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Abstract—We consider the problem of quantifying the Pareto
optimal boundary in the achievable rate region over multiple-
input single-output (MISO) interference channels, where the
problem boils down to solving a sequence of convex feasibility
problems after certain transformations. The feasibility problem is
solved by two new distributed optimal beamforming algorithms,
where the first one is to parallelize the computation based onthe
method of alternating projections, and the second one is to local-
ize the computation based on the method of cyclic projections.
Convergence proofs are established for both algorithms.

Index Terms—MISO-Interference Channel, Distributed Beam-
forming, Achievable Rate Region, Pareto Optimal

I. I NTRODUCTION

Traditional wireless mobile systems are designed with the
cellular architecture, in which neighboring base stations(BSs)
in different cells try to manage communications for their in-
tended mobile stations (MSs) over non-overlapping channels.
The associated inter-cell interferences, from non-neighboring
cells, are treated as additive background noises. To improve the
performance of traditional systems, most beyond-3G wireless
technologies relax the frequency reuse constraint such that
the whole frequency band becomes available for all cells. As
such, joint signal processing across neighboring BSs is needed
to cope with the strong inter-cell interferences in the future
cellular systems.

In this paper, we study a particular type of multi-BS
cooperation for downlink transmissions, where we assume a
scenario with each BS equipped with multiple antennas and
each MS equipped with a single antenna. Besides, only one
MS is assumed to be active in each cell at any given time
(over a particular frequency band). Our problem setup can be
modeled as a multiple-input single-output (MISO) Gaussian
interference channel (IC), termed as MISO-IC.

From an information-theoretic viewpoint, the best achiev-
able rate region to date for an IC was established by Han
and Kobayashi in [1], termed as the Han-Kobayashi region,
which utilizes rate splitting at transmitters, joint decoding
at receivers, and time sharing among codebooks. The Han-
Kobayashi region was simplified in [2] and proved to be
within 1-bit of the capacity region of the Gaussian IC in [3].
However, in cellular systems, practical constraints oftenlimit
MSs to only implement single-user detection (SUD) schemes,
i.e., treating the interference from all other unintended BSs

as noise. Hence, in this work, we assume SUD at the MS
receivers. With SUD, it has been shown that transmit beam-
forming is optimal for MISO IC in [4] and [5]. For the
two-user case, Jorswiecket al. [6] proved that the Pareto-
optimal beamforming vectors can be represented as linear
combinations of the zero-forcing (ZF) and maximum-ratio
transmission (MRT) beamformers. Previous studies [7] and
[8] over MISO-IC beamforming usually assumed a central
processing unit with global knowledge of all the downlink
channels, which may not be feasible in practical systems. To
make the result more implementable, our work focuses on
multi-cell cooperative downlink beamforming, which involves
distributed computations based on the local channel knowl-
edge at each BS. Such decentralized multi-cell cooperative
beamforming problems were previously studied in [9] based on
the uplink-downlink duality to minimize the sum transmission
power. Furthermore, a heuristic decentralized algorithm was
developed in [4] for multi-cell cooperative downlink beam-
forming based on the iterative updates of certain interference-
temperature constraints across different pairs of BSs.

It has been discussed in [4] that quantifying the Pareto
optimal points in the achievable rate region over MISO IC may
boil down to solving a sequence of convex feasibility problems
after certain transformations, where the feasibility problems
can be recast as second-order cone programming (SOCP)
problems as shown in [10]. In this paper, we propose two
algorithms to solve the resulting feasibility problem parallelly
or distributively. In the first parallized beamforming algorithm
based on alternating projections, we assume a computation-
power limited centralized processing unit such that part of
the computation duties need to be parallely conducted in
each individual BS. In the second beamforming algorithm,
localized sequential optimizations across the BSs are per-
formed iteratively, where the need for a central processing
unit is eliminated. Convergence in norm for both algorithmsis
established. Besides, a set of feasibility decision rules is estab-
lished to implement our algorithms for practical engineering
applications.

The rest of the paper is organized as follows. Section II
presents the MISO-IC model for multi-cell downlink beam-
forming, defines the Pareto optimality, and reviews the rate
profile approach, which transforms the whole problem into
solving a sequence of SOCP feasibility problems. Section
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III proposes the parallelized algorithm to parallelly solve the
SOCP feasibility problem based on the method of alternating
projections. Section IV presents the distributed beamforming
algorithm to solve the SOCP feasibility problem based on
the method of cyclic projections. Numerical examples are
provided in Section V with conclusions in Section VI.

Notations: Bold face letters, e.g.,x andX, denote vectors
and matrices, respectively.I and0 denote the identity matrix
and the all-zero matrix, respectively, with appropriate dimen-
sions.diag(X1, . . . ,Xn) defines a block diagonal matrix in
which the diagonal elements areX1, . . . ,Xn. (·)T and (·)H

respectively denote the transpose and the Hermitian of a matrix
or a vector.Rm×n andCm×n denote the space ofm×n real
matrices and the space ofm×n complex matrices respectively.
‖x‖ denotes the Euclidean norm of a complex vectorx. All the
log (·) functions are with base 2 by default.Re (·) and Im (·)
denote the real part and imaginary part of a complex argument
respectively.[a1; . . . ;an] defines a vector that stacksa1 . . .an

into one column. By default, all the vectors are column vectors.

II. SYSTEM MODEL AND PRELIMINARIES

A. Signal Model

We address downlink transmissions in a cellular network
consisting ofM cells, each having a multi-antenna BS to
transmit an independent message to one active single-antenna
MS. With the assumption that the same band is shared among
all BSs for downlink transmissions, the system could be
modeled as aM -user MISO-IC. Specifically, we assume that
each BS is equipped withK transmitting antennas,K ≥ 1.
With the assumption of single-user detection at each receiver,
it has been shown in [4] and [5] that beamforming is optimal
to maximize the rate region. Hence, the discrete-time baseband
received signal of the active MS in theith cell is given by

yi = hH
iiωisi +

M
∑

j=1,j 6=i

hH
jiωjsj + zi, i = 1, 2, · · · ,M, (1)

whereωi ∈ CK denotes the beamforming vector at theith BS;
hii ∈ C

K denotes the channel vector from theith BS to its
intended MS, whilehji ∈ CK denotes the cross-link channel
from thejth BS to the MS in theith cell, i 6= j; si denotes the
symbol transmitted by theith BS; andzi denotes the additive
circular symmetric complex Gaussian (CSCG) noise at the
ith receiver. It is assumed thatzi ∼ CN

(

0, σ2
i

)

and zi’s are
independent.

We assume that theith receiver only knows channelhii,
and decodes its own messages by treating interferences from
all other BSs as noise. With SUD, the achievable rate for the
ith MS is thus given as

Ri = log

(

1 +

∣

∣hH
iiωi

∣

∣

2

∑

i6=j

∣

∣hH
iiωj

∣

∣

2
+ σ2

i

)

, (2)

where the maximum transmission power is limited as

‖ωi‖
2 ≤ Pi, i = 1, 2, . . . ,M, (3)

wherePi is the power constraint at theith BS.

B. Pareto Optimality

We define the achievable rate region for the MISO-IC
to be the collection of rate-tuples for all MSs that can be
simultaneously achievable under a certain set of transmit-
power constraints:

R :=
⋃

{ωi}:‖ωi‖
2≤Pi,i=1,...M







(r1, . . . , rM ) :
0 ≤ ri ≤ Ri(ω1, . . . , ωM ),
i = 1, . . . ,M







.

(4)

The upper-right boundary of this region is called the Pareto
boundary, since it consists of rate-tuples at which it is im-
possible to increase some user’s rate without simultaneously
decreasing the rate of at least one other users. To be more
precise, the Pareto optimality of rate-tuple is defined as follows
[6].

Definition 1: A rate-tuple(r1, . . . , rM ) is Pareto optimal if
there is no other rate-tuple(r̂1, . . . , r̂M ) with (r̂1, . . . , r̂M )
≥ (r1, . . . , rM ) and (r̂1, . . . , r̂M ) 6= (r1, . . . , rM ), with the
inequality being component-wise.
In this paper, we are interested in searching the beamforming
vectors for all BSs that lead to Parato optimal rate-tuples.

C. Rate Profile Approach

The rate profile approach [11] is an effective way to charac-
terize the Pareto boundary of MISO-IC [4], where the key is
that any rate tuple on the Pareto boundary can be obtained by
solving the following optimization problem given a specified
rate-profile vector, α = (α1, . . . , αM ):

max
Rsum,{ωi}

Rsum

s.t. log

(

1 +

∣

∣hH
iiωi

∣

∣

2

∑

i6=j

∣

∣hH
jiωj

∣

∣

2
+ σ2

i

)

≥ αiRsum,

i = 1, 2, . . . ,M,

‖ωj‖
2 ≤ Pj , j = 1, 2, . . . ,M, (5)

whereα satisfies thatαi ≥ 0, 1 ≤ i ≤ M , and
∑M

i=1 αi = 1.
Denote the optimal objective value of Problem (5) asR∗

sum.
As shown in [4],R∗

sum ·α corresponds to a particular Pareto
optimal rate tuple. Hence, by exhausting all possible values
for α, solving Problem (5) yields the whole Pareto boundary.

D. SOCP Feasibility Problem

Directly solving Problem (5) is usually difficult due to
its non-convexity. However given the fact that the objective
function is a single variable, we could adopt the bisection
search algorithm to efficiently findR∗

sum as shown in [4].
Specifically, we could solve a sequence of the following



feasibility problems each for a givenr0:

max
{ωi}

0

s.t. log

(

1 +

∣

∣hH
iiωi

∣

∣

2

∑

i6=j

∣

∣hH
jiωj

∣

∣

2
+ σ2

i

)

≥ αir0,

i = 1, 2, . . . ,M,

‖ωj‖
2 ≤ Pj , j = 1, 2, . . . ,M. (6)

Therefore if the above problem is feasible forr0, it follows
that R∗

sum ≥ r0; otherwise,R∗
sum < r0. Hence, a bisection

search overRsum can be done. However, Problem (6) is still
non-convex.

As shown in [10], we can adjust the phase ofωi in (6)
to makehH

iiωi real and non-negative without affecting the
value of

∣

∣hH
iiωi

∣

∣. Hence, by denotingβi = eαir0 − 1, i =
1, 2, . . . ,M , Problem (6) can be recast as

max
{ωi}

0

s.t.
(

hH
iiωi

)2
≥ βi

(

∑

i6=j

∣

∣hH
jiωj

∣

∣

2
+ σ2

i

)

,

hH
iiωi ≥ 0, i = 1, 2, . . . ,M,

‖ωj‖ ≤
√

Pj , j = 1, 2, . . . ,M. (7)

We further define x = [ω1;ω2; · · · ;ωM ; 0], ni =
[0; 0; . . . ; 0;σi], Si =

[

· · · IK · · · 0
]

with Six =
ωi, i = 1, 2, . . . ,M , andAi = diag

(

hH
1i ,h

H
2i, . . . ,h

H
Mi, 0

)

.

For convenience, we add a termβi

(

hH
iiωi

)2
to both sides of

the first constraint in Problem (7) as

(1 + βi)
(

hH
iiωi

)2
≥ βi

(

∑M

j=1

∣

∣hH
jiωj

∣

∣

2
+ σ2

i

)

, (8)

wherei = 1, . . . ,M . Finally, with our newly defined variables
and coefficients, we recast Problem (7) as

max
x

0

s.t.
√

βi ‖Aix+ ni‖ ≤
√

1 + βi

(

hH
iiSix

)

,

pTx = 0,

‖Six‖ ≤
√

Pi, i = 1, . . . ,M, (9)

where vectorp is of the same dimension asx with all zero
elements except for the last one being 1, such that the last
element ofx is guaranteed to be 0.

Consequently, Problem (9) is a SOCP problem, which
can be efficiently solved by numerical tools [12]. However,
directly solving Problem (9) requires a centralized algorithm
running at a control center, which may not be desired in
certain engineering applications. Accordingly, there areusually
two motivations for seeking distributed algorithms: one is
to decompose the computations into multiple sub-programs
such that the requirement for the central processing power is
reduced; and the other is to localize computations such thatno
central control facility is required. In Section III and Section
IV, we propose two algorithms based upon the above two
motivations, respectively.

III. A LTERNATING PROJECTIONSBASED DISTRIBUTED

BEAMFORMING

In this section, in order to reduce the requirement on
processing power at the control center, we develop a down-
link beamforming algorithm, termed as alternating projections
based distributed beamforming (APB), to solve Problem (9)
parallelly in M sub-problems. With our algorithm, the only
processing power needed at the central unit is to calculate an
average value over all the localized solutions from theM BSs.
The algorithm is iterative, where parallel optimizations across
BSs are performed at each round. The convergence issue of
APB is also studied in this section.

A. APB Algorithm

At the initialization stage, the computation-limited cen-
tralized unit is assigned with the values forM , K, and
P1, . . . , PM . Then the central unit broadcasts the information
to all BSs with an arbitrary initial point̃x0 ∈ CKM+1. It
is assumed that theith BS has the perfect knowledge of
the channels from all BSs to theith MS, i.e., all hij ’s.
Furthermore, all BSs operate according to the same protocol
described as follows. At thenth round, we denote the solution
vector that the central unit broadcasts asx̃n−1. Then at the
ith BS, the corresponding problem is expressed as

min
x

‖x− x̃n−1‖

s.t.
√

βi‖Aix+ ni‖ ≤
√

1 + βi(h
H
iiSix),

pTx = 0,

‖Sjx‖ ≤
√

Pj , j = 1, 2, . . . ,M, (10)

where x̃n−1 = 1
M

∑M

i=1 x
(i)
n−1, with x

(i)
n−1 denoting the

optimal solution for Problem (10) of the (n − 1)th round at
the ith BS. A rough description of the algorithm is depicted
in Fig. 1.

Average

BS1

BS2

BSM

MS1

MS2

MSM

Fig. 1. APB Scheme

Remark 1:Note that if Problem (10) is infeasible at the
kth BS (k ∈ {1, . . . ,M}), we can directly claim that the
associated Problem (9) is infeasible and quit APB. As such,
from now on we only focus on the cases where Problem (10)
is always feasible at each individual BS, and run APB to check
when the overall problem in (9) is feasible and when it is not.



With a feasible Problem (10), we need the optimal solution
x
(i)
n to satisfy all the transmitter power constraints and theith

receiver’s SNR demand. The reason why we keep allM power
constraints at each individual BS is for that fast convergence,
which can be observed from simulations. Since all thePj

values are typically predetermined in cellular systems, noextra
system overhead is needed. In the second-order cone constraint
of Problem (10), directly using the termhH

ii Six implies that
Im
(

hH
iiSix

)

= 0 andhH
iiSix ≥ 0.

B. Convergence Analysis

Since APB is iterative, the convergence is an important issue
to address. The convergence of APB is formally stated as
follows.

Proposition 1: As n increases, the optimal solutionx(i)
n

for Problem (10) converges in norm to the limit̃xi when
Problem (9) is either feasible or infeasible. Furthermore,the
averaged solutioñxn also converges in norm tôx∗ satisfying
that 1

M

∑M

i=1 x̃
i = x̂∗. In particular, if Problem (9) is feasible,

all x̃i’s coincide in the same point̃x that lies in the feasible
set of Problem (9) with̃x = x̂∗. If Problem (9) is infeasible,
x̃i’s do not coincide in the same solution.

Proof: 1) For the case of Problem (9) being feasible, we
have the following proof.

We first introduce the concept of finding the closest point
to some given point in a closed convex set and alternating
projections.

In mathematics, a Hilbert spaceH is defined with the inner
product〈x,y〉 and the induced norm‖x‖ =

√

〈x,x〉. If S is
a nonempty closed convex set inH , Riesz [13] states that
eachx ∈ H has a unique best approximation (or nearest
point) PS(x) in S. That is,‖x− PS(x)‖ < ‖x− y‖ , ∀y ∈
S\{PS(x)}. The mappingPS : H → S is called the
projection onto S, i.e., finding the closest point tox in a
closed nonempty convex set. In this paper, we use the general
Euclidean inner product definitions〈x,y〉 = xHy in the
complex space and〈x,y〉 = xTy in the real space.

Definition 2: SupposeC1 andC2 are two closed nonempty
convex sets inH with corresponding projectionsP1 andP2.
Let C = C1 ∩ C2 and fix a starting pointx0 ∈ H . Then the
sequence ofalternating projectionsis generated by

x1 = P1x0, x2 = P2x1, x3 = P1x2, . . . ,

xN = P2xN−1, xN+1 = P1xN , . . .

Let Fi denote the feasible set of Problem (10) at theith
BS, Fi 6= ∅, andF =

⋂M

i=1 Fi 6= ∅; note thatF is exactly
the feasible set of Problem (9). Thus solving Problem (10) at
the ith BS can be viewed as finding theclosestpoint to x̃n−1

in a non-empty closed convex setFi, i.e., the projection of
x̃n−1 ontoFi. Next we transform the variable defined over the
complex Hilbert space to a double-dimensioned real Hilbert
space such that we can use some existed results in alternating
projections. We transformx ∈ CN ′

to x̄ ∈ R2N ′

by letting
x̄ = [Re(x); Im(x)], whereN ′ = KM + 1. Similarly, we
map the complex setFi to a double-dimensioned real setF ′

i ,

and mapx̃n−1 to a double-dimensioned real vectorx̂n−1 =
[Re(x̃n−1); Im(x̃n−1)]. We rewrite Problem (10) as

min
x̄∈R2N′

‖x̄− x̂n−1‖

s.t.
√

βi

∥

∥Ā̄ĀAix̄+ n̄i

∥

∥ ≤
√

1 + βi

(

h̄H
ii S̄ix̄

)

,

dH
i x̄ = 0,

p̄T x̄ = 0,
∥

∥S̄jx̄
∥

∥ ≤
√

Pj , j = 1, . . . ,M, (11)

where

Āi =

[

Re (Ai) −Im (Ai)
Im (Ai) Re (Ai)

]

, h̄H
ii =

[

Re
(

hH
ii

)

−Im
(

hH
ii

) ]

,

S̄i =
[

Si Si

]

, dH
i =

[

Im
(

hH
ii

)

Re
(

hH
ii

) ] [

Si Si

]

,

n̄i = [ni;0] , p̄ = [p;p] .

From the constraints of Problem (11), we observe that the
feasible setF ′

i is the intersection of a collection of second-
order cones, some subspaces, and some norm balls, which is
nonempty closed and bounded. Next we show how to trans-
form our algorithm into a problem of alternating projections.
Let’s define two product sets:

T : F ′
1 × F ′

2 × · · ·F ′
M ,

and
U :

{

(a,a, . . . ,a) : a ∈ R
2N ′

}

Meanwhile we define two new variablesxk,yk ∈ R2N ′M as

xk =
[

x̄
(1)
k ; x̄

(2)
k ; · · · ; x̄

(M)
k

]

, yk = [x̂k; x̂k; · · · ; x̂k] . (12)

Obviously,xk ∈ T, yk ∈ U . By the results of Pierra in [14],
we have the following two lemmas:

Lemma 1:Solving Problems (10) fori = 1, . . . ,M in
parallel at thekth round is equivalent to projecting vector
yk−1 onto the closed convex setT and obtainingxk.

Lemma 2:Computing 1
M

M
∑

i=1

x
(i)
k is equivalent to project-

ing xk ontoU and gettingyk.
Therefore, APB can be interpreted as alternating projections

betweenT andU . Note that the idea ofAlternating Projections
was first proposed by von Neumann in [15], where only
subspaces are assumed as the projection sets. Then many
researchers extended this technique to more general scenarios
[16], [17]. For alternating projections between two non-empty
closed convex setsC1 and C2, Cheney [16] proved that
convergence in norm is always assured when either (a) one
set is compact, or (b) one set is of finite dimension. Since
setT is bounded and our underlying Hilbert space is of finite
dimension, both conditions (a) and (b) are satisfied. Therefore,
APB always leads to strong convergence, i.e., convergence in
norm, due to the facts that the numbers of cells and antennas
are always finite. As shown in [17], all̃xi’s will coincide into
the same point̃x that lies inF .



2) For the case of Problem (9) being infeasible, we have
the following proof.

With F = ∅, the convergence of APB is still equivalent
to the convergence of alternating projections betweenT and
U , where Cheney’s results in [16] are applicable in this case.
Thus, the convergence in norm is still valid for infeasible cases.
Besides, it is easy to verify that1

M

∑M

i=1 x̃
i = x̂∗. However,

x̃i’s do not coincide into the same point.
We now complete the proof for Proposition 1.�

C. Practical Feasibility Decision Rules

With convergence in norm for APB established, we now
need to establish some practical feasibility check rules to
correctly terminate APB when it converges.

From Lemma 1 and Lemma 2, we know that the feasibility
of Problem (9) is totally determined by whetherT and U

intersect or not. By Proposition 1, if Problem (9) is feasible,
all convergent solutions̃x1, . . . , x̃M , x̂∗ coincide at a common
point x∗ which belongs toF . In this case, all optimal values
of Problems (10) converge to 0. On the other hand, if any
of the optimal values of Problems (10) do not converge to 0,
Problem (9) is infeasible. Based on the above discussions, we
develop the following APB terminating procedures:
Step 1: We set two threshold parametersǫ andξ. The selection
of ǫ andξ affects the effectiveness of the algorithm.
Step 2: Initialization: Let vi, 1 ≤ i ≤ M, be the optimal
value of Problem (10) at theith cell in the current computation
round,v∗i , 1 ≤ i ≤ M, be the optimal value Problem (10) at
theith cell in the previous computation round, andflag[i], 1 ≤
i ≤ M be the flags for theM BSs. At the beginning, we set
v1, . . . , vM andflag[1], . . . , flag[M ] all zeros.
Step 3: Repeat: Fori = 1, . . . ,M , the ith BS solves Problem
(10) and comparesvi againstv∗i . If |vi − v∗i | ≥ ǫ, we refresh
vi : vi = v∗i and proceed to Step 4; if|vi − v∗i | < ǫ, we
comparev∗i with ξ: If v∗i > ξ, we claim that Problem (9) is
infeasible and stop; otherwise, we mark this cell asflag[i] = 1
and proceed to Step 4.
Step 4: If flag[i] = 1 for all i = 1, . . . ,M , we claim that the
Problem (9) is feasible, then stop. Otherwise, return to Step
3.

Remark 2:Note that here we applied several approxima-
tions in making the decisions. First, we claim that Problem
(10) at theith BS converges when|vi − v∗i | < ǫ. Thus,v∗i is
considered as the limit ofith BS’s optimal solution. Second,
we setξ as the threshold dividing zero and non-zero values:
If v∗i > ξ, we consider the limit non-zero, and vice versa. In
simulations, we usually set bothǫ andξ small withξ ≫ ǫ. For
example,ǫ = 0.002 andξ = 0.1 are chosen for the simulation
results in Section V.

IV. CYCLIC PROJECTIONSBASED DISTRIBUTED

BEAMFORMING

In this section, to localize computations such that no central
control unit is required, we propose a decentralized algo-
rithm that practically implements the multi-cell cooperative
downlink beamforming. It is still assumed that theith BS

in the cellular network has the perfect knowledge of the
channels from all BSs to theith MS. Similar to APB, we
decompose Problem (9) toM sub-problems and compute
them atM BSs individually. In particular, theM problems
are solved sequentially at each round, and the algorithm
proceeds iteratively, which is termed as Cyclic Projections
Based Distributed Beamforming (CPB).

A. CPB Algorithm

A certain cyclic update order among theM BSs needs to be
determined at the initialization stage, where the 1st BS sends
its solution to the 2nd,. . ., the (M−1)th BS sends its solution
to theM th BS, and theM th BS sends its solution to the 1st,
in a cyclic fashion. At the beginning, theM BSs should obtain
the values forM , K, andP1, . . . , PM . The algorithm starts
from the 1st BS, after choosing an arbitrary initial pointx0,
it solves the following problem

min
x∈CKM+1

‖x− x0‖

s.t.
√

β1‖A1x+ n1‖ ≤
√

1 + β1(h
H
11S1x),

pTx = 0,

‖Sjx‖ ≤
√

Pj , j = 1, 2, . . . ,M, (13)

where the optimal solution for the above problem is labelledas
x
(1)
1 and sent to the 2nd BS. Then the other BSs begin to solve

their own problems sequentially according to the predefined
order. In particular, at thenth round theith BS (i ≥ 2) solves
the following problem

min
x∈CKM+1

∥

∥

∥
x− x(i−1)

n

∥

∥

∥

s.t.
√

βi‖Aix+ ni‖ ≤
√

1 + βi(h
H
iiSix),

pTx = 0,

‖Sjx‖ ≤
√

Pj , j = 1, 2, . . . ,M,

wherex(i−1)
n is the solution sent over by the preceding BS, and

x
(i)
n is used to denote the newly solved optimal solution. For

simplicity, we refer the problem in (14) as a cyclic subproblem.
Such a scheme is illustrated in Fig. 2.

Remark 3:Obviously, the constraints in Problem (14) and
Problem (10) are the same. Therefore, we have the similar
discussions as in Remark 1: We assume that all the cyclic
subproblems are feasible when CPB is executed; otherwise,
we directly claim that Problem (9) is infeasible.

B. Convergence Analysis

We first introduce the concept of cyclic projections.
Definition 3: SupposeC1, C2, . . . , Cr are closed convex

sets in the Hilbert spaceH with C = ∩r
1Ci, and letPi be

the projection forCi, i = 1, 2, . . . , r. The operation ofcyclic
projections is an iterative process that can be described as
follows. Start with any pointx ∈ H , and define the sequence
(xn) (n = 1, 2, . . .) by

x0 = x,x1 = P1(x0), . . . , andxn = Pn mod r (xn−1) , (14)

wherePk(.) is the projection operator toCk.
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In the literature, Bregman [18] showed that the above
sequence generated by cyclic projections always converges
weakly to some pointWC (x) ∈ C provided thatC 6= ∅,
and Gubin [19]et al.provided a systematic study over general
cyclic projections including the case ofC = ∅. Based on these
results, we have the following proposition.

Proposition 2: As n increases, the optimal solutionx(i)
n of

the ith BS’s cyclic subproblem converges in norm to a limit
xi that lies inFi. Moreover, if Problem (9) is feasible, allxi’s
coincide in a common pointx∗ that lies inF . If Problem (9)
is infeasible,xi’s do not coincide in the same solution.

Proof: It is obvious that the optimal solutions for cyclic
subproblems in (14) form a sequence of cyclic projections.
Since weak convergence is always guaranteed [18], by the
equivalence of weak convergence and convergence in norm in
a finite dimensional space [20], we obtain Proposition 2.�

Remark 4:Note that the convergence proof of CPB is
more general than that of APB since alternating projectionsis
actually a special case of cyclic projections where the number
of projection sets is two.

C. Practical Feasibility Decision Rules

For CPB, the algorithm termination rules are similar to that
of APB, which is skipped here.

V. SIMULATION RESULTS

The performance of APB is first simulated. In the simula-
tions, we setM = 3 andK = 4. We set the power constraints
as 15, 18, and 21, respectively, for the three BSs. In Fig. 3,
we demonstrates the convergence behavior as described in
Proposition 1. The three curves correspond to the required
SNRβi’s as 5, 10, and 20, respectively. We observe that their
asymptotic behaviors are similar. In Fig. 4, with a feasible
choice ofβi = 10, i = 1, 2, 3, we draw how the achieved SNR
values approach the target values over iterations. If Problem
(9) is infeasible, for example, when setting target SNR as
[50 40 60], the SNR evolution curves are given in Fig. 5,
where we see that none of the target SNRs are satisfied.

For the performance of CPB, the simulation setup is exactly
the same as that for APB. In Fig. 6, with a feasible choice
of βi = 10, i = 1, 2, 3, we see how the achieved SNR
values approach the target values with less iterations needed
compared with Fig. 4.

We observe from multiple simulations that the convergence
speed of CPB is much faster than APB.

VI. CONCLUDING REMARKS

In this paper, based on alternating projections and cyclic
projections, we have developed two optimal distributed beam-
forming schemes to cooperatively solve the SOCP feasibility
problem that is the key for quantifying the Pareto optimal
points in the achievable rate region of MISO interference
channels. The convergence in norm for both algorithms was
established, which was further verified by numerical simula-
tions.
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