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Abstract

For p ≥ 1, we prove that every forest withp trees whose sizes area1, . . . , ap can
be embedded in any graph containing at least

∑p
i=1

(ai + 1) vertices and having a
minimum degree at least

∑p
i=1

ai.

1 Introduction.

It is a folklore fact that every tree withd ≥ 0 edges can be embedded in any graph with
minimum vertex degreed. Indeed, a linear algorithm to find such an embedding would
sequentially embed the vertices of the tree according to a depth first search ordering of
the tree vertices. It is likely, though, that the required bound on the minimum degree is
excessive, as captured by the famous conjecture by Erdös and Sós ([2]), which states that
every tree withd edges can be embedded in any graph whose average degree is at leastd.
A number of results ([1, 5, 7, 8, 6]) confirm the conjecture forsome classes of trees and
classes of graphs. The full conjecture is still neither proved, nor disproved.

A natural extension of the problem is to embed a forest in a graph. If F = {T1, . . . , Tp}
is a forest ofp trees whose sizes area1, . . . , ap respectively, then a necessary condition for
embeddingF in a graphG is that|V (G)| ≥

∑p

i=1
(1 + ai). The straightforward tree em-

bedding algorithm outlined above may fail, even if the minimum degree is at least
∑p

i=1
ai.

However, we show that this condition on the minimum degree (in addition to the obvious
necessary condition) is sufficient to guarantee that the forest can be embedded in the graph;
we prove the following:

Theorem 1 Let F = {T1, . . . , Tp} be a forest, andd =
∑p

i=1
ai, whereai is the number

of edges in the treeTi (i ∈ [1, p]). Then every graphG with at leastd + p vertices and
minimum degree at leastd containsF as a subgraph.
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Our proof can be converted to a quadratic algorithm for embeding a forest.
We consider simple undirected graphs without parallel edges and loops. The set of

vertices adjacent to a vertexx, the neighborhood ofx, is denotedN(x). An embedding
f : H → G of a graphH in a graphG is a one-to-one mappingf : V (H) → V (G) such
that for any two distinct verticesx, y ∈ V (H), if xy ∈ E(H) thenf(x)f(y) ∈ E(G). For
a graphH, the order ofH is the number of its vertices (denoted|H|) and the size ofH is
the number of its edges. For the terms not defined in this papersee ([9]).

2 A Proof of the Theorem 1

We prove the theorem by induction onp, the number of trees in the forest. We can assume
that every tree in a forest has at least two vertices, soai ≥ 1.

The Base Case, p = 1. The forest in this case consists of a single treeT1 with d edges.
We prove a slightly stronger statement, which implies the theorem forp = 1.

Lemma 1 Given a connected subgraphC of T1 and an embeddingf : C → G, there is an
embeddingg : T1 → G whose restriction toC is preciselyf .

Proof: The idea is to arbitrarily grow the embeddingf of C to an embeddingg of T1. If
|C| < d + 1, let uv ∈ E(T1) be an edge such thatu ∈ V (C) andv ∈ V (T1 \ C). Let
w = f(u). SinceC has at mostd − 1 vertices other thanu and since the degree ofw in
G is at leastd, G has an edgewz with vertexz not in g(C). Thus,f can be expanded to
g : C ∪ {v} → G by definingg(x) = g(x) for all x ∈ C, andg(v) = z. Iterating this
expansion completes the proof.

Corollary 1 For any vertexx of T1 and any vertexy of G, an embeddingf : T1 → G
exists for whichf(x) = y.

The Induction Step, p > 1. Assuming the theorem holds for any forestFp−1 with p− 1
trees, letFp be a forest containingp treesT1, . . . , Tp. Denoteai the size ofTi (i ∈ [1, p]).
Let a1 ≥ a2 ≥ . . . ≥ ap, and leta = a1.

Assumption. For the purpose of deriving a contradiction, we assume thatFp cannot be
embedded in graphG satisfying the conditions of the theorem.

Lemma 2 For every embeddingg : T1 → G, there is a vertex outside ofg(T1) which is
adjacent to every vertex ing(T1).
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Proof: If the statement were incorrect, then the removal ofg(T1) from G would leave a
subgraphG′ with at leastd + p− (a + 1) =

∑p

i=2
(1 + ai) vertices each of degree at least

d − a ≥
∑p

i=2
ai. Inductively,{T2, . . . , Tp} can be embedded inG′ which would yield an

embedding ofFp in G contradicting the assumption thatFp cannot be embedded inG.

The main use of the previous lemma is to show that under our assumption, there is a large
clique inG.

Lemma 3 G contains a clique of size at leasta+ 2.

Proof: Let K be the largest clique inG and let |K| < a + 2. Select any connected
subgraphC of T1 of order |C| = |K|, and embedC in K; this is possible sinceK is a
clique. By Lemma 1, this embedding can be expanded to an embeddingf of T1 in G, and
by Lemma 2 there is a vertex outside off(T1) adjacent to all vertices inf(T1). In particular,
it is adjacent to all vertices inK, contradictingK ’s maximality. Thus,|K| ≥ a+ 2.

It turns out that for the rest of the proof, we only need a clique of sizea.

Lemma 4 Any tree of ordera + 1 can be embedded in any connected graph of order at
leasta+ 1 that contains a clique of ordera.

Proof: Start by embedding a leaf at a vertex outside ana-clique, but adjacent to a node
in the clique (such a vertex must exist by connectivity). Theremainder of the tree can be
embedded in the clique.

LetK be a clique of sizea in G. The subgraphG′ = G \K contains at leastd− a+ p
vertices each of degree at leastd − a. Inductively,Fp−1 = {T2, . . . , Tp} can be embedded
in G′. Let g : Fp−1 → G′ be such an embedding. Select any vertexx ∈ K and a subset
X ⊆ N(x)\K with |X| = d−a+1 vertices. It is possible since|N(x)\K| ≥ d−a+1.

Lemma 5 Every vertex inX is used by any embeddingg of Fp−1.

Proof: Indeed, ifx ∈ X \ g(Tp−1) is not used, then by Lemma 4,T1 can be embedded in
the subgraphH induced byK ∪ {x}, which would yield an embedding ofFp.

Since alld − a + 1 vertices ofX are used in the embeddingg : Fp−1 → G, exactly
p− 2 vertices outside ofK ∪X, denotedy1, . . . , yp−2, are used byg. The remainingm+1
vertices of the graph, outside ofK ∪ g(Tp−1), are denoteds0, s1, . . . , sm. We now split the
set of the trees of the forestFp−1 into four subsetsT1, T2, T3, andT4.

T1: trees which are embedded entirely inX;
T2: trees whose embedding has at least two vertices inX and at least one vertex inY ;
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T3: trees whose embedding has only one vertex inX; and
T4: trees whose embedding is entirely inY .

Let qi = |Ti| (i = 1, 2, 3, 4). Since every tree inFp−1 belongs to one of these four subsets,

q1 + q2 + q3 + q4 = p− 1.

Denote bya(Ti) the size ofTi. For the embeddingg: every tree inT2 uses at least one
vertex inY ; and, every treeT in T3 (resp. T4) usesa(T ) (resp. 1 + a(T )) vertices inY .
Since there arep− 2 vertices inY ,

q2 +
∑

Ti∈T3

a(Ti) +
∑

Ti∈T4

(a(Ti) + 1) ≤ p− 2 = q1 + q2 + q3 + q4 − 1.

This immediately gives a lower bound forq1.

Lemma 6 q1 ≥ 1 +
∑

Ti∈T3
(a(Ti)− 1) +

∑
Ti∈T4

a(Ti) ≥ 1 + q4.

Let s be an arbitrary vertex inS. Our goal now is to evaluate the degree ofs in the subgraph
induced onS, based on the assumption thatFp cannot be embedded. We start with

|N(s) ∩ S| ≥ d− |N(s) ∩K| − |N(s) ∩ (X ∪ Y )|. (1)

We make the following observations about the neighborhood of s in K ∪X ∪ Y .

1. s is not adjacent to any vertex inK, else by Lemma 4,T1 could be embedded ins ∪K.

2. s is not adjacent to at least one vertex ing(T ) for any treeT ∈ T2 ∪ T3. Indeed, ifs is
adjacent to every vertex inT , a vertexg(Ti) which is inX can be swapped withs; this
gives an embedding ofFp−1 that doesn’t use every vertex ofX, contradicting Lemma 5.

3. s is not adjacent to at least two vertices ofg(T ) for any treeT ∈ T1. Indeed, lets be
adjacent to all but one vertex ing(T ), and lety = g(x) be that exceptional vertex. Then
for every neighborx′ (in T ) of x, s is adjacent tog(x′). By settingg(x) = s, we obtain
a valid embedding ofFp−1 which doesn’t use a vertex inX, contradicting Lemma 5.

So,N(s) ∩K = ∅ andN(s) ∩ (X ∪ Y ) ≤ |X ∪ Y | − (2q1 + q2 + q3). Since|X ∪ Y | =
d − a + p − 1, we have from Inequality e̊q:1 that the number of neighbors of s in S is at
least:

|N(s) ∩ S| ≥ d− (d− a+ p− 1) + 2q1 + q2 + q3

= a + q1 − q4

≥ a + 1,

where we have usedq1 + q2 + q3 + q4 = p − 1 and Lemma 6. Thus, the degree of any
vertexs in the subgraph induced byS is at leasta + 1. By Lemma 1,T1 can be embedded
in this subgraph, contradicting the Assumption, and completing the proof of Theorem 1.
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3 Conjecture

When the number of vertices equals the lower boundp + d and the minimum degree is
at leastd, then the Hajnal-Szemerédi theorem on equitable coloring[3, 4], applied to the
complement of the graph, guarantees the existence ofp cliques each of size at least⌊ d/p ⌋.
Thus, an arbitraryp graphs of order at most⌊ d/p ⌋ can besimultaneouslyembedded in the
graph. When the number of vertices increases, however, cliques are no-longer guaranteed.
Our result shows that one can simultaneously embed trees, even as the number of vertices
grows, as long as the sum of the tree sizes is at mostd.

Alternatively, one can ask whether a bound on the minimum degree is excessive to guar-
antee the embedability of a forest. Indeed, we propose a natural extension to the conjecture
by Erdös and Sós:

LetF = {T1, . . . , Tp} be a forest, andd =
∑p

i=1
ai, whereai is the number of

edges in the treeTi (i ∈ [1, p]). Then every graphG with at leastd+ p vertices
and the average degree≥ d contains a subgraph isomorphic toF .

For a single star, the conjecture clearly holds; but, even the extension to a collection of stars
is not clear.
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