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1 Functor Mechanics

We recall that an ordered field is a field F together with a linear order ≤ that
respects addition and multiplication. Similarly an ordered group is a group G
together with a linear order ≤ that respects the group operation.

Definition 1.1 (Category of Ordered Fields). Define OrdFld to be the
category with its objects ordered fields, and its morphisms order-preserving field
homomorphisms. (Note that, since field homomorphisms are always injective,
the morphisms of OrdFld are strictly order-preserving.)

Definition 1.2 (Category of Ordered Abelian Groups). Define OrdAbGrp
to be the category with its objects ordered abelian groups, and its morphisms
strictly order-preserving group homomorphisms.

Remark 1.3. Since in this paper we are interested exclusively in ordered fields
and ordered abelian groups, when we refer to homomorphisms of ordered fields
or ordered groups, it will be implicit that we refer to morphisms in the appropri-
ate category – that is, that we refer to strictly order-preserving homomorphisms.

Definition 1.4 (Simple Map). Let G be an ordered group. A function p :
N→ G is called simple if it is injective and its image is right-well-ordered – that
is, if every non-empty subset of im(p) has a largest element.

Definition 1.5 (Index). Let G be an ordered group, F be an ordered field,
p : N → G simple, and a : N → F a sequence. Then define the index of p over
a to be

ind(p, a) = p−1
(

max
n∈N
{p(n) : a(n) 6= 0}

)
if the maximum exists, and ind(p, a) = 0 otherwise. (We note that since im(f)
is right-well-ordered, the maximum always exists unless a(n) = 0 for all n.)
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Definition 1.6 (Long Category of Ordered Groups). Define OrdAbGrp∞

to be the category with its objects of the form

(I,G)

where I is an ordered set, and G : I → Obj(OrdAbGrp). The morphisms are
of the form

(I, f) : (I,G)→ (I,H)

where f : I → Mor(OrdAbGrp) with f(i) : G(i) → H(i). (This notation im-
plicitly conveys that if I and J are different index sets, the set Hom((I,G), (J,H))
is empty.) Morphism composition is the obvious:

(I, f) ◦ (I, g) = (I, f ◦ g)

where (f ◦ g)(i) = f(i) ◦ g(i).

Definition 1.7 (Box Product Functor). Let

� : OrdFld×OrdAbGrp→ OrdFld

be defined as follows. For F ∈ Obj(OrdFld) and G ∈ Obj(OrdAbGrp), define

F �G =

{ ∞∑
i=0

aix
p(i) : ai ∈ F, p simple

}

Here x is a formal variable, and addition, multiplication, and division of the
formal power series work as usual. We take the linear order to be induced by

∞∑
i=0

aix
p(i) > 0 ⇐⇒ aind(p,a) > 0

Then if f : F → F ′ and g : G→ G′ are morphisms in OrdFld and OrdAbGrp
respectively, then define f � g : F �G→ F ′ �G′ by

(f � g)

( ∞∑
i=0

aix
p(i)

)
=

∞∑
i=0

f(ai)x
g(p(i))

From the above definition, we can see the motivation for our definition of
ind(p, a). Effectively, we wish to order our formal sum by the (nonzero) coef-
ficient of the term with the largest exponent, and ind(p, a) gives us the index
where this occurs.

Proposition 1.8. The category map � is a functor.

Definition 1.9 (Box Sum Functor). Let

� : OrdAbGrp∞ → OrdAbGrp
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be defined as follows. For (I,G) ∈ Obj(OrdAbGrp∞), define

�(I,G) =

(⊕
i∈I

G(i),≤

)

where the ordering ≤ is given by

(gi)i∈I > 0 ⇐⇒ gk > 0

where k ∈ I is the largest element such that gk 6= 0. Then if (I, f) : (I,G) →
(I,H) is a morphism in Mor(OrdAbGrp∞), we define �(I, f) : �(I,G) →
�(I,H) by

�(I, f) ((gi)i∈I) = (fi(gi))i∈I

as expected.

Proposition 1.10. The category map � is a functor.

Notation 1.11. For G,H ordered groups, we will sometimes write G � H to
denote �(I, F ) where I = {0, 1} with the usual ordering, where F (0) = G
and F (1) = H. We may also write f � g to have the equivalent meaning on
morphisms.

Theorem 1.12. Let F be an ordered field and let G,H be ordered groups.
Then there is a natural isomorphism

F � (G�H) ' (F �G) �H

Proof:

This follows by the formal variable identification x(a,b) 7→ yazb, together
with a standard index argument. �

2 Generalized Metric Mechanics

2.1 Completeness

In (CITATION HERE) it was shown that ordered fields have a natural β-
structure. We recall that β-spaces are generalizations of metric space given
by a triple (X,R, β) where β : X ×R→ ℘(X) satisfies

1. x ∈ β(x, r)

2. For all z ∈ β(x, r) ∩ (y, s), there is a t such that β(z, t) ⊆ β(x, r) ∩ β(y, s)

3. For all r ∈ R there is an s ∈ R, called a swing value for r, such that if
y ∈ β(x, s), then β(x, s) ⊆ β(y, r).
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For an ordered field F , this structure is given by X = F , R = F>0, and
y ∈ β(x, r) precisely when |x− y| < r. We recall the following definitions:

Definition 2.1 (Net).

Definition 2.2 (Cauchy).

Definition 2.3 (Converge).

Definition 2.4 (Completion). The completion of a field F will be denoted
by F .

Definition 2.5 (r-Cauchy).

Definition 2.6 (r-Converge).

Definition 2.7 (Radially Complete). The radial completion of a field F will

be denoted by F .

Theorem 2.8. For any F ∈ Obj(OrdFld) and any nontrivialG ∈ Obj(OrdAbGrp),
the field F �G is complete.

Example 2.9. The Levi-Civita field LC is a well-known non-Archimedean or-
dered field. It is constructed as the set of all formal power series of the form∑

q∈Q
aqε

q

where the collection (aq)q∈Q ⊆ R is left-finite – that is, for each k, the collection
(aq) only contains finitely many points smaller than ak. The ordering on this
field is given by the usual dictionary ordering; that is,∑

q∈Q
aqε

q > 0 ⇐⇒ ak > 0

where k is the smallest rational such that ak 6= 0. Of course we can re-index by
replacing q with −q. Then we equivalently require that the collection (aq) be
right-finite, and specify that our element

∑
q∈Q aq

(
ε−1
)q

is considered positive
when ak > 0 for k the largest index such that ak 6= 0. Clearly right-finite
implies right-well-ordered. Therefore, enumerating the rationals by α : N→ Q,
the function p(n) = aα(n) is simple, and so, making the identification ε−1 7→ x,
we have the anticipated (canonical) isomorphism

LC = R�Q

The completeness of LC (which is well-known) then follows immediately from
Theorem 2.8.
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Remark 2.10. Theorem 2.8 has the interesting (and unexpected) consequence
that a field that is not complete can form one that is complete under the �
functor. We can easily see that Q � Z is complete by the above theorem. Of
course this is somewhat unappealing, and we would like there to be some version
of completeness that is preserved under the � operation. Our next theorem
shows that the concept of radial completeness is precisely the definition we
need.

Theorem 2.11. F�G is radially complete if and only if F is radially complete.

Example 2.12. The Levi-Civita field LC is radially complete.

2.2 Level Operations

Definition 2.13 (Swing-Sequence). A swing-sequence for a value a ∈ R is
a sequence (ai)

∞
i=1 such that a1 = a and ai+1 is a swing value for ai for all i.

When (ai)
∞
i=1 is a swing sequence for a, we write (ai) ≺ a.

Definition 2.14 (Level Set). Given x ∈ X and r ∈ R, the level set about x
of radius r is given by

L(x, r) =
⋃

(ri)≺r

( ∞⋂
i=1

β(x, ri)

)

Definition 2.15 (Level-Equivalence). Two values a, b ∈ R are said to be
level-equivalent, written a ∼ b, if L(x, a) = L(x, b) for all x.

Proposition 2.16. Given an ordered field F and a, b ∈ F>0, a ∼ b in the
induced β-structure if and only if there are positive integers m,n such that
ma > b and a < nb.

Definition 2.17 (Level Group Functor). Let L : OrdFld → OrdAbGrp
be defined as follows. For F ∈ Obj(OrdFld), let

L(F ) = F>0/ ∼

where for x, y ∈ F>0, [x] + [y] = [x · y], and where the ordering is given by

[x] > [y] ⇐⇒ x > y · n for all n ∈ N

If f : F → F ′ is a morphism in OrdFld, we define L(f) : L(F )→ L(F ′) by

Lf ([x]) = [f(x)]

The level group of an ordered field will be an essential component of our
toolbox, and is in itself an interesting invariant. Before we proceed, we need to
verify that the above operations are actually well-defined and functorial.
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Proposition 2.18. The category map L is a well-defined functor.

Remark 2.19. It is natural to ask the following questions:

1. What are the weakest possible relationships between fields F and F ′ such
that L(F ) ' L(F ′)?

2. When (if ever) does L(F ) ' L(F ′) guarantee that F ' F ′?

These questions are answered by Corollaries 3.3 and 3.13.

The equivalence relation ∼ clearly does not require the full structure of a
field; in fact, its definition can be applied equally well to an ordered abelian
group. Noting that L(F ) is abelian for any F , we proceed with a lemma.

Lemma 2.20. For any ordered abelian group G, the set G>0/ ∼ has a natural
ordering.

Definition 2.21 (Non-Archimedean Generator Set). The non-Archimedean
generator set, or the generator set, of an ordered field F , is the ordered set de-
fined by

Gen(F ) = L(F )>0/ ∼

It should be noted that, as with our previous constructions, the construction
of the generator set is indeed functorial; however, this fact does not seem to
showcase any interesting or useful structure, and so it is omitted from formal
treatment. For many of the theorems that follow, a categorical structure is
obvious but not stated for the same reason.

Definition 2.22 (Non-Archimedean Degree). The non-Archimedean degree
of an ordered field F is defined as

deg∞(F ) = |Gen(F )|

As the names suggest, the non-Archimedean degree of an ordered field can
intuitively be thought of as the number of non-Archimedean generators of the
field. While this intuition will be made precise in Corollary 3.12, we can imme-
diately see a compelling, if obvious, justification of this.

Proposition 2.23. An ordered field F is Archimedean if and only if deg∞(F ) =
0.

3 Field Components

Definition 3.1 (Maximal Archimedean Subfield). The maximal Archimedean
subfield of an ordered field F is

Arch(F ) =
⋃

K Archimedean
K≤F

K
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Since an ordered field necessarily has characteristic 0, any ordered field F
contains Q as a subfield. This guarantees that Arch(F ) is always nonempty.

Theorem 3.2. If F is an ordered non-Archimedean field, then F ' Arch(F )�
L(F ).

Of course, the above theorem doesn’t hold for F Archimedean, since the
closure of any Archimedean field is always the reals. In particular, if F = Q,
clearly Arch(F ) = Q, and L(F ) = {0}. But

R 6' Q� {0} ' Q

This is another instance of the effect illustrated in Theorem 2.8, where complete-
ness on non-Archimedean fields does not rely on the structure of the underlying
Archimedean subfield.

Corollary 3.3. Let F1 and F2 be ordered non-Archimedean fields. Then F1 '
F2 if and only if L(F1) ' L(F2) and Arch(F1) ' Arch(F2).

Proof:

The =⇒ direction is trivial. The ⇐= direction follows from the fact that �
is a functor, so that if f : Arch(F1)→ Arch(F2) and g : L(F1)→ L(F2), then

f � g : Arch(F1) � L(F1)→ Arch(F2) � L(F2)

In particular, since f and g are isomorphisms, f � g is an isomorphism. �

Definition 3.4 (Upper and Lower Generator Groups). Let F be an or-
dered field, and let [x] ∈ Gen(F ). We define the upper generator group for x to
be

G[x] =

〈 ⋃
[y]≤[x]

[y]

〉

where 〈A〉 indicates the subgroup of L(F ) generated by all the elements of the
set A ⊆ L(F ). Similarly, we define the lower generator group for x to be

G[x] =

〈 ⋃
[y]<[x]

[y]

〉

Definition 3.5 (Class Group). Given an ordered field F and some [x] ∈
Gen(F ), we define the class group of x to be the group

G [x] = G[x]/G[x]
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Proposition 3.6. For any [x] ∈ Gen(F ), G[x] is Archimedean, with a natural
order induced by the order on L(F ).

Theorem 3.7. For any ordered field F ,

L(F ) ' � (Gen(F ),G)

Corollary 3.8. For any ordered field F and any ordered abelian group G,

L(F �G) ' L(F ) �G

Corollary 3.9. For any Archimedean field F and any ordered abelian group
G,

L(F �G) ' G

Lemma 3.10. An Archimedean field F is complete if and only if it is radially
complete.

Theorem 3.11. Let F be an ordered field. Then there exists an Archimedean
field F0, an ordered index set I and a collection of ordered Archimedean abelian
groups (Gi)i∈I – all unique up to isomorphism – such that

F ' F0 � (�(I,G))

Additionally, F is radially complete if and only if F0 = R.

Proof:

Of course we take F0 = Arch(F ), I = Gen(F ), and G = G. The isomorphism
follows from Theorem 3.2 together with Theorem 3.7. Uniqueness follows from
the functoriality of L, �, and �, together with Corollary 3.9. Radial complete-
ness follows from Theorem 2.11 together with Lemma 3.10. �

Corollary 3.12.

If deg∞(F ) = n < ∞, then there exist F0 and groups G1, G2, . . . , Gn as in
Theorem 3.11 such that

F ' F0 �G1 � . . .�Gn

Proof:

This follows from Theorem 1.12. �

Corollary 3.13. For any ordered fields F, F ′, F ' F ′ if and only if L(F ) '
L(F ′).

Corollary 3.14. Any countable ordered field can be embedded in R.
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