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Green Correspondence for Virtually Pro-p Groups

November 17, 2010

1 Introduction

Let p be a prime number, G a finite group, Q a p-subgroup of G and L any
subgroup of G containing the normalizer NG(Q) of Q in G. Let k be a field
of positive characteristic p. In [2] J.A. Green demonstrates a fundamental cor-
respondence between finitely generated kG-modules with vertex Q and finitely
generated kL-modules with vertex Q. When L = NG(Q) the Green corre-
spondence allows for the reduction of many questions about general modules to
questions about modules with a normal vertex.

Now let G be a profinite group and k a finite field of characteristic p. In [3]
we took some first steps towards a modular representation theory of profinite
groups. In particular we demonstrated a classification theorem for relatively
projective finitely generated k[[G]]-modules, introduced vertices and sources, and
showed that the expected uniqueness properties hold for these objects (under
additional hypotheses in the case of sources). Here we generalize the Green
correspondence (properly interpreted) to the class of virtually pro-p groups.
We will reference [3] frequently, since many necessary foundational results are
discussed therein.

Our main result is the following:

Theorem 1.1. Let G be a virtually pro-p group, let Q be a closed pro-p subgroup

of G and let L be a closed subgroup of G containing NG(Q). Let S be a finitely

generated indecomposable profinite k[[Q]]-module with vertex Q. Then there is

a canonical bijection between the set of isomorphism classes of indecomposable

profinite k[[L]]-modules with vertex Q and source S, and the set of isomorphism

classes of indecomposable profinite k[[G]]-modules with vertex Q and source S.
More explicitly, if V is an indecomposable k[[L]]-module with vertex Q and

source S, then the correspondent of V under the above bijection is the unique

indecomposable summand of V ↑G having vertex Q.

We approach the proof in two main steps. We first demonstrate a correspon-
dence which is word-for-word analogous to the finite case under the additional
assumption that L is open in G. Using this special case we then demonstrate the
truth of the above theorem. First let us establish some notation to be assumed
throughout our discussion.
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The main concepts mentioned in this paragraph are introduced and discussed
in [3]. Let G be a virtually pro-p group and k a finite field of characteristic
p. All modules are assumed to be profinite left modules. If U is a k[[G]]-
module and N is a closed normal subgroup of G, then we denote by UN the
coinvariant module k⊗̂k[[N ]]U - note that this is not a restriction. If U is finitely
generated and N is open in G, then UN is finite. If U is non-zero, finitely
generated and indecomposable, then by [3, 2.8, 2.9] we can choose a cofinal
inverse system of open normal pro-p subgroups of G for which each UN is non-
zero and indecomposable. As usual, if H is a closed subgroup of G and V is
a k[[H ]]-module, then we denote by V ↑G the k[[G]]-module induced from V . If
U is a k[[G]]-module, then we denote by U ↓H the k[[H ]]-module obtained by
restricting the coefficients of U .

Let Q be a closed pro-p subgroup of G and let L be any closed subgroup of
G containing NG(Q). We define the following two sets of subgroups of G:

X = {X ≤C G |X ≤ xQx−1 ∩Q, x /∈ L}

Y = {Y ≤C G |Y ≤ xQx−1 ∩ L, x /∈ L}.

If H is a collection of subgroups of G, then we say a finitely generated k[[G]]-
module U is relatively H-projective if each indecomposable summand of U is
projective relative to an element of H. As in the finite case we note that X

consists of proper subgroups of Q, while Y may contain a conjugate of Q.

2 The case where L is open

Essentially following the treatment in [1, 3.12] we prove three lemmas which
constitute the bulk of the work for the case of open L.

Lemma 2.1. Let V be a finitely generated indecomposable Q-projective k[[L]]-
module. Then V ↑G↓L∼= V ⊕ V1, where V1 is Y-projective.

Proof. By the Mackey decomposition formula [5, 2.2] we have

V ↑G↓L∼=
⊕

x∈L\G/L

x(V )↓xLx−1∩L↑
L= V ⊕

⊕

x∈L\G/L,x/∈L

x(V )↓xLx−1∩L↑
L

so we need only show that a summand of the form x(V )↓xLx−1∩L↑
L with x /∈ L

is Y-projective. By [3, 5.2] the module x(V ) is projective relative to xQx−1

so by [3, 3.7] we can choose a k[[xQx−1]]-module S such that x(V )
∣∣S ↑xLx−1

.
Then

x(V )↓xLx−1∩L↑
L

∣∣S ↑xLx−1

↓xLx−1∩L↑
L∼=

⊕

y

y(S)↓(yx)Q(yx)−1∩xLx−1∩L↑
L

where y runs through a set of double coset representatives of

(xLx−1 ∩ L)\xLx−1/xQx−1.
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Note that yx = xlx−1x = xl for some l ∈ L and x /∈ L implies xl /∈ L so that
each ((yx)Q(yx)−1 ∩ xLx−1 ∩ L) ∈ Y. Hence the module x(V ) ↓xLx−1∩L↑

L is
relatively Y-projective as required.

Lemma 2.2. Let V be a finitely generated indecomposable Q-projective k[[L]]-
module. Then V ↑G∼= U ⊕ U1, where U is indecomposable, V

∣∣U ↓L, and U1 is

X-projective.

Proof. Since V
∣∣V ↑G↓L, by the Krull–Schmidt theorem [4, 2.1] there is an inde-

composable summand U of V ↑G with V
∣∣U ↓L. Write V ↑G∼= U ⊕ U1 and take

an indecomposable summand U ′ of U1. We wish to show that U ′ is relatively
X-projective. Note that U ′ is relatively Q-projective.

Since NG(Q) ≤ L and L is open, a standard compactness argument allows us
to consider a cofinal inverse system of open normal subgroups N of G such that
NG(QN) ≤ L. Fix some N in our system. The module U ′ is projective relative
to QN , so U ′

∣∣U ′ ↓QN↑G by [3, 3.7]. Since U ′ ↓QN is finitely generated, we can

find some indecomposable k[[QN ]]-module S such that S
∣∣U ′ ↓QN and U ′

∣∣S ↑G.
Now U ′ ↓QN

∼= U ′ ↓L↓QN so there is an indecomposable finitely generated k[[L]]-
module V ′ such that V ′

∣∣U ′ ↓L and S
∣∣V ′ ↓QN . Note that V ′ is a direct summand

of V ↑G↓L distinct from V , so by Lemma 2.1 it is projective relative to a subgroup
of the form tQt−1 ∩L with t ∈ G, t /∈ L. Let T be a k[[tQt−1 ∩ L]]-module such
that V ′

∣∣T ↑L. From the Mackey decomposition theorem [5, 2.2] we have

S
∣∣V ′ ↓QN

∣∣T ↑L↓QN
∼=

⊕

l∈QN\L/tQt−1∩L

l(T )↓(lt)Q(lt)−1∩QN↑
QN .

Since t /∈ L it follows that S is projective relative to a subgroup of the form
xQx−1 ∩ QN for some x /∈ L. Since U ′

∣∣S ↑G we have shown that for each N
in our system the module U ′ is projective relative to a subgroup of the form
xQx−1 ∩QN for some x /∈ L that depends on N .

We would like to find some x ∈ G, x /∈ L for which U ′ is projective relative
to xQx−1 ∩ QN for every N in our system. Denote by CN the non-empty set
of x ∈ G, x /∈ L for which U ′ is relatively [xQx−1 ∩ QN ]-projective. If ever
N ≤ M and x ∈ CN then certainly U ′ is projective relative to xQx−1 ∩QM , so
if x ∈ CN then x ∈ CM . Since each CN is closed in G the standard compactness
argument now shows that

⋂
N CN 6= ∅.

Choose some x ∈ G, x /∈ L for which U ′ is projective relative to xQx−1∩QN
for each N in our system. By [3, 4.2] it follows that U ′ is projective relative to

⋂

N

(xQx−1 ∩QN) = xQx−1 ∩ (
⋂

N

QN) = xQx−1 ∩Q

as required.

In the finite case the following lemma is an easy corollary of Lemma 2.1. In
our more general context it requires a little more care.
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Lemma 2.3. Let U be a finitely generated indecomposable k[[G]]-module with

vertex Q. There is a finitely generated indecomposable k[[L]]-module V with

vertex Q such that U
∣∣V ↑G and V

∣∣U ↓L.

Proof. We work in a cofinal inverse system of N �O G with NG(QN) ≤ L. We
first show that U ↓L has an indecomposable summand with vertex Q. Since
U
∣∣U ↓L↑

G we have U ↓L has at least one summand with vertex conjugate to

Q in G. Let X denote the non-empty set of isomorphism classes of V
∣∣U ↓L

having vertex conjugate to Q. For each N , the fact that U
∣∣U ↓QN↑G implies

that U
∣∣V ↓LQN↑

G for some V ∈ X , and so U
∣∣W ↑G for some W

∣∣V ↓QN . Clearly

W has vertex yQy−1 ⊆ QN .
Suppose V has vertex xQx−1 and let S be a k[[xQx−1]]-module with V

∣∣S ↑L.

Applying Mackey’s formula to W
∣∣S ↑L↓QN it follows that V has vertex L-

conjugate to a subgroup of QN , and so V has a vertex contained in QN . Note
that X is a finite set, so some element of X must have vertex contained in QN
for a cofinal subset of N �O G and hence some element of X has vertex Q.

Let Z be an indecomposable summand of U ↓L and suppose that for all N
in our system there is some x /∈ L such that Z is xQNx−1-projective. Denote
by CN the non-empty set of all such x /∈ L. If x ∈ CN then xq ∈ CN for all
q ∈ QN and so each set CN is closed in G.

If N ≤ M and x ∈ CN then certainly x ∈ CM . By compactness we now
have that

⋂
N CN 6= ∅. Fix x ∈

⋂
N CN . It follows that Z is xQx−1N -projective

for each N , and so Z is xQx−1-projective. Note that for any l ∈ L we have
(lx)Q(lx)−1 6= Q since lx /∈ L. From the conjugacy of vertices [3, 4.6] it follows
that Z does not have vertex Q.

Since there is an indecomposable summand of U ↓L with vertex Q the con-
trapositive of the previous argument shows there is some N0 �O G such that
this summand is not projective relative to xQN0x

−1 for any x /∈ L. From now
on we work within the cofinal system of N �O G with N ≤ N0.

Let T denote the (finite, non-empty) set of isomorphism classes of indecom-
posable V

∣∣U ↓L such that U
∣∣V ↑G. We wish to find an element of T with vertex

Q. Choose N in our system. Since U
∣∣U ↓QN↑G we take some indecomposable

summand V
∣∣U ↓QN↑L such that U

∣∣V ↑G. Since V
∣∣V ↑G↓L, by Lemma 2.1 we

have two possibilities:

• V
∣∣U ↓L or

• Each summand of U ↓L is projective relative to xQNx−1 ∩ L for some
x /∈ L.

By our choice of N the latter cannot happen, so that V
∣∣U ↓L and so V ∈ T .

Thus for all N there is an element of T which is QN -projective, and so there is
an element of T which has vertex Q, as required.

Proposition 2.4. Let G be a virtually pro-p group, Q a closed pro-p subgroup

of G and let L be an open subgroup of G containing NG(Q). Then we have
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the following correspondence between finitely generated indecomposable k[[G]]-
modules with vertex Q, and finitely generated indecomposable k[[L]]-modules with

vertex Q:

1. If U is a finitely generated indecomposable k[[G]]-module with vertex Q,

then there is a unique indecomposable summand f(U) of U ↓L with vertex

Q, and the rest have vertex in Y.

2. If V is a finitely generated indecomposable k[[L]]-module with vertex Q,

then there is a unique indecomposable summand g(V ) of V ↑G with vertex

Q, and the rest have vertex in X.

3. The given correspondence is one-one in the sense that f(g(V )) ∼= V and

g(f(U)) ∼= U .

Proof. 1. By Lemma 2.3 we have that U
∣∣V ↑G for some finitely generated

indecomposable k[[L]]-module V with vertex Q. Thus U ↓L
∣∣V ↑G↓L. By

Lemma 2.1, V is the only summand of V ↑G↓L with vertex Q and the rest
have vertex in Y, so that U ↓L has at most one summand with vertex Q.
On the other hand, again by Lemma 2.3 we have that U ↓L has at least
one summand with vertex Q. Hence we set f(U) = V and the claim holds.

2. We have V
∣∣V ↑G↓L so we choose an indecomposable summand U

∣∣V ↑G

such that V
∣∣U ↓L. By Lemma 2.2, we have V ↑G∼= U ⊕U1 where U1 is X-

projective. The module U has vertex Q since if it had smaller vertex then
the Mackey decomposition theorem shows that V would as well. Thus, we
take g(V ) = U and we are done.

3. This is clear.

3 A more general case

We retain the notation from above but drop the assumption that L is open in
G. When L was open and U, V were Green correspondents as above, we see in
particular that V

∣∣U ↓L. This need not be the case when L has infinite index in
G - an example of this phenomenon can be found in the last section of [5]. For
this reason we now focus on the map g.

Let V be an indecomposable finitely generated k[[L]]-module with vertex Q.
By [3, 5.1] we can choose a cofinal inverse system of N �O G for which V ↑LN is
indecomposable. We work in this system as we prove the following key lemma:

Lemma 3.1. For any given M �O G in our inverse system the module V ↑LM

has vertex Q.

Proof. Certainly V ↑LM is relatively Q-projective, so we choose some vertex R
of V ↑LM contained in Q. We will show that V is R-projective. Consider the
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cofinal inverse system of those N�OG contained inside M , noting that for each
such N the module V ↑LN is indecomposable.

Let S be a k[[R]]-module such that V ↑LM
∣∣S ↑LM . Then for each N ≤ M

we have

V ↑LN
∣∣V ↑LM↓LN

∣∣S ↑LM
R ↓LN

∼=
⊕

x∈LN\LM/R

x(S)↓xRx−1∩LN↑
LN

so that V ↑LN is xRx−1-projective for some x ∈ LM and hence has vertex
xRx−1. Denote by CN the non-empty set of all y ∈ LM with the property that
yRy−1 is a vertex of V ↑LN . Then CN is a finite union of right cosets of LN so
is a closed subset of LM . We would like to show that

⋂
N CN 6= ∅.

Given N1, . . . , Nn, let N ′ = N1 ∩ . . . ∩ Nn. Then by the argument above
CN ′ 6= ∅. But CN ′ ⊆ CNi

for each i, since if V ↑LN ′

is induced from a yRy−1-
module, then so is each V ↑LNi. Thus, ∅ 6= CN ′ ⊆ CN1

∩ . . . ∩ CNn
and so by

compactness
⋂

N CN 6= ∅. It follows that we can find some y ∈ LM so that
V ↑LN is yRy−1-projective for each N ≤ M .

We move now from induced modules to coinvariant modules. Note that if
V ↑LN is yRy−1-projective then it is certainly yRNy−1-projective, so for some
yRNy−1-module T we have V ↑LN

∣∣T ↑LN . Now

VL∩N
∼= (V ↑LN)N

∣∣ (T ↑LN)N ∼= TN ↑LN

by [3, 2.6] so that VL∩N is yRNy−1-projective for each N in our system. Now
by [3, 3.5] the module V is yRy−1-projective and so some conjugate of yRy−1

contains Q. Thus R ≤ Q ≤ zRz−1 for some z ∈ LM , so R = Q and we are
done.

Recall that L contains the normalizer of Q in G.

Corollary 3.2. Let V be an indecomposable finitely generated k[[L]]-module with

vertex Q. Then V ↑G has a unique summand g(V ) with vertex Q, and the rest

have vertex in X.

Proof. We choose some M�OG for which V ↑LM is indecomposable. By Lemma
3.1, V ↑LM has vertex Q. But now by Proposition 2.4, V ↑G∼= V ↑LM↑G has a
unique summand g(V ) with vertex Q and the rest have vertex in

{X ≤C G |X ≤ xQx−1 ∩Q, x /∈ LM}

but this is a subset of X and so we are done.

We can now prove Theorem 1.1:

Proof. The map g from Corollary 3.2 restricted to those modules with source S
has the appropriate image and domain. We need only check that g is bijective.

First we show that if U is an indecomposable k[[G]]-module with vertex Q
and source S, then there is some indecomposable k[[L]]-module V with vertex Q
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and source S such that U ∼= g(V ). But this is clear since if S ↑L∼= V1 ⊕ . . .⊕ Vn

is a decomposition into indecomposable summands then

U
∣∣S ↑G∼= S ↑L↑G∼= V1 ↑

G ⊕ . . .⊕ Vn ↑
G

and so U
∣∣Vi ↑G for some i since U has local endomorphism ring by [3, 4.4].

Clearly Vi has vertex Q. This shows that g is surjective.
It remains to show that if V,W are finitely generated indecomposable k[[L]]-

modules having vertex Q and source S, and g(V ) ∼= g(W ) as k[[G]]-modules,
then V ∼= W as k[[L]]-modules. Choose a cofinal inverse system of N �O G for
which both V ↑LN and W ↑LN are indecomposable. Let g(V ) ∼= U ∼= g(W ). The
modules V ↑LN and W ↑LN are both Green correspondents of U in the sense of
Proposition 2.4 and so V ↑LN∼= W ↑LN for each N in our inverse system. But

V ↑LN ∼= W ↑LN

=⇒ (V ↑LN)N ∼= (W ↑LN)N

=⇒ VL∩N
∼= WL∩N

for each N , and so V ∼= W by [3, 3.4].
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