$ satisfies the recurrence relation

(6)
$$\mathscr{R}_{n+1}(z) = (4z+1)\mathscr{R}_n(z) + 16z^2\mathscr{R}_{n-1}(z) + 2^n z^2 \mathscr{L}_{n-1}(z).$$

with the initial condition $\mathscr{R}_2(z) = 4z^2 + 3z + 1$, $\mathscr{R}_3(z) = 28z^3 + 28z^2 + 7z + 1$, where $\mathscr{L}_{n-1}(z)$ is rank-distribution polynomial of closed-end ladders L_{n-2} .

Proof. To obtain the relation between $\mathscr{R}_{n+1}(z)$ and $\mathscr{R}_n(z)$, we consider the eight different ways to assign the variables x_n , y_{n-1} and z_n in the matrix $M_{n+1}^{X,Y,Z}$. **Case 1:** $x_n = 0$.

- Subcase 1: $y_{n-1} = z_n = 0$. Then the rank of $M_{n+1}^{X,Y,Z}$ is the same as the upper left $n \times n$ submatrix, which is a matrix of the form $M_n^{X,Y,Z}$. We conclude that this case contributes to the polynomial $\mathscr{R}_{n+1}(z)$ by a term $\mathscr{R}_n(z)$.
- Subcase 2: $y_{n-1} = z_n = 1$. We first add the last row to the first low, then add the last column to the fist column. If $x_{n-1} = 1$, we add the last column to the *n*-th column. A similar discussion for y_{n-2} and z_{n-1} , we transform $M_{n+1}^{X,Y,Z}$ to the following form.

$$M = \begin{pmatrix} x_0 & z_1 & z_2 & \dots & z_{n-2} & 0 & 0 \\ z_1 & x_1 & y_1 & & & & \\ & z_2 & y_1 & x_2 & \ddots & & & \\ \vdots & & \ddots & \ddots & y_{n-3} & & \\ & z_{n-2} & & y_{n-3} & x_{n-2} & 0 & \\ & 0 & & & 0 & 0 & 1 \\ & 0 & & & & 1 & 0 \end{pmatrix},$$

Note that the upper left $(n-1) \times (n-1)$ submatrix, which is a matrix of the form $M_{n-1}^{X,Y,Z}$. There are 2³ different assignments of the variables x_{n-1} , y_{n-2} and z_{n-1} , in these case it contributes to the polynomial $\mathscr{R}_{n+1}(z)$ by a term $8z^2\mathscr{R}_{n-1}(z)$.

- Subcase 3: $y_{n-1} = 1, z_n = 0$. Similarly discuss like subcase 2, it contributes to the polynomial $\mathscr{R}_{n+1}(z)$ by a term $8z^2 \mathscr{R}_{n-1}(z)$.
- Subcase 4: $y_{n-1} = 0, z_n = 1$. It is easy to see that, no matter what assignments of the variables $x_0, z_1, z_2, \cdots, z_{n-1}$, we can transform $M_{n+1}^{X,Y,Z}$ to the following form.

$$M_{1} = \begin{pmatrix} 0 & 0 & 0 & 0 & \dots & 0 & 1 \\ 0 & x_{1} & y_{1} & & & & & \\ 0 & y_{1} & x_{2} & y_{2} & & & & \\ 0 & y_{2} & x_{3} & \ddots & & & \\ \vdots & & \ddots & \ddots & y_{n-2} & \\ 0 & & & y_{n-2} & x_{n-1} & 0 \\ 1 & & & & 0 & 0 \end{pmatrix}$$

We firstly delete the first column and the last column then delete the first row and the last row of M_1 , then we obtain a matrix which is a overlap matrix of closed ladders L_{n-2} . Since there are 2^n different assignments of the variables $x_0, z_1, z_2, \dots, z_{n-1}$, it contributes to the polynomial $\mathscr{R}_{n+1}(z)$ by a term $2^n z^2 \mathscr{L}_{n-1}(z)$.

Case 2: $x_n = 1$. If $z_n = 1$, we first add the last column to the first column then add the last row to the first row. Similarly, if $y_{n-1} = 1$, we add the last column to the *n*-th column and add

the last row to the *n*-th row. As last we can transfer the matrix $M_{n+1}^{X,Y,Z}$ to the matrix M_2 of following form.

$$M_{2} = \begin{pmatrix} x_{0} & z_{1} & z_{2} & z_{3} & \dots & z_{n-1} & 0 \\ z_{1} & x_{1} & y_{1} & & & & \\ z_{2} & y_{1} & x_{2} & y_{2} & & & \\ z_{3} & y_{2} & x_{3} & \ddots & & \\ \vdots & & \ddots & \ddots & y_{n-2} & 0 \\ z_{n-1} & & y_{n-2} & x_{n-1} & 0 \\ 0 & & & 0 & 1 \end{pmatrix}$$

Note that the upper left $n \times n$ submatrix of M_2 , which is a matrix of the form $M_n^{X,Y,Z}$. There are 2^2 different assignments of the variables y_{n-1} and z_n in the matrix $M_n^{X,Y,Z}$. In this case, it contributes to the polynomial $\mathscr{R}_{n+1}(z)$ by a term $4z\mathscr{R}_n(z)$.

Theorem 3.13. For all $n \geq 2$,

$$\begin{aligned} \mathscr{P}_{n}(z) = & \left\{ U_{n}(\frac{1}{4\sqrt{2}iz}) - \frac{z^{2}+1}{4\sqrt{2}iz}U_{n-1}(\frac{1}{4\sqrt{2}iz}) + \frac{17z^{2}-1}{16z^{2}}U_{n-2}(\frac{1}{4\sqrt{2}iz}) \right\} \\ & + 2^{n-1}z^{2}\mathscr{O}_{n-1}(z). \end{aligned}$$

where $U_s(t)$ is the s-th Chebyshev poynomial of the second kind, $i^2 = -1$ and $\mathcal{O}_{n-1}(z)$ is rankdistribution polynomial of closed-end ladders L_{n-2} .

Proof. Note that

(7)
$$\mathscr{P}_{n+1}(z) = \mathscr{P}_n(z) + 8z^2 \mathscr{P}_{n-1}(z) + 2^{n-1} z^2 \mathscr{O}_{n-1}(z).$$

We first consider the homogeneous recurrence relation part of (11).

(8)
$$\mathscr{P}_{n+1}(z) = \mathscr{P}_n(z) + 8z^2 \mathscr{P}_{n-1}(z).$$

By the method of subsection 2, we have a solution of (12).

(9)
$$\mathscr{P}_{n}(z) = (\sqrt{a_{2}(z)}i)^{n} \left\{ AU_{n}(\frac{a_{1}(z)}{2\sqrt{a_{2}(z)}i}) + BU_{n-1}(\frac{a_{1}(z)}{2\sqrt{a_{2}(z)}i}) + CU_{n-2}(\frac{a_{1}(z)}{2\sqrt{a_{2}(z)}i}) \right\}$$

Now, let $Y_n(z) = 2^n f(z) \mathcal{O}_n(z)$ be one special solution of $\mathscr{P}_n(z)$, plug it into (11), using the relation

$$\mathcal{O}_n(z) = (1+2z)\mathcal{O}_{n-1}(z) + 4z^2\mathcal{O}_{n-2}(z),$$

it leads to

$$Y_n(z) = 2^{n-1} z^2 \mathscr{O}_{n-1}(z) = \sum_{m \ge 0} 2^{n-1} O_{n-1}(m) z^{m+2}.$$

Thus,

(10)

$$\mathscr{P}_n(z) = (2\sqrt{2}zi)^n \left\{ U_n(\frac{1}{2\sqrt{2}iz}) + BU_{n-1}(\frac{1}{2\sqrt{2}iz}) + CU_{n-2}(\frac{1}{2\sqrt{2}iz}) \right\} + 2^{n-1}z^2 \mathscr{O}_{n-1}(z).$$

Plug the initial values $\mathscr{P}_2(z), \mathscr{P}_3(z)$ into (14), it follows that

$$\begin{cases} -8z^2 \left\{ \left(2\left(\frac{1}{2\sqrt{2}iz}\right) + B\right) \frac{1}{2\sqrt{2}iz} + (C-1) \right\} + 2z^2 = z^2 + 1 \\ -16\sqrt{2}iz^3 \left\{ \left(\frac{1}{2\sqrt{2}iz} + B\right) \left(-\frac{1}{8z^2} - 1\right) + \frac{1}{2\sqrt{2}iz}\right)(C-1) \right\} + 4z^2(z^2+1) = 7z^2 + 1. \end{cases}$$

By simple computation, we immediately obtain

$$B = \frac{-z^2 - 1}{4\sqrt{2}iz}, \quad C = \frac{17z^2 - 1}{16z^2}.$$

	_	1
		L

Then according to the identity (1), the formula (14) is as follows

$$\begin{aligned} \mathscr{P}_n(z) &= \sum_{j \ge 0} \binom{n-j}{j} (8z^2)^j - \frac{z^2+1}{2} \times \left\{ \sum_{j \ge 0} \binom{n-1-j}{j} (8z^2)^j \right\} \\ &- \frac{17z^2-1}{2} \left\{ \sum_{j \ge 0} \binom{n-2-j}{j} (8z^2)^j \right\} + 2^{n-1} z^2 \mathscr{O}_{n-1}(z). \end{aligned}$$

Comparing the coefficient of z^m in both sides, thus for all $n \ge 2$ and $0 \le m \le n$, we have the following result.

Theorem 3.14. For all $n \geq 2$,

$$\begin{aligned} \mathscr{R}_{n}(z) = & \left\{ U_{n}(\frac{1+4z}{8iz}) - \frac{2z^{2}+7z+1}{8iz}U_{n-1}(\frac{1+4z}{8iz}) + \frac{34z^{2}-z-1}{32z^{2}}U_{n-2}(\frac{1+4z}{8iz}) \right\} \\ & + 2^{n}z^{2}\mathscr{L}_{n-1}(z). \end{aligned}$$

where $U_s(t)$ is the s-th Chebyshev poynomial of the second kind, $i^2 = -1$ and $\mathcal{L}_{n-1}(z)$ is rank-distribution polynomial of closed-end ladders L_{n-2} .

Proof. Note that

(11)
$$\mathscr{R}_n(z) = (4z+1)\mathscr{R}_{n-1}(z) + 16z^2\mathscr{R}_{n-2}(z) + 2^{n-1}z^2\mathscr{L}_{n-2}(z).$$

We first consider the homogeneous recurrence relation part of (11).

(12)
$$\mathscr{R}_{n}(z) = (4z+1)\mathscr{R}_{n-1}(z) + 16z^{2}\mathscr{R}_{n-2}(z).$$

By the method of subsection 2, we have a solution of (12).

(13)
$$\mathscr{R}_{n}(z) = \left(\sqrt{a_{2}(z)}i\right)^{n} \left\{ AU_{n}\left(\frac{a_{1}(z)}{2\sqrt{a_{2}(z)}i}\right) + BU_{n-1}\left(\frac{a_{1}(z)}{2\sqrt{a_{2}(z)}i}\right) + CU_{n-2}\left(\frac{a_{1}(z)}{2\sqrt{a_{2}(z)}i}\right) \right\}$$

Now, let $Y_n(z) = 2^n f(z) \mathscr{L}_n(z)$ be one special solution of $\mathscr{R}_n(z)$, plug it into (11), using the relation

$$\mathscr{L}_{n}(z) = (1+2z)\mathscr{L}_{n-1}(z) + 4z^{2}\mathscr{L}_{n-2}(z),$$

it leads to $f(z) = \frac{z^2 \mathscr{L}_{n-1}(z)}{\mathscr{L}_n(z)}$. Thus we obtain a special solution of non-homogeneous recurrence (11)

$$Y_n(z) = 2^n z^2 \mathscr{L}_{n-1}(z) = \sum_{m \ge 0} 2^n C_{n-1}(m) z^{m+2}$$

Thus,

(14)
$$\mathscr{R}_{n}(z) = (4zi)^{n} \left\{ U_{n}(\frac{1+4z}{8iz}) + BU_{n-1}(\frac{1+4z}{8iz}) + CU_{n-2}(\frac{1+4z}{8iz}) \right\} + 2^{n}z^{2}\mathscr{L}_{n-1}(z).$$

Plug the initial values $\mathscr{R}_2(z), \mathscr{R}_3(z)$ into (14), it follows that

$$\begin{cases} -16z^{2} \left\{ \left(2\left(\frac{1+4z}{8iz}\right)+B\right) U_{1}\left(\frac{1+4z}{8iz}\right)+C-1\right\} + 4z^{2}(1+z) = 4z^{2}+3z+1\\ -64iz^{3} \left\{\left(2\left(\frac{1+4z}{8iz}\right)+B\right) U_{2}\left(\frac{1+4z}{8iz}\right)+U_{1}\left(\frac{1+4z}{8iz}\right)(C-1)\right\} + 8z^{2}(4z^{2}+3z+1)\\ = 28z^{3}+28z^{2}+7z+1. \end{cases}$$

By simple computation, we immediately obtain

$$B = -\frac{-2z^2 - 7z - 1}{8iz}, \quad C = \frac{34z^2 - z - 1}{32z^2}.$$

Then according to the identity (1), the formula (14) is as follows

(15)
$$\mathscr{R}_{n}(z) = \sum_{j\geq 0} \binom{n-j}{j} (1+4z)^{n-2j} (4z)^{2j} - \frac{2z^{2}+7z+1}{2} \times \left\{ \sum_{j\geq 0} \binom{n-1-j}{j} (1+4z)^{n-1-2j} (4z)^{2j} \right\} + \frac{34z^{2}-z-1}{2} \left\{ \sum_{j\geq 0} \binom{n-2-j}{j} (1+4z)^{n-2-2j} (4z)^{2j} \right\} + 2^{n} z^{2} \mathscr{L}_{n-1}(z).$$

Comparing the coefficient of z^m in both sides of (15), thus for all $n \ge 2$ and $0 \le m \le n$, we have the following result.

Corollary 3.15. For all $n \ge 2$ and $0 \le m \le n$,

$$\begin{split} C_n(m) &= \sum_{j=0}^{\lfloor \frac{m}{2} \rfloor} \binom{n-j}{j} \binom{n-2j}{n-m} 4^m - \sum_{j=0}^{\lfloor \frac{m-2}{2} \rfloor} \binom{n-j-1}{j} \binom{n-1-2j}{n-m+1} 4^{m-2} \\ &- \frac{7}{2} \sum_{j=0}^{\lfloor \frac{m-1}{2} \rfloor} \binom{n-j-1}{j} \binom{n-1-2j}{n-m} 4^{m-1} - \frac{1}{2} \sum_{j=0}^{\lfloor \frac{m}{2} \rfloor} \binom{n-j-1}{j} \binom{n-1-2j}{n-m-1} 4^m \\ &- 17 \sum_{j=0}^{\lfloor \frac{m-2}{2} \rfloor} \binom{n-j-2}{j} \binom{n-2-2j}{n-m} 4^{m-2} + \frac{1}{2} \sum_{j=0}^{\lfloor \frac{m-1}{2} \rfloor} \binom{n-j-2}{j} \binom{n-2-2j}{n-m-1} 4^{m-1} \\ &+ \frac{1}{2} \sum_{j=0}^{\lfloor \frac{m}{2} \rfloor} \binom{n-j-2}{j} \binom{n-2-2j}{n-m-2} 4^m + 2^n D_{n-1}(m-2). \end{split}$$

where

$$D_n(m) = 2^m \sum_{j=0}^{[m/2]} {\binom{n-j}{j} \binom{n-2j}{n-m}} - 2^{m-1} \sum_{j=0}^{[(m-1)/2]} {\binom{n-1-j}{j} \binom{n-1-2j}{n-m}} + 2^{m-1} \sum_{j=0}^{[(m-2)/2]} {\binom{n-2-j}{j} \binom{n-2-2j}{n-m}}.$$

Theorem 3.16. The total genus polynomial of Ringel ladders R_{n-1} is as follows:

~

$$\mathbb{I}_{R_{n-1}}(x,y) = 2\sum_{j=0}^{n+1} C_{n+1}(j)y^j - \mathbb{I}_0(R_{n-1}, y^2) + \mathbb{I}_0(R_{n-1}, x)$$

where $\mathbb{I}_0(R_{n-1}, x)$ is the genus polynomial of Ringel ladder R_{n-1} , which has been derived by E.H. Tesar [35].

Proof. By Property 3.10, the theorem follows.

For instance, the above theorem gives

$$\begin{split} I_{R_1}(x,y) &= 2 + 14x + 14y + 42y^2 + 56y^3, \\ I_{R_2}(x,y) &= 2 + 38x + 24x^2 + 22y + 122y^2 + 424y^3 + 392y^4, \\ I_{R_3}(x,y) &= 2 + 70x + 184x^2 + 30y + 242y^2 + 1448y^3 + 3272y^4 + 2944y^5, \\ I_{R_4}(x,y) &= 2 + 118x + 648x^2 + 256x^3 \\ &\quad + 38y + 410y^2 + 3496y^3 + 12952y^4 + 26880y^5 + 20736y^6, \\ I_{R_5}(x,y) &= 2 + 198x + 1656x^2 + 2240x^3 \\ &\quad + 46y + 642y^2 + 7240y^3 + 36808y^4 + 120832y^5 + 207168y^6 + 147456y^7. \end{split}$$

References

- D. Archdeacon, Calculations on the average genus and genus distribution of graphs, Congr. Numer. 67 (1988) 114–124.
- [2] J. Chen, J. Gross and R. G. Rieper, Overlap matrices and total embeddings, *Discrete Math.* 128 (1994) 73–94.
- [3] Y. Chen, Y. Liu and T. Wang, The total embedding distributions of cacti and necklaces, Acta Mathematica Sinica 22(5) (2006) 1583–1590.
- [4] Y. Chen, T. Mansour and Q. Zou, The total embedding distributions of some types of graphs, submitted for publication, 2009, 21pages.
- [5] Y. Chen, T. Mansour, Lu Ou and Q. Zou, Genus distribution, homogeneous recurrence relation and chebyshev polynomial, Priprint, 2010, 25pages.
- [6] Y. Chen, A note on a conjecture of S. Stahl, Canad. J. Math. 60(4) (2008) 958-959.
- [7] Y. Chen and Y. liu, On a conjecture of S. Stahl, Canad. J. Math.62(5) (2010) 1058–1059.
- [8] J. Edmonds, A combinatorial representation for polyhedral surfaces, Notices Amer. Math. Soc. 7 (1960), 646.
- J. L. Gross and M. L. Furst, Hierarchy for imbedding-distribution invariants of a graph, J. Graph Theory 11 (1987), 205–220.
- [10] J. L. Gross, I. F. Khan, and M. I. Poshni, Genus distribution of graph amalga- mations: Pasting at root-vertices, Ars Combinatoria 94 (2010), 33–53.
- [11] J. L. Gross, D. P. Robbins and T. W. Tucker, Genus distributions for bouquets of circles, J. Combin. Theory (B) 47 (1989), 292–306.

- [12] J. L. Gross and T. W. Tucker, Topological Graph Theory, Dover, 2001; (original edn. Wiley, 1987).
- [13] D. M. Jackson, Counting cycles in permutations by group characters with an application to a topological problem, Trans. Amer. Math. Soc. 299 (1987), 785–801.
- [14] D. M. Jackson and T. I. Visentin, A character-theoretic approach to embeddings of rooted maps in an orientable surface of given genus, *Trans. Amer. Math. Soc.* **322** (1990), 343–363.
- [15] D. M. Jackson and T. I. Visentin, An Atlas of the Smaller Maps in Orientable and Nonorientable Surfaces, Chapman and Hall/CRC Press, 2001.
- [16] M. Furst, J. Gross and R. Statman, Genus distributions for two classes of graphs, J. Combin. Ser. B 46 (1989) 22–36.
- [17] I. F. Khan, M. I. Poshni, and J. L. Gross, Genus distribution of graph amalgama- tions: pasting when one root has higher degree, Ars Math. Contemporanea (2010), to appear.
- [18] V. P. Korzhik and H-J Voss, Exponential families of non-isomorphic non- triangular orientable genus embeddings of complete graphs, J. Combin. Theory (B) 86 (2002), 86–211.
- [19] J. H. Kwak and J. Lee, Genus polynomials of dipoles, Kyungpook Math. J. 33 (1993), 115–125.
- [20] J. H. Kwak and J. Lee, Enumeration of graph embeddings, Discrete Math. 135 (1994), 129-151.
- [21] J. H. Kwak and S. H. Shim, Total embedding distributions for bouquets of circles, Discrete Math. 248 (2002), 93–108.
- [22] L. A. McGeoch, Algorithms for two graph problems: computing maximum-genus imbedding and the two-server problem, PhD thesis, Carnegie-Mellon University, 1987.
- [23] B. Mohar and C. Thomassen, Graphs on Surfaces, Johns Hopkins Press, 2001.
- [24] B. Mohar, An obstruction to embedding graphs in surface, Discrete Math. 78 (1989) 135–142.
- [25] B. P. Mull, Enumerating the orientable 2-cell imbeddings of complete bipartite graphs, J. Graph Theory 30 (1999), 77–90.
- [26] M. I. Poshni, I. F. Khan, and J. L. Gross, Genus distribution of edge- amalgamations, Ars Math. Contemporanea 3 (2010), 69–86.
- [27] Th. Rivlin, Chebyshev polynomials. From approximation theory to algebra and number theory, John Wiley, New York, 1990.
- [28] R. G. Rieper, The enumeration of graph imbeddings, PhD thesis, Western Michigan University, 1990.
- [29] G. Ringel, Map Color Theory, Springer, Berlin, 1974.
- [30] S. Stahl, Generalized embedding schemes, J. Graph Theory 2 (1978) 41–52.
- [31] S. Stahl, Region distributions of graph embeddings and Stirling numbers, Discrete Math. 82 (1990), 57–78.
- [32] S. Stahl, Permutation-partition pairs III: Embedding distributions of linear fam- ilies of graphs, J. Combin. Theory (B) 52 (1991), 191–218.
- [33] S. Stahl, Region distributions of some small diameter graphs, Discrete Math. 89 (1991), 281–299.
- [34] S. Stahl, On the zeros of some polynomial, Canad. J. Math. 49 (1996) 617–640
- [35] E. H. Tesar, Genus distribution of Ringel ladders, Discrete Math. 216 (2000) 235-252.
- [36] T. I. Visentin and S. W. Wieler, On the genus distribution of (p, q, n)-dipoles, *Electronic J. of Combin.* 14 (2007), Art. No. R12.
- [37] L. X. Wan and Y. P. Liu, Orientable embedding distributions by genus for certain types of graphs, Ars Combin. 79 (2006), 97–105.
- [38] L. X. Wan and Y. P. Liu, Orientable embedding genus distribution for certain types of graphs, J. Combin. Theory (B) 47 (2008), 19–32.
- [39] A. T. White, Graphs of Groups on Surfaces, North-Holland, 2001.