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Abstract—We consider the problem of quantifying the Pareto  as noise. Hence, in this work, we assume SUD at the MS
optimal boundary in the achievable rate region over multiple- receivers. With SUD, it has been shown that transmit beam-
input single-output (MISO) interference channels, where he forming is optimal for MISO IC in [4] and[[5]. For the

problem boils down to solving a sequence of convex feasilbi .
problems after certain transformations. The feasibility problem is two-user case, Jorswieckt al. [6] proved that the Pareto-

solved by two new distributed optimal beamforming algorithms, ~Optimal beamforming vectors can be represented as linear
where the first one is to parallelize the computation based othe combinations of the zero-forcing (ZF) and maximum-ratio
method of alternating projections, and the second one is total- transmission (MRT) beamformers. Previous studiés [7] and
ize the computation based on _the method of cycli_c projectiasn [B] over MISO-IC beamforming usually assumed a central
Convergence proofs are established for both algorithms. . o .
Index Terms—MISO-Interference Channel, Distributed Beam- P'0¢€SSING unlt with global knowledge of aII_ the downlink
forming, Achievable Rate Region, Pareto Optimal channels, which may not be feasible in practical systems. To
make the result more implementable, our work focuses on
multi-cell cooperative downlink beamforming, which invek
distributed computations based on the local channel knowl-
Traditional wireless mobile systems are designed with theige at each BS. Such decentralized multi-cell cooperative
cellular architecture, in which neighboring base stati@®Ss) beamforming problems were previously studied in [9] based o
in different cells try to manage communications for thei inthe uplink-downlink duality to minimize the sum transméssi
tended mobile stations (MSs) over non-overlapping channgbower. Furthermore, a heuristic decentralized algorithas w
The associated inter-cell interferences, from non-nesgihly developed in[[4] for multi-cell cooperative downlink beam-
cells, are treated as additive background noises. To inegte  forming based on the iterative updates of certain interfeze
performance of traditional systems, most beyond-3G wéseletemperature constraints across different pairs of BSs.
technologies relax the frequency reuse constraint such thalt has been discussed inl[4] that quantifying the Pareto
the whole frequency band becomes available for all cells. Aptimal points in the achievable rate region over MISO IC may
such, joint signal processing across neighboring BSs idete boil down to solving a sequence of convex feasibility profe
to cope with the strong inter-cell interferences in the fatu after certain transformations, where the feasibility peats
cellular systems. can be recast as second-order cone programming (SOCP)
In this paper, we study a particular type of multi-BSroblems as shown i [10]. In this paper, we propose two
cooperation for downlink transmissions, where we assumeakyorithms to solve the resulting feasibility problem pladty
scenario with each BS equipped with multiple antennas aoddistributively. In the first parallized beamforming atgbm
each MS equipped with a single antenna. Besides, only dm&sed on alternating projections, we assume a computation-
MS is assumed to be active in each cell at any given tinp@wer limited centralized processing unit such that part of
(over a particular frequency band). Our problem setup can thee computation duties need to be parallely conducted in
modeled as a multiple-input single-output (MISO) Gaussiasach individual BS. In the second beamforming algorithm,
interference channel (IC), termed as MISO-IC. localized sequential optimizations across the BSs are per-
From an information-theoretic viewpoint, the best achiefermed iteratively, where the need for a central processing
able rate region to date for an IC was established by Hanit is eliminated. Convergence in norm for both algorithims
and Kobayashi in[]1], termed as the Han-Kobayashi regiogstablished. Besides, a set of feasibility decision ridesstab-
which utilizes rate splitting at transmitters, joint degwyl lished to implement our algorithms for practical enginegri
at receivers, and time sharing among codebooks. The Happlications.
Kobayashi region was simplified i J[2] and proved to be The rest of the paper is organized as follows. Sedfion I
within 1-bit of the capacity region of the Gaussian IC[in [3]presents the MISO-IC model for multi-cell downlink beam-
However, in cellular systems, practical constraints ofterit  forming, defines the Pareto optimality, and reviews the rate
MSs to only implement single-user detection (SUD) schemgsofile approach, which transforms the whole problem into
i.e., treating the interference from all other unintendeslsB solving a sequence of SOCP feasibility problems. Section
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[Mproposes the parallelized algorithm to parallelly solthe where P; is the power constraint at thi¢h BS.

SOCP feasibility problem based on the method of alternating

projections. Sectioh IV presents the distributed beamiiogm L

algorithm to solve the SOCP feasibility problem based o% Pareto Optimality

the method of cyclic projections. Numerical examples are e define the achievable rate region for the MISO-IC

provided in Sectiol V with conclusions in Section] VI. to be the collection of rate-tuples for all MSs that can be
Notations Bold face letters, e.gx and X, denote vectors simyltaneously achievable under a certain set of transmit-

and matrices, respectively.and0 denote the identity matrix power constraints:

and the all-zero matrix, respectively, with appropriateeln-

sions.diag(Xy, ..., X,,) defines a block diagonal matrix in

which the diagonal elements a;, ..., X,. ()" and(-)" (r1,-.. ) :

respectively denote the transpose and the Hermitian of xmat® = U 0<ri < Ri(wy,...,wn),

or a vectorR™*" andC™*™ denote the space of x n real {widllwil<Pii=1,.nm | =1,

matrices and the spacefxn complex matrices respectively. (4)

||| denotes the Euclidean norm of a complex veatohllthe  The upper-right boundary of this region is called the Pareto
log (-) functions are with base 2 by defaulte (-) andIm (-)  poundary, since it consists of rate-tuples at which it is im-
denote the real part and imaginary part of a complex argumeyssible to increase some user’s rate without simultalgous

respectively[al; ...;ay] defines a vector that stacks ...a,  decreasing the rate of at least one other users. To be more
into one column. By default, all the vectors are column Veto precise, the Pareto optimality of rate-tuple is defined #svs
[6].
Il. SYSTEM MODEL AND PRELIMINARIES Definition 1: A rate-tuple(ry, ..., ry) is Pareto optimal if
A. Signal Model there is no other rate-tuplg, ..., 7x) with (71,...,7a)

. o _ > (r1,...,rp) and (71,...,7p) # (r1,...,70), With the
We address downlink transmissions in a cellular netwofkequality being component-wise.
consisting of M cells, each having a multi-antenna BS 1qy, ;g paper, we are interested in searching the beamfgrmin

transmit an independent message to one active singlef@t&f 1ors for all BSs that lead to Parato optimal rate-tuples.
MS. With the assumption that the same band is shared among

all BSs for downlink transmissions, the system could be
modeled as a/-user MISO-IC. Specifically, we assume thaC. Rate Profile Approach

each BS is equipped witlX transmitting antennady > 1. _ ) _
With the assumption of single-user detection at each receiv The rate profile approach [L1] is an effective way to charac-

it has been shown in_[4] andl[5] that beamforming is optimé?rize the Pareto boundary of MISO-ICI [4], where the l.<ey s
to maximize the rate region. Hence, the discrete-time kb (2t any rate tuple on the Pareto boundary can be obtained by
received signal of the active MS in thith cell is given by solving the following optimization problem given a spedifie

rate-profile vectora = (a1, ..., anm):
M
H H .
Yi = hii W;S; + Z h]szSJ + Ziy 1= 11 27 T 7]\/[7 (1) qu?:m?f(wi} Rsum
J=1,57#i 2

K i ’ | wi]
wherew; € C* denotes the beamforming vector at itle BS; s.t. log [ 1+ P > ;i Rsum,
h;; € CK denotes the channel vector from tite BS to its iz |Pfw;| +a?
intended MS, whileh;; € CX denotes the cross-link channel i1=1,2,..., M,
from the jth BS to the MS in théth cell,i # j; s; denotes the lwil> < Pj, j=1,2,..., M, (5)

symbol transmitted by thé&h BS; andz; denotes the additive o "
circular symmetric complex Gaussian (CSCG) noise at tMéerea satisfies thaty, >0, 1 <i < M, and}_ .~ a; = 1.

ith receiver. It is assumed that ~ CA/ (0,07) and z;’s are Denote the optimal objective value of Probleh (5)/2s,,,-
independent. As shown in [4],R*,. -« corresponds to a particular Pareto

sum

We assume that théth receiver only knows channdl;, Optimal rate tuple. Hence, by exhausting all possible \&lue
and decodes its own messages by treating interferences @, solving Problem((5) yields the whole Pareto boundary.
all other BSs as noise. With SUD, the achievable rate for the

ith MS is thus given as D. SOCP Feasibility Problem
H,, |2
Ri=log 1+ ‘h”wl‘Q , 2) Directly solving Problem[{5) is usually difficult due to
Z#j ]hﬁ wj\ +o? its non-convexity. However given the fact that the objestiv

function is a single variable, we could adopt the bisection
search algorithm to efficiently find?*, ~as shown in[[4].

sum

||wi||2 <P, i=1,2,...,M, (3) Specifically, we could solve a sequence of the following

where the maximum transmission power is limited as



feasibility problems each for a given: [1l. ALTERNATING PROJECTIONSBASED DISTRIBUTED
BEAMFORMING

max 0 ) ) ) )
{wi} In this section, in order to reduce the requirement on
\hﬁwi|2 processing power at the control center, we develop a down-
13 . . . . as
s.t. log { 1+ PSE 5 | = @iTo; link beamforming algorithm, termed as alternating progecd
_ it |hji“’ﬂ" +a; based distributed beamforming (APB), to solve Probléin (9)
i=1,2,..., M, parallelly in M sub-problems. With our algorithm, the only
lwil> < Py, 5=1,2,..., M. (6) processing power needed at the central unit is to calculate a

average value over all the localized solutions from AtfieBSs.

The algorithm is iterative, where parallel optimizatiorsass

BSs are performed at each round. The convergence issue of
lAPB is also studied in this section.

Therefore if the above problem is feasible fay, it follows
that R?,,,, > ro; otherwise,R?, . < ro. Hence, a bisection

search over,,,, can be done. However, Problefi (6) is stil
Nnon-convex.

As shown in [10], we can adjust the phasewf in ) A APB Algorithm
to make hZw; real and non-negative without affecting the At the initialization stage, the computation-limited cen-

value of\hﬁwi|. Hence, by denotings; = e*™ — 1, ¢ = tralized unit is assigned with the values fad, K, and
1,2,..., M, Problem[(6) can be recast as Py, ..., Py. Then the central unit broadcasts the information
to all BSs with an arbitrary initial poinft, € CKM+1 |t
Iﬁ,aii 0 is assumed that théth BS has the perfect knowledge of
9 9 the channels from all BSs to théh MS, i.e., all h;;’s.
s.. (hng) > Bi <Zi¢j \hﬁwﬂ + Uf) ) Furthermore, all BSs operate according to the same protocol

described as follows. At theth round, we denote the solution

H, ;o
hijwi 20, i=1,2,.... M, vector that the central unit broadcasts®s_ ;. Then at the

will < /Py, 5=1,2,..., M. (7) ith BS, the corresponding problem is expressed as
We further definex = J[wi;wo; - ;wa;0], n; = min 2 — &, 1|
[0;0;...;0;04], S; = [ I --- 0| with S;z = ® .
wi, i =1,2,..., M, and A; = diag (hi1,hI, ... Rl 0). st. /BillAiw +nil| <1+ Bi(hiSix),
For convenience, we add a ter/ﬁvgl(hf;’wi)2 to both sides of plx=0,
the first constraint in Probleni](7) as |S;x|| < /Pj,j=1,2,..., M, (10)
M - y i . 3 .
(0 () 2 0 (X Wl 4ot) (@ where s, = ol with ot denoting the
=1 optimal solution for Problem[{10) of the:(— 1)th round at
wherei = 1,..., M. Finally, with our newly defined variablesthe ith BS. A rough description of the algorithm is depicted
and coefficients, we recast Problem (7) as in Fig.[d.
max 0
xT
s.t. VBill[Aix + || < /14 6; (hﬁSlcc) ,
pla =0,

. . . . Average
where vectorp is of the same dimension as with all zero
elements except for the last one being 1, such that the last
element ofx is guaranteed to be 0.

Consequently, Problen{](9) is a SOCP problem, which /
can be efficiently solved by numerical tools [12]. However, 7 i ,
directly solving Problem[{9) requires a centralized altjoni BSu E AMS‘
running at a control center, which may not be desired in
certain engineering applications. Accordingly, thereteeally
two motivations for seeking distributed algorithms: one is
to decompose the computations into multiple sub-programsRemark 1:Note that if Problem[(J0) is infeasible at the
such that the requirement for the central processing posverkth BS ¢ € {1,...,M}), we can directly claim that the
reduced; and the other is to localize computations suchnthatassociated Probleni](9) is infeasible and quit APB. As such,
central control facility is required. In Sectign]lll and $ea from now on we only focus on the cases where Problerh (10)
V] we propose two algorithms based upon the above tvimalways feasible at each individual BS, and run APB to check
motivations, respectively. when the overall problem in}9) is feasible and when it is not.
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Fig. 1. APB Scheme



With a feasible Problen{{10), we need the optimal soluticend mapz,,_; to a double-dimensioned real vectdy,_; =
2\ to satisfy all the transmitter power constraints andithe [Re(Z,_1); Im(&,_1)]. We rewrite Problem{10) as
receiver’s SNR demand. The reason why we keep/&afower . A

constraints at each individual BS is for that fast conveogen ﬁgﬁﬁw |12 = &

which can be observed from simulations. Since all e A= = THE =
] : ) : s.t. VBillAE + 7| < /14 B (hi; SiZ) ,
values are typically predetermined in cellular systemsextea BillA: i Bi (hii S:)

H~ _
system overhead is needed. In the second-order cone dohstra d;z =0,
of Problem [(ID), directly using the terf! S;x implies that P E =0,
Im(hgsim) =0andhilS;xz > 0. HSJEH < \/Fj’ j=1,...,M, (11)

B. Convergence Analysis where

Since APB is iterative, the convergence is an importaneissyf. —

to address. The convergence of APB is formally stated as

follows. ‘
Proposition 1: As n increases, the optimal solutiony’ Si=[S S ],d"=[m(hY) Re(RE)][S Si]

for Problem [[ID) converges in norm to the limif when o " " ’

Problem [[®) is either feasible or infeasible. Furthermae,

averaged solutiott,, also converges in norm t* satisfying n; = [n;;0],p = [p; p|.

thatﬁ i]\il ! = &*. In particular, if Problem[{9) is feasible,

all £"’'s coincide in the same poirit that lies in the feasible fe

set of Problem[{9) with = &". If Problem [9) is infeasible, e cones, some subspaces, and some norm balls, which is

z''s do .not coincide in the same solution. , ) nonempty closed and bounded. Next we show how to trans-
Proof: 1) For the case of Problerl](9) being feasible, Wgym our algorithm into a problem of alternating projection

have the following proof. o Let’s define two product sets:
We first introduce the concept of finding the closest point

, Wil =] Re(h) —Im(nfl) ],

From the constraints of Problefi{11), we observe that the
asible setF/ is the intersection of a collection of second-

to some given point in a closed convex set and alternating T:F| x Fyx-Fy,
projections. an
In mathematics, a Hilbert spadé is defined with the inner ) { ) 2N’}
’ . . U: a,a,...,a):a€cR
product(x, y) and the induced norfiz|| = \/(x,z). If S is ( )

a nonempty closed convex set i, Riesz [13] states that pjeanwhile we define two new variables,, y, € R2N'M as
eachxz € H has a unique best approximation (or nearest @) )

point) Ps(x) in S. Thatis,||z — Ps(z)| < ||z —y|, Vy € xr = [i;gl);ik RE ;ﬂ_@;c } s Yk = [Br Br; &) (12)
S\{Ps(x)}. The mappingPs : H — S is called the . . .
projection onto S, i.e., finding the closest point te in a Obvkllously,hwkfe”T, Yr € U.lBy the .results of Pierra in [14],
closed nonempty convex set. In this paper, we use the gené‘YﬁLI ave t 1e_ Solo_vvmgptwgl emma% fori — .
Euclidean inner product definitionée,y) = xy in the emma 1.50lving =To _ems'ﬂ ) fon = 1."".’M n
complex space antiz, y) = 2"y in the real space. parallel at thekth round is equivalent to projecting vector

Definition 2: Suppos&’; andC, are two closed nonempty ¥+~ onto the closed Conv?f( Sa and obtaininge.
convex sets inH with corresponding projection®, and P.. Lemma 2:Computing% > a,-;;> is equivalent to project-
Let C = C; N Cy and fix a starting pointy € H. Then the '

1=1
, L ing ¢, onto U and gettingyy,.
sequence oélternating projectionss generated by 9 @k g Y

Therefore, APB can be interpreted as alternating projastio
betweeri’ andU. Note that the idea dhlternating Projections
was first proposed by von Neumann in_[15], where only
subspaces are assumed as the projection sets. Then many

Let F; denote the feasible set of Problem](10) at ite researchers extended this technique to more general szenar
BS, F; # (), and F = ﬂi]\il F; # 0; note thatF is exactly [16], [17]. For alternating projections between two nonpgyn
the feasible set of Probleri](9). Thus solving Problgm (10) elosed convex set€’; and Cs, Cheney [[15] proved that
theith BS can be viewed as finding tlobosestpoint to&,,_;  convergence in norm is always assured when either (a) one
in a non-empty closed convex sé}, i.e., the projection of set is compact, or (b) one set is of finite dimension. Since
Z,_1 onto F;. Next we transform the variable defined over theetT is bounded and our underlying Hilbert space is of finite
complex Hilbert space to a double-dimensioned real Hilbattmension, both conditions (a) and (b) are satisfied. Tioeeef
space such that we can use some existed results in alteynafiiPB always leads to strong convergence, i.e., convergence i
projections. We transforn: € CY' to & € R2Y' by letting norm, due to the facts that the numbers of cells and antennas
Z = [Re(z);Im(x)], where N’ = KM + 1. Similarly, we are always finite. As shown i [17], al’s will coincide into
map the complex sek; to a double-dimensioned real sBf, the same poin& that lies in F.

11 = Pixg, 20 = Poxy, 23 = Piag,. ..

)

TN = Prn_1,xN41 = Pion, ...



2) For the case of Probleri](9) being infeasible, we havwe the cellular network has the perfect knowledge of the
the following proof. channels from all BSs to th&éh MS. Similar to APB, we
With ' = ), the convergence of APB is still equivalentdecompose Probleni](9) td/ sub-problems and compute
to the convergence of alternating projections betw&eand them atM BSs individually. In particular, theé/ problems
U, where Cheney'’s results in [16] are applicable in this casare solved sequentially at each round, and the algorithm
Thus, the convergence in norm is still valid for infeasitdses. proceeds iteratively, which is termed as Cyclic Projection
Besides, it is easy to verify thakk? Zi]\il &' = 2*. However, Based Distributed Beamforming (CPB).
Z'’s do not coincide into the same point. A. CPB Algorithm

We now complete the proof for Propositibh 1.
A certain cyclic update order among thé BSs needs to be

C. Practical Feasibility Decision Rules determined at the initialization stage, where the 1st BRIsen

With convergence in norm for APB established, we noifs solution to the 2nd,. ., the (M —1)th BS sends its solution
need to establish some practical feasibility check rules to the Mth BS, and thel/th BS sends its solution to the 1st,
correctly terminate APB when it converges. in a cyclic fashion. At the beginning, thel BSs should obtain

From Lemma 1 and Lemma 2, we know that the feasibilithe values forM, K, and P, ..., Py. The algorithm starts
of Problem [[®) is totally determined by wheth& and U from the 1st BS, after choosing an arbitrary initial poin,
intersect or not. By Proposition 1, if Problefd (9) is feasibl it solves the following problem

all convergent solutiong!, ..., M, &* coincide at a common .
) , : : min |z — xo]|
point * which belongs toF'. In this case, all optimal values zeckMm+1
of Problems[(ID) converge to 0. On the other hand, if any St VBl Az + || < /1 + B (kLS ),
of the optimal values of Problems{10) do not converge to 0, pTa =0

Problem[[®) is infeasible. Based on the above discussioas, w )
develop the following APB terminating procedures: 1Szl <V Pj, j=1,2,..., M, (13)

Step I We set two threshold parameterand¢. The selection \yhere the optimal solution for the above problem is labefisd

of ¢ and¢ affects the effectiveness of the algorithm. z{" and sent to the 2nd BS. Then the other BSs begin to solve

Step 2 Initialization: Letv;, 1 < i < M, be the optimal neir own problems sequentially according to the predefined
value of Problem((J0) at theh cell in the current computation g qer. In particular, at theth round theith BS ¢ > 2) solves
round,v;, 1 <i < M, be the optimal value Probleri {10) at,o following problem

theith cell in the previous computation round, affgs[i], 1 <

i < M be the flags for the\/ BSs. At the beginning, we set min Hw - ng-1>H

v1,...,vy andflag[l], ..., flag[M] all zeros. ze

Step 3 Repeat: Fot = 1,..., M, theith BS solves Problem st/ Bil Aie +nil < 1+ Bi(h{] Siz),
(I0) and compares; againstv;. If |v; — v}| > €, we refresh ple =0,

v; © v; = v} and proceed to Step 4; b, —v| < €, we I1S;z| < \/]7j7 j=1,2,..., M,

comparev; with & If vF > &, we claim that ProblenT]9) is _

infeasible and stop; otherwise, we mark this celflag[i] = 1 wh_erea:ﬁf’l) is the solution sent over by the preceding BS, and

and proceed to Step 4. :1:55) is used to denote the newly solved optimal solution. For

Step 4 If flag[i] = 1 for all i = 1,..., M, we claim that the simplicity, we refer the problem ifi_.(14) as a cyclic subpeshl

Problem [[®) is feasible, then stop. Otherwise, return tg StS8uch a scheme is illustrated in Fig. 2.

3. Remark 3:Obviously, the constraints in Problefn{14) and
Remark 2:Note that here we applied several approximaroblem [ID) are the same. Therefore, we have the similar

tions in making the decisions. First, we claim that Problenfiscussions as in RemafR 1: We assume that all the cyclic

(10) at theith BS converges whefv; — v}| < e. Thus,v; is subproblems are feasible when CPB is executed; otherwise,

considered as the limit ofth BS’s optimal solution. Second, we directly claim that Probleni}9) is infeasible.

we set¢ as the threshold dividing zero and non-zero values: :

If v > ¢, we consider the limit non-zero, and vice versa. Ify- Convergence Analysis

simulations, we usually set bottand¢ small with¢ > e. For ~ We first introduce the concept of cyclic projections.

examplege = 0.002 and¢ = 0.1 are chosen for the simulation Definition 3: SupposeC', Cy, ..., ), are closed convex
results in Sectiof V. sets in the Hilbert spacé& with C = N7C;, and letP; be
the projection forC;, i = 1,2,...,r. The operation otyclic
IV. CyCLIC PROJECTIONSBASED DISTRIBUTED projectionsis an iterative process that can be described as
BEAMFORMING follows. Start with any point: € H, and define the sequence

In this section, to localize computations such that no egnt(z,) (n = 1,2,...) by
control unit is required, we propose a decentralized algo-
i . o ) ) =z =P ,..., andx, = _1), (14
rithm that practically implements the multi-cell coopérat o= en 1(@o) n nmod r (Tn-1), (14)
downlink beamforming. It is still assumed that thih BS where P;(.) is the projection operator t6’;.
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For the performance of CPB, the simulation setup is exactly
the same as that for APB. In Fifl 6, with a feasible choice
of 8, = 10, ¢ = 1,2,3, we see how the achieved SNR
values approach the target values with less iterationsetked
compared with Figl14.

We observe from multiple simulations that the convergence
speed of CPB is much faster than APB.

VI. CONCLUDING REMARKS

In this paper, based on alternating projections and cyclic
projections, we have developed two optimal distributediibea
forming schemes to cooperatively solve the SOCP feagibilit
problem that is the key for quantifying the Pareto optimal
points in the achievable rate region of MISO interference
channels. The convergence in norm for both algorithms was
established, which was further verified by numerical simula

Fig. 2. CPB Scheme .
tions.

In the literature, Bregman_[18] showed that the above
sequence generated by cyclic projections always converges 10°¢
weakly to some point¥c (z) € C provided thatC' # 0,

and Gubin[[1IBJet al. provided a systematic study over general 10
cyclic projections including the case 6f= (). Based on these
results, we have the following proposition. 0

Proposition 2: As n increases, the optimal solutiaef!) of
the ith BS’s cyclic subproblem converges in norm to a limit
x! that lies inF;. Moreover, if Problem[(9) is feasible, alf’s
coincide in a common point* that lies inF. If Problem [9)
is infeasible,z's do not coincide in the same solution.

Proof: It is obvious that the optimal solutions for cyclic
subproblems in[(14) form a sequence of cyclic projections.

107

107
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Since weak convergence is always guarantéed [18], by the L L
equivalence of weak convergence and convergence in norm in
a finite dimensional spacg [20], we obtain Propositiofi12. Fig. 3. APB:||#, — Zn_1]| decreases

Remark 4:Note that the convergence proof of CPB is
more general than that of APB since alternating projectiens
actually a special case of cyclic projections where the nrermb
of projection sets is two.

C. Practical Feasibility Decision Rules

For CPB, the algorithm termination rules are similar to that
of APB, which is skipped here.

V. SIMULATION RESULTS

The performance of APB is first simulated. In the simula-
tions, we sefM = 3 and K = 4. We set the power constraints
as 15, 18, and 21, respectively, for the three BSs. In[Hig. 3,
we demonstrates the convergence behavior as described in
Proposition 1. The three curves correspond to the required
SNR 3;'s as 5, 10, and 20, respectively. We observe that their
asymptotic behaviors are similar. In Fig. 4, with a feasible - - -
choice of3; = 10,7 =1, 2, 3, we draw how the achieved SNR L e
values approach the target values over iterations. If bl
@) is infeasible, for example, when setting target SNR asFig. 4. APB: Achievable SNR tuple increases, on setfingy 10 10]
[50 40 60], the SNR evolution curves are given in F[g. 5,
where we see that none of the target SNRs are satisfied.

Achievable SNR
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