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abstract

The total embedding distributions of a graph is consisted of the orientable embeddings and non-
orientable embeddings and have been know for few classes of graphs. The genus distribution of
Ringel ladders is determined in [Discrete Mathematics 216 (2000) 235-252] by E.H. Tesar. In
this paper, the explicit formula for non-orientable embeddings of Ringel ladders is obtained.
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1. Background

One enumerative aspect of topological graph theory is to count genus distributions of a graph.
The history of genus distribution began with J. Gross in 1980s. Since then, it has been attracted
a lot of attentions, for the details, we may refer to [1, 8, 9, 10, 11, 13, 16, 17, 19, 22, 26, 28,
31, 32, 33, 34, 35, 36, 37, 38] etc (We only list a few). However, for the total embedding
distributions, only few classes are known. For example, Chen, Gross and Rieper [2] computed
the total embedding distribution for necklaces of type (r, 0), close-end ladders and cobblestone
paths, Kwak and Shim [21] computed for bouquets of circles and dipoles. In [3], Chen, Liu
and Wang calculated the total embedding distributions of all graphs with maximum genus 1.
Furthermore, in [4], Chen, Mansour and Zou obtained explicit formula for total embedding
distributions for the necklaces of type (r, s), closed-end ladders and cobblestone path.
It is assumed that the reader is somewhat familiar with the basics of topological graph theory
as found in Gross and Tucker [12]. A graph G = (V (G), E(G)) is permitted to have both loops
and multiple edges. A surface is a compact closed 2-dimensional manifold without boundary.
In topology, surfaces are classified into Om, the orientable surface with m(m ≥ 0) handles and
Nn, the nonorientable surface with n(n > 0) crosscaps. A graph embedding into a surface
means a cellular embedding.
A spanning tree of a graph G is a tree on its edges has the same order as G. The number
co-tree edges of a spanning tree of G is called the Betti number, β(G), of G. A rotation at a
vertex v of a graph G is a cyclic order of all edges incident with v. A pure rotation system P

of a graph G is the collection of rotations at all vertices of G. A general rotation system is a
pair (P, λ), where P is a pure rotation system and λ is a mapping E(G) → {0, 1}. The edge
e is said to be twisted (respectively, untwisted) if λ(e) = 1 (respectively, λ(e) = 0). It is well
known that every orientable embedding of a graph G can be described by a general rotation
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system (P, λ) with λ(e) = 0 for all e ∈ E(G). By allowing λ to take the non-zero value, we
can describe nonorientable embeddings of G, see [2, 30] for more details. A T -rotation system
(P, λ) of G is a general rotation system (P, λ) such that λ(e) = 0, for all e ∈ E(T ).

Theorem 1.1. (see [2, 30]) Let T be a spanning tree of G and (P, λ) a general rotation system.

Then there exists a general rotation system (P
′

, λ
′

) such that

(1) (P
′

, λ
′

) yields the same embedding of G as (P, λ), and

(2) λ
′

(e) = 0, for all e ∈ E(T ).

Two embeddings are considered to be the same if their T -rotation systems are combinatorially
equivalent. Fix a spanning tree T of a graph G. Let ΦT

G be the set of all T -rotation systems of
G. It is known that

|ΦT
G| = 2β(G)

∏

v∈V (G)

(dv − 1)!.

Suppose that in these |ΦT
G| embeddings of G, there are ai, i = 0, 1, . . ., embeddings into ori-

entable surface Oi and bj , j = 1, 2, . . ., embeddings into nonorientable surface Nj. We call the
polynomial

ITG(x, y) =
∞
∑

i=0

aix
i +

∞
∑

j=1

bjy
j

the T -distribution polynomial of G. By the total genus polynomial of G, we shall mean the
polynomial

IG(x, y) =

∞
∑

i=0

gix
i +

∞
∑

i=1

fiy
i,

where gi is the number of embeddings (up to equivalence) of G into the orientable surface Oi and
fi is the number of embeddings (up to equivalence) of G into the nonorientable surface Ni. We
call the first (respectively, second) part of IG(x, y) the genus polynomial (respectively, crosscap
number polynomial) of G and denoted by gG(x) =

∑∞
i=0 gix

i (respectively, fG(y) =
∑∞

i=1 fiy
i).

Clearly, IG(x, y) = gG(x) + fG(y). This means the number of orientable embeddings of G is
∏

v∈G(dv−1)!, while the number of non-orientable embeddings of G is (2β(G)−1)
∏

v∈G(dv−1)!.

Let T be a spanning tree of G and (P
′

, λ
′

) be a T -rotation system. Let e1, e2, . . . , eβ(G) be the

cotree edges of T . The overlap matrix of (P
′

, λ
′

) is the β × β matrix M = [mij ] over GF (2)
such that mij = 1 if and only if either i 6= j and the restriction of the underlying pure rotation
system to T + ei + ej is nonplanar, or i = j and ei is twisted. The following theorem due to
Mohar.

Theorem 1.2. (see [24]) Let (P, λ) be a general rotation system for a graph, and let M be
the overlap matrix. Then the rank of M equals twice the genus, if the corresponding embedding
surface is orientable, and it equals the crosscap number otherwise. It is independent of the
choice of a spanning tree.

An n-rung closed-end ladder Ln can be obtained by taking the graphical cartesian product of
an n-vertex path with the complete graph K2, and then doubling both its end edges. Figure 1
presents a 4-rung closed-end ladder.
Ringel ladders, Rn, are the graphs used by Ringel and Youngs in their proof of the Heawood
Map Coloring Theorem. In fact, A Ringel ladder, Rn, can be formed by subdividing the end-
rungs of the closed-end ladder, Ln, and adding an edge between these two new vertices. Figure
2 shows the Ringel ladder R4.
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Figure 1. The 4-rung closed-end ladder L4

Figure 2. The Ringel ladder R4

2. Homogeneous recurrence relation and Chebyshev polynomials

To begin with the discussion, we give some concepts of the n-th Chebyshev polynomials of
the second kind which is related to the solution of the recurrence relation. Let the recurrence
function Un(x) be

Un(x) = 2xUn−1(x)− Un−2(x)

with the initial conditions U0(x) = 1, U1(x) = 2x, then we derived the n-th Chebyshev polyno-
mials with the second kind Un(x) (see [27]). For instance, U2(x) = 4x2 − 1, U3(x) = 8x3 − 4x,
U4(x) = 16x4 − 12x2 + 1. Moreover, we have the identity that

Un(x) =

⌊n/2⌋
∑

k=0

(

n− k

k

)

(−1)k(2x)n−2k.(1)

Now, we will build the relation between the recurrence relation and the Chebyshev polynomials

with the second kind. Let Pn(z) =
n
∑

m=0
Cn(m)zm, satisfy the following

Pn(z) = a1(z)Pn−1(z) + a2(z)Pn−2(z),

where ai(z) =
q
∑

k=0

ai, kz
k for i = 1, 2. and the initial conditions P0(z) = c0, and P1(z), P2(z)

can be derived by the initial values of Cn(m).

Let Qn(z) =
Pn(z)

(
√

a2(z)i)n
, then it is easy to verify that

Qn(z) =
a1(z)

√

a2(z)i
Qn−1(z)−Qn−2(z)
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with the initial conditions Q0(z) = P0(z) = c0, Q1(z) =
P1(z)√
a2(z)i

and Q2(z) =
P2(z)
−a2(z)

. Using the

fact that U0(x) = 1, U1(x) = 2x, U2(x) = 4x2 − 1, by induction on n = 0, 1, 2, we obtain that

Qn(z) = AUn(
a1(z)

2
√

a2(z)i
) +BUn−1(

a1(z)

2
√

a2(z)i
) + CUn−2(

a1(z)

2
√

a2(z)i
),(2)

where A,B, and C are determined by the initial conditions.
Thus we have

Pn(z) = (
√

a2(z)i)
nAUn(

a1(z)

2
√

a2(z)i
) +BUn−1(

a1(z)

2
√

a2(z)i
) + CUn−2(

a1(z)

2
√

a2(z)i
).(3)

Using the fact that

Un(x) =

⌊n/2⌋
∑

k=0

(

n− k

k

)

(−1)k(2x)n−2k.

We can derive that

(i
√

a2(z))
nUn(

a1(z)

2
√

a2(z)i
) =

∑

j≥0

(

n− j

j

)

(a1(z))
n−2j .(4)

Since a1(z) is a polynomial of degrees less than q, then (a1(z))
n−2j can be expressed as the

type of power series. Plug the above formula into (3) and comparing the coefficient zm in both
sides and we can obtain the explicit formulae Cn(m) for 0 ≤ m ≤ n.

3. Total embedding distributions of Ringel ladders

3.1. The rank-distribution polynomial of Closed-end ladders. we adopt the notations
of [4], the overlap of matrix of Closed-end ladders Ln−1 has the following form MX,Y

n ( see [4]
for more details).
Let X = (x1, x2, . . . , xn) ∈ (GF (2))n and Y = (y1, y2, . . . , yn−1) ∈ (GF (2))n−1. We define the
tridiagonal matrix MX,Y

n as

MX,Y
n =

















x1 y1
y1 x2 y2 0

y2 x3 y3

0 yn−2 xn−1 yn−1

yn−1 xn

















.

Furthermore, we define Ln ={MX,Y
n | X ∈ (GF (2))n and Y ∈ (GF (2))n−1}, which is the set of

all matrices over GF (2) that are of the type MX,Y
n . We define the rank-distribution polynomial

to be the polynomial Ln(z) =
∑n

j=0 Dn(j)z
j , where Dn(j), j = 0, 1, . . . , n, is the number of

different assignment of the variables xj , yk, where j = 1, 2, · · · , n and k = 1, 2, · · · , n − 1, for
which the matrix MX,Y

n in Ln has rank j. Similarly, Let On = {M0,Y
n | Y ∈ (GF (2))n−1}, and

On(z) =
∑n

j=0 On(j)z
j be the rank-distribution polynomial of On ,where On(j), j = 0, 1, . . . , n,

is the number of different assignment of the variables yk, where k ∈ {1, 2, . . . , n− 1}, for which
the matrix MY

n in An has rank j.

Lemma 3.1. (see [4]) The polynomial On(z) satisfies the recurrence relation

On(z) = On−1(z) + 2z2On−2(z)

with the initial conditions O1(z) = 1 and O2(z) = z2 + 1.
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Theorem 3.2. (see [4]) For all n ≥ 1,

On(z) =
∑

j≥0

(

n− j

j

)

2j z2j −
∑

j≥0

(

n− 2− j

j

)

2j z2j+2.

Corollary 3.3. For all 1 ≥ m ≤ [n2 ].

On(2m+ 1) = 0,

On(2m) =

(

n−m

m

)

· 2m −
(

n−m− 1

m− 1

)

· 2m−1.

Lemma 3.4. (see [4]) The polynomial Ln(z) satisfies the recurrence relation

Ln(z) = (1 + 2z)Ln−1(z) + 4z2Ln−2(z)

with the initial conditions L1(z) = 1 + z and L2(z) = 4z2 + 3z + 1.

Theorem 3.5. (see [4]) For all n ≥ 1,

Ln(z) = (2iz)n
[

Un

(

1 + 2z

4iz

)

+
i

2
Un−1

(

1 + 2z

4iz

)

− 1

2
Un−2

(

1 + 2z

4iz

)]

,

where Us(t) is the s-th Chebyshev poynomial of the second kind and i2 = −1.

Corollary 3.6. (see [4]) For all n ≥ 1 and 0 ≤ m ≤ n,

Dn(m) = 2m
[m/2]
∑

j=0

(

n− j

j

)(

n− 2j

n−m

)

− 2m−1

[(m−1)/2]
∑

j=0

(

n− 1− j

j

)(

n− 1− 2j

n−m

)

+ 2m−1

[(m−2)/2]
∑

j=0

(

n− 2− j

j

)(

n− 2− 2j

n−m

)

.

3.2. The overlap matrix of Ringel ladders. We adopt the same notation used by Ringel
[27, p.17]. A cubic graph at each vertex has two cyclic orderings of its neighbors. One of
these two cyclic orderings is denoted as clockwise and the other counterclockwise. We color the
vertex black, if that vertex has the clockwise ordering of its neighbors, otherwise, we will color
the counterclockwise vertices white. This will bring convenient to embed a cubic graph into
surfaces, as we can draw an imbedding on the plane and only need to color the vertices black
and white.

Definition 3.7. An edge is called matched if it has the same color at both ends, otherwise it
is called unmatched.

We fix a spanning tree T of Rn−1 shown as the thicker lines in Figure 3, that is to say, the
cotree edges are e, a1, a2, · · · , an.

Property 3.8. Two cotree edges e and ai, for i = 1, 2, · · · , n, overlap if and only if the edge
ci is unmatched.

Property 3.9. Two cotree edges ai and ai+1,for i = 1, 2, · · · , n− 1, overlap if and only if the
edge bi is unmatched.
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· · ·

a1
a2 a3 an−1

an

b1 b2 b3 bn−1

c1

c2 c3 cn−1

cn

e

v2 v3 v4 vn−1 vn

vn+1v1

u2 u3 u4 un−1 un

Figure 3.

It is easy to see that the overlap matrix of Rn−1 has the following form.

M
X,Y,Z
n+1 =

























x0 z1 z2 z3 . . . zn−1 zn
z1 x1 y1
z2 y1 x2 y2 0

z3 y2 x3
. . .

...
. . .

. . . yn−2

zn−1 0 yn−2 xn−1 yn−1

zn yn−1 xn

























,

where X = (x0, x1, . . . , xn) ∈ (GF (2))n, Y = (y1, y2, . . . , yn−1) ∈ (GF (2))n−1 and Y =
(z1, z2, . . . , zn) ∈ (GF (2))n−1. Note that x0 = 1 if and only if the edge e is twisted, xi = 1 if
and only if the edge ai is twisted, for all i = 1, 2, . . . , n, yj = 1 if and only if bj is unmatched.
for all j = 1, 2, . . . , n− 1, and zk = 1 if and only if ck is unmatched, for all k = 1, 2, . . . , n.

Property 3.10. For a fixed matrix of the form M
X,Y,Z
n+1 , there are exactly 2 different T -rotation

systems corresponding to that matrix.

Proof. Given a matrix M
X,Y,Z
n+1 , the values of z1, z2, · · · , zn and y1, y2, · · · , yn−1 are determined.

• z1 = 0. If we color the vertex v1 black, by Property 3.8, the color of v2 is black. Since the
values of z2, · · · , zn and y1, y2, · · · , yn−1 are given, by Property 3.8 and Property 3.9,
all the colors of v2, u2, · · · , vn, un, vn+1 are determined. That is to say, all the rotations
of vertices of Rn is determined. Otherwise the vertex v1 is colored white, by Property
3.8, the color of v2 is also white, by the values of z2, · · · , zn and y1, y2, · · · , yn−1 and
by Property 3.8 and Property 3.9, the color all vertices of Rn is determined.

• z1 = 1, Similar discuss like the case z1 = 0, the details are omitted.

�

Now, we denote Rn+1 be the set of all matrices over GF (2) that are of the form M
X,Y,Z
n+1 . The

we calculate the rank distribution of the set Rn+1.

Let Rn+1(z) =
∑n+1

j=0 Cn+1(j)z
j be the rank-distribution polynomial of the set Rn+1. In other

words, for j = 0, 1, . . . , n+1, Cn+1(j) is the number of different assignment of the variables xi,

i = 0, 1, · · · , n, yk, k = 1, 2, · · · , n − 1, and zl, l = 1, 2, · · · , n for which the matrix M
X,Y,Z
n+1 in

Rn+1 has rank j.
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Similarly, Let Pn+1 be the set of all matrices over GF (2) that are of the form M
O,Y,Z
n+1 . The

we calculate the rank distribution of the set Pn+1. Let Pn+1(z) =
∑n+1

j=0 Dn+1(j)z
j be the

rank-distribution polynomial of the set On+1. In other words, for j = 0, 1, . . . , n+1, Dn+1(j) is
the number of different assignment of the variables yk, k = 1, 2, · · · , n−1, and zl, l = 1, 2, · · · , n
for which the matrix M

O,Y,Z
n+1 in Pn+1 has rank j.

Lemma 3.11. The polynomial Pn(z) (n ≥ 3) satisfies the recurrence relation

Pn+1(z) = Pn(z) + 8z2Pn−1(z) + 2n−1z2On−1(z).(5)

with the initial condition P2(z) = z2+1, P3(z) = 7z2+1 and P4(z) = 12z4+19z2+1 where
On−1(z) is rank-distribution polynomial of closed-end ladders Ln−2.

Proof. To obtain the relation between Pn+1(z) and Pn(z), we consider the four different ways

to assign the variables yn−1 and zn in the matrix M
Y,Z
n+1.

Case 1: yn−1 = 0.

• Subcase 1: zn = 0. Then the rank of M
Y,Z
n+1 is the same as the upper left n × n

submatrix, which is a matrix of the form MY,Z
n . We conclude that this case contributes

to the polynomial Pn+1(z) by a term Pn(z).
• Subcase 2: zn = 1. It is easy to sea that, no matter what assignments of the variables

z1, z2, · · · , zn−1, we can transform M
Y,Z
n+1 to the following form.

M1 =

























0 0 0 0 . . . 0 1
0 0 y1
0 y1 0 y2

0 y2 0
. . .

...
. . .

. . . yn−2

0 yn−2 0 0
1 0 0

























,

We firstly delete the first column and the last column then delete the first row and the last row
of M1, then we obtain a matrix which is a overlap matrix of closed ladders Ln−2. Since there
are 2n−1 different assignments of the variables z1, z2, · · · , zn−1, it contributes to the polynomial
Pn+1(z) by a term 2n−1z2On−1(z).
Case 2:yn−1 = 1. If zn = 1, we first add the last row to the first low, then add the last column

to the fist column. A similar discussion for yn−2 and zn−1, we transform M
Y,Z
n+1 to the following

form.

M =

























0 z1 z2 . . . zn−2 0 0
z1 0 y1

z2 y1 0
. . .

...
. . .

. . . yn−3

zn−2 yn−3 0 0
0 0 0 1
0 1 0

























,

Note that the upper left (n−1)× (n−1) submatrix of M2, which is a matrix of the form M
Y,Z
n−1.

There are 23 different assignments of the variables yn−2, zn−1 and zn in the matrix MY,Z
n . In

this case, it contributes to the polynomial Pn+1(z) by a term 8z2Pn(z). �
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Lemma 3.12. The polynomial Rn(z) (n ≥ 3) satisfies the recurrence relation

Rn+1(z) = (4z + 1)Rn(z) + 16z2Rn−1(z) + 2nz2Ln−1(z).(6)

with the initial condition R2(z) = 4z2 + 3z + 1, R3(z) = 28z3 + 28z2 + 7z + 1, where Ln−1(z)
is rank-distribution polynomial of closed-end ladders Ln−2.

Proof. To obtain the relation between Rn+1(z) and Rn(z), we consider the eight different ways

to assign the variables xn, yn−1 and zn in the matrix M
X,Y,Z
n+1 .

Case 1: xn = 0.

• Subcase 1: yn−1 = zn = 0. Then the rank of MX,Y,Z
n+1 is the same as the upper left

n × n submatrix, which is a matrix of the form MX,Y,Z
n . We conclude that this case

contributes to the polynomial Rn+1(z) by a term Rn(z).
• Subcase 2: yn−1 = zn = 1. We first add the last row to the first low, then add the last
column to the fist column. If xn−1 = 1, we add the last column to the n-th column. A

similar discussion for yn−2 and zn−1, we transform M
X,Y,Z
n+1 to the following form.

M =

























x0 z1 z2 . . . zn−2 0 0
z1 x1 y1

z2 y1 x2
. . .

...
. . .

. . . yn−3

zn−2 yn−3 xn−2 0
0 0 0 1
0 1 0

























,

Note that the upper left (n− 1)× (n− 1) submatrix, which is a matrix of the form

M
X,Y,Z
n−1 . There are 23 different assignments of the variables xn−1, yn−2 and zn−1, in

these case it contributes to the polynomial Rn+1(z) by a term 8z2Rn−1(z).
• Subcase 3: yn−1 = 1, zn = 0. Similarly discuss like subcase 2, it contributes to the
polynomial Rn+1(z) by a term 8z2Rn−1(z).

• Subcase 4: yn−1 = 0, zn = 1. It is easy to sea that, no matter what assignments of

the variables x0, z1, z2, · · · , zn−1, we can transform M
X,Y,Z
n+1 to the following form.

M1 =

























0 0 0 0 . . . 0 1
0 x1 y1
0 y1 x2 y2

0 y2 x3
. . .

...
. . .

. . . yn−2

0 yn−2 xn−1 0
1 0 0

























,

We firstly delete the first column and the last column then delete the first row and the last
row of M1, then we obtain a matrix which is a overlap matrix of closed ladders Ln−2. Since
there are 2n different assignments of the variables x0, z1, z2, · · · , zn−1, it contributes to the
polynomial Rn+1(z) by a term 2nz2Ln−1(z).
Case 2: xn = 1. If zn = 1, we first add the last column to the first column then add the last
row to the first row. Similarly, if yn−1 = 1, we add the last column to the n-th column and add
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the last row to the n-th row. As last we can transfer the matrix M
X,Y,Z
n+1 to the matrix M2 of

following form.

M2 =

























x0 z1 z2 z3 . . . zn−1 0
z1 x1 y1
z2 y1 x2 y2

z3 y2 x3
. . .

...
. . .

. . . yn−2 0
zn−1 yn−2 xn−1 0
0 0 1

























,

Note that the upper left n× n submatrix of M2, which is a matrix of the form MX,Y,Z
n . There

are 22 different assignments of the variables yn−1 and zn in the matrix MX,Y,Z
n . In this case, it

contributes to the polynomial Rn+1(z) by a term 4zRn(z). �

Theorem 3.13. For all n ≥ 2,

Pn(z) =(2
√
2iz)n

{

Un(
1

4
√
2iz

)− z2 + 1

4
√
2iz

Un−1(
1

4
√
2iz

) +
17z2 − 1

16z2
Un−2(

1

4
√
2iz

)

}

+ 2n−1z2On−1(z).

where Us(t) is the s-th Chebyshev poynomial of the second kind, i2 = −1 and On−1(z) is rank-
distribution polynomial of closed-end ladders Ln−2.

Proof. Note that

Pn+1(z) = Pn(z) + 8z2Pn−1(z) + 2n−1z2On−1(z).(7)

We first consider the homogeneous recurrence relation part of (11).

Pn+1(z) = Pn(z) + 8z2Pn−1(z).(8)

By the method of subsection 2, we have a solution of (12).

Pn(z) = (
√

a2(z)i)
n

{

AUn(
a1(z)

2
√

a2(z)i
) +BUn−1(

a1(z)

2
√

a2(z)i
) + CUn−2(

a1(z)

2
√

a2(z)i
)

}

(9)

Now, let Yn(z) = 2nf(z)On(z) be one special solution of Pn(z), plug it into (11), using the
relation

On(z) = (1 + 2z)On−1(z) + 4z2On−2(z),

it leads to

Yn(z) = 2n−1z2On−1(z) =
∑

m≥0

2n−1On−1(m)zm+2.

Thus,

Pn(z) = (2
√
2zi)n

{

Un(
1

2
√
2iz

) +BUn−1(
1

2
√
2iz

) + CUn−2(
1

2
√
2iz

)

}

+ 2n−1z2On−1(z).

(10)
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Plug the initial values P2(z),P3(z) into (14), it follows that














−8z2
{

(2( 1
2
√
2iz

) +B) 1
2
√
2iz

+ (C − 1)
}

+ 2z2 = z2 + 1

−16
√
2iz3

{

( 1
2
√
2iz

+B) (− 1
8z2 − 1) + 1

2
√
2iz

)(C − 1)
}

+ 4z2(z2 + 1) = 7z2 + 1.

By simple computation, we immediately obtain

B =
−z2 − 1

4
√
2iz

, C =
17z2 − 1

16z2
.

�

Then according to the identity (1), the formula (14) is as follows

Pn(z) =
∑

j≥0

(

n− j

j

)

(8z2)j − z2 + 1

2
×







∑

j≥0

(

n− 1− j

j

)

(8z2)j







− 17z2 − 1

2







∑

j≥0

(

n− 2− j

j

)

(8z2)j







+ 2n−1z2On−1(z).

Comparing the coefficient of zm in both sides, thus for all n ≥ 2 and 0 ≤ m ≤ n, we have the
following result.

Theorem 3.14. For all n ≥ 2,

Rn(z) =(4zi)n
{

Un(
1 + 4z

8iz
)− 2z2 + 7z + 1

8iz
Un−1(

1 + 4z

8iz
) +

34z2 − z − 1

32z2
Un−2(

1 + 4z

8iz
)

}

+ 2nz2Ln−1(z).

where Us(t) is the s-th Chebyshev poynomial of the second kind, i2 = −1 and Ln−1(z) is
rank-distribution polynomial of closed-end ladders Ln−2.

Proof. Note that

Rn(z) = (4z + 1)Rn−1(z) + 16z2Rn−2(z) + 2n−1z2Ln−2(z).(11)

We first consider the homogeneous recurrence relation part of (11).

Rn(z) = (4z + 1)Rn−1(z) + 16z2Rn−2(z).(12)

By the method of subsection 2, we have a solution of (12).

Rn(z) = (
√

a2(z)i)
n

{

AUn(
a1(z)

2
√

a2(z)i
) +BUn−1(

a1(z)

2
√

a2(z)i
) + CUn−2(

a1(z)

2
√

a2(z)i
)

}

(13)

Now, let Yn(z) = 2nf(z)Ln(z) be one special solution of Rn(z), plug it into (11), using the
relation

Ln(z) = (1 + 2z)Ln−1(z) + 4z2Ln−2(z),

it leads to f(z) = z2
Ln−1(z)
Ln(z)

.

Thus we obtain a special solution of non-homogeneous recurrence (11)

Yn(z) = 2nz2Ln−1(z) =
∑

m≥0

2nCn−1(m)zm+2.
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Thus,

Rn(z) = (4zi)n
{

Un(
1 + 4z

8iz
) +BUn−1(

1 + 4z

8iz
) + CUn−2(

1 + 4z

8iz
)

}

+ 2nz2Ln−1(z).(14)

Plug the initial values R2(z),R3(z) into (14), it follows that














−16z2
{

(2(1+4z
8iz ) +B) U1(

1+4z
8iz ) + C − 1

}

+ 4z2(1 + z) = 4z2 + 3z + 1

−64iz3
{

(2(1+4z
8iz ) +B) U2(

1+4z
8iz ) + U1(

1+4z
8iz )(C − 1)

}

+ 8z2(4z2 + 3z + 1)
= 28z3 + 28z2 + 7z + 1.

By simple computation, we immediately obtain

B = −−2z2 − 7z − 1

8iz
, C =

34z2 − z − 1

32z2
.

�

Then according to the identity (1), the formula (14) is as follows

Rn(z) =
∑

j≥0

(

n− j

j

)

(1 + 4z)n−2j(4z)2j − 2z2 + 7z + 1

2
×(15)







∑

j≥0

(

n− 1− j

j

)

(1 + 4z)n−1−2j(4z)2j







+
34z2 − z − 1

2







∑

j≥0

(

n− 2− j

j

)

(1 + 4z)n−2−2j(4z)2j







+ 2nz2Ln−1(z).

Comparing the coefficient of zm in both sides of (15), thus for all n ≥ 2 and 0 ≤ m ≤ n, we
have the following result.

Corollary 3.15. For all n ≥ 2 and 0 ≤ m ≤ n,

Cn(m) =

⌊m

2
⌋

∑

j=0

(

n− j

j

)(

n− 2j

n−m

)

4m −
⌊m−2

2
⌋

∑

j=0

(

n− j − 1

j

)(

n− 1− 2j

n−m+ 1

)

4m−2

− 7

2

⌊m−1

2
⌋

∑

j=0

(

n− j − 1

j

)(

n− 1− 2j

n−m

)

4m−1 − 1

2

⌊m

2
⌋

∑

j=0

(

n− j − 1

j

)(

n− 1− 2j

n−m− 1

)

4m

− 17

⌊m−2

2
⌋

∑

j=0

(

n− j − 2

j

)(

n− 2− 2j

n−m

)

4m−2 +
1

2

⌊m−1

2
⌋

∑

j=0

(

n− j − 2

j

)(

n− 2− 2j

n−m− 1

)

4m−1

+
1

2

⌊m

2
⌋

∑

j=0

(

n− j − 2

j

)(

n− 2− 2j

n−m− 2

)

4m + 2nDn−1(m− 2).
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where

Dn(m) = 2m
[m/2]
∑

j=0

(

n− j

j

)(

n− 2j

n−m

)

− 2m−1

[(m−1)/2]
∑

j=0

(

n− 1− j

j

)(

n− 1− 2j

n−m

)

+ 2m−1

[(m−2)/2]
∑

j=0

(

n− 2− j

j

)(

n− 2− 2j

n−m

)

.

Theorem 3.16. The total genus polynomial of Ringel ladders Rn−1 is as follows:

IRn−1
(x, y) = 2

n+1
∑

j=0

Cn+1(j)y
j − I0(Rn−1, y2) + I0(Rn−1, x)

where I0(Rn−1, x) is the genus polynomial of Ringel ladder Rn−1, which has been derived by
E.H. Tesar [35].

Proof. By Property 3.10, the theorem follows. �

For instance, the above theorem gives

IR1
(x, y) =2 + 14x+ 14y + 42y2 + 56y3,

IR2
(x, y) =2 + 38x+ 24x2 + 22y + 122y2 + 424y3 + 392y4,

IR3
(x, y) =2 + 70x+ 184x2 + 30y + 242y2 + 1448y3 + 3272y4 + 2944y5,

IR4
(x, y) =2 + 118x+ 648x2 + 256x3

+ 38y + 410y2 + 3496y3 + 12952y4 + 26880y5 + 20736y6,

IR5
(x, y) =2 + 198x+ 1656x2 + 2240x3

+ 46y + 642y2 + 7240y3 + 36808y4 + 120832y5 + 207168y6 + 147456y7.
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