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Abstract

For any S ⊂ [n], we compute the probability that the subgraph of Gn,d induced by
S is a given graph H on the vertex set S. The result holds for any d = o(n1/3) and
is further extended to Gd, the probability space of random graphs with a given degree
sequence d.

1 Introduction

Properties of subgraphs and induced subgraphs in random graph models have been inves-
tigated by various authors. Ruciński [11, 13] studied the distribution of the count of small
subgraphs in the standard random graph model Gn,p, and conditions under which the distri-
bution converges to the normal distribution. He also studied properties of induced subgraphs
in [12].

Techniques for analysing the standard random graph model Gn,p often do not apply in the
random regular graph model Gn,d. We take the vertex set of the graph to be [n] in both these
models. For S ⊆ [n], let GS denote the subgraph of G induced by S. For a graph H with
vertex set S, computing the probabilities P(GS ⊇ H) and P(GS = H) in Gn,p is trivial, but
computing them in Gn,d is not easy, especially when the degree d → ∞ as n → ∞. McKay [8]
estimated lower and upper bounds of P(GS ⊇ H) in Gn,d when the degree sequence of H and
d satisfy certain conditions. These bounds are useful in estimating the asymptotic value of
P(GS ⊇ H) when d is not too large or H is small. However, the result and the techniques do
not apply to the induced subgraph case. Gao and Wormald [6] proved that the distribution of
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the number of small subgraphs with certain restrictions converges to the normal distribution
in Gn,d. However, no such results on induced subgraphs are known. On the other hand, for
very dense regular graphs, Krivelevich, Sudakov and Wormald [7] computed P(GS = H) in
Gn,d when n is odd, d = (n− 1)/2 and |V (H)| = o(

√
n).

An asymptotic formula of the probability that GS = H or GS ⊇ H in a random bipartite
graph with a specified degree sequence has been derived by Bender [2] when the maximum
degree is bounded. The result was extended further by Bollobás and McKay [4] and by
McKay [9] when the maximum degree goes to infinity slowly as n goes to infinity. Greenhill
and Mckay [5] recently derived an asymptotic formula for the case when the random bipartite
graph is sufficiently dense and H is sparse enough.

For a vector d = (d1, . . . , dn) of nonnegative integers, let M = M(d) =
∑n

i=1 di and let
Gd denote the class of graphs with degree sequence d and the uniform distribution (so Gd is
a generalisation of Gn,d). In this paper, we compute the probability that GS = H in Gd when
dmax = o(M1/4), where dmax = max{d1, . . . , dn}. The power of this result is that there is no
restriction on the size or density ofH . Computing this probability will be useful as a basic tool
for studying the properties of induced subgraphs. In Section 2, as a direct application of our
main result, we compute the probability that a given set of vertices in Gn,d is an independent
set.

A graph G is called a B-graph with vertex bipartition (L,R) if V (G) = L ∪ R, and L
is an independent set of G. If the graph is not necessarily simple, i.e. loops and multiple
edges are allowed, we call it a B-multigraph instead. An edge in a B-graph or B-multigraph
is called a mixed edge if its end vertices are in L and R respectively, and a pure edge if they
are both in R. Given a nonnegative integer vector d, let G(L,R,d) be the set of B-graphs
with bipartition L and R and the degree sequence d and let g(L,R,d) = |G(L,R,d)|. By
convention, g(L,R,d) = 0 if d is not nonnegative.

Given a sequence d, let g(d) denote the number of graphs on vertex set [n] with degree
sequence d. Given S = [s] ⊂ [n], let H be a given graph on vertex set S with degree sequence
(ki)1≤i≤s. Let d

′ be the integer vector defined by d′i = di−ki for i ∈ S and d′i = di for i ∈ [n]\S.
Then the number of graphs with degree sequence d and with GS = H is g(S, [n] \ S,d′), and
so the probability that GS = H in Gn,d equals g(S, [n] \ S,d′)/g(d). So the study of induced
subgraphs leads directly to the question of counting B-graphs.

The following theorem by McKay [9] gives an asymptotic formula for g(d) when d4max =
o(M(d)). (The restriction on dmax was relaxed further by McKay and Wormald in [10], but
to do so requires a few extra terms in the exponential factor of the asymptotic formula, and
is not needed for the purpose of this paper.)

Theorem 1.1 (McKay) Let d = (d1, . . . , dn) with
∑n

i=1 di even and dmax = o(M(d)1/4).
The number of graphs with degree sequence d is uniformly

M(d)!

2M(d)/2(M(d)/2)!
∏n

i=1 di!
· exp

(

−µ(d)− µ(d)2 +O(d4max/M(d))
)

as n → ∞.

By “uniformly” in the above theorem we mean the constant implicit in O(.) is the same for
all choices of d as a function of n, for a given function implicit in the o(.) term. A special
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case of Theorem 1.1 gives that the number of d-regular graphs on n vertices is asymptotically

(dn)!

2dn/2(dn/2)!(d!)n
· exp

(

−d2 − 1

4

)

,

when d = o(n1/3).
Our main result is an asymptotic formula for g(L,R,d), to an accuracy matching McKay’s

formula in Theorem 1.1. This is given in Section 2, together with its direct applications to
estimating P(GS = H) in Gd, and some special cases are also given there. The proofs
use the switching method, first introduced by McKay [9], with refinements by McKay and
Wormald [10], and suitably modified for our purposes here. In Section 3 we give use switchings
to estimate the ratios between probabilities defined by the counts of loops and various types
of multiple edges. In Section 4 we again use switchings to evaluate some variables appearing
in those estimates, and in Section 5 we use these to prove the main theorem.

2 Main results

Our main goal in this paper is to estimate g(L,R,d). We first define some notation. For any
positive integer n, let [n] denote the set {1, 2, . . . , n}. Given a sequence d = (d1, . . . , dn), let
dmax = max{di, i ∈ [n]} and let M2(d) =

∑n
i=1 di(di − 1). Define µ(d) to be M2(d)/2M(d).

For any S ⊂ L ∪R, define

M1(d, S) =
∑

i∈S

di, M2(d, S) =
∑

i∈S

di(di − 1),

µ0(d, L, R) =
(M1(d, R)−M1(d, L))M2(d, R)

2M1(d, R)2
, (2.1)

µ1(d, L, R) =
M2(d, R)M2(d, L)

2M1(d, R)2
, (2.2)

µ2(d, L, R) = µ0(d, L, R)2. (2.3)

We drop the notations L and R from µi(d, L, R) for i = 0, 1, 2 when the context is clear. Note
also that if M1(d, R) < M1(d, L), then g(L,R,d) is trivially 0, so we may assume that

M1(d, R) ≥ M1(d, L). (2.4)

The following theorem, proved in Section 5, gives an asymptotic formula for g(L,R,d).

Theorem 2.1 Let d = (d1, . . . , dn) with
∑n

i=1 di even, dmax = o(M(d)1/4) and M1(d, R) ≥
M1(d, L). Then uniformly over all L and d as n → ∞,

g(L,R,d) =
M1(d, R)!e−µ0(d)−µ1(d)−µ2(d)

2(M1(d,R)−M1(d,L))/2((M1(d, R)−M1(d, L))/2)!
∏n

i=1 di!

(

1 +O

(

d4max

M(d)

))

.
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Applying Theorems 2.1 and 1.1 we directly get the following. Here d′max denotes max{d′1, . . . , d′n}.

Corollary 2.2 Let d = (d1, . . . , dn) with
∑n

i=1 even and dmax = o(M(d)1/4). Let S = [s] ⊂
[n], let H be a graph on vertex set S with degree sequence k = (k1, . . . , ks), let h =

∑h
i=1 ki

and let d′ = (d′1, . . . , d
′
n) with d′i = di − ki for i ∈ S and d′i = di for i /∈ S. If d′i < 0 for some

i ∈ [n] or M1(d
′, [n] \S) < M1(d

′, S), then PGd
(S,H) = 0. Otherwise, if d′max = o(M(d′)1/4),

then uniformly

PGd
(S,H) = exp

(

−µ0(d
′)− µ1(d

′)− µ2(d
′) + µ(d) + µ(d)2 +O

(

d′4max

M(d′)
+

d4max

M(d)

))

×
s
∏

i=1

[di]ki
M1(d

′, [n] \ S)!2M1(d′,S)+h/2(M(d)/2)!

((M1(d′, [n] \ S)−M1(d′, S))/2)!M(d)!
.

where µi(d
′) = µi(d

′, S, [n] \ S) for i = 0, 1 and 2.

Proof. Recall that g(d) denote the number of graphs on vertex set [n] with degree sequence
d. We have

PGd
(S,H) =

g(S, [n] \ S,d′)

g(d)
.

The corollary now follows from the formulae for g(S, [n] \ S,d′) in Theorem 2.1 and g(d) in
Theorem 1.1.

Let PGn,d
(S,H) denote the probability that GS = H for a random d-regular graph G.

Corollary 2.3 Given 0 < s < n, let S = [s] ⊂ [n], let H be a graph on vertex set S with
degree sequence k = (k1, . . . , ks) with ki ≤ d for all 1 ≤ i ≤ s, and put h =

∑h
i=1 ki. Assume

d = o((n− s)1/3). Then

PGn,d
(S,H) = exp

(

−µ0(d
′)− µ1(d

′)− µ2(d
′) +

d2 − 1

4
+O(d4/(dn− h))

)

×
s
∏

i=1

[d]ki
(dn− ds)!(dn/2)!2ds−h/2

((dn− 2ds+ h)/2)!(dn)!
,

where d′i = d− ki for i ∈ S and d′i = d for i /∈ S, and µi is defined as in Corollary 2.2.

Proof. We apply Corollary 2.2. By the definition of µ(d), we immediately get that µ(d) +
µ(d)2 = (d2−1)/4 when d is a constant sequence with each term d. We also have M(d) = dn,
M(d′) = dn− h, M1(d

′, S) = ds− h, M1(d
′, [n] \ S) = dn− ds, and d′max ≤ d. Moreover,

(d′max)
4

M(d′)
=

d4

dn− h
=

d3

n− h/d
≤ d3

n− s
= o(1),

since h ≤ ds and d = o((n− s)1/3).

The formula in Corollary 2.3 easily simplifies if the graph H is not too large.
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Corollary 2.4 Let S, H, k and h be defined as in Corollary 2.3. If d = o(n1/3), s2d = o(n)
and d2s = o(n), then

PGn,d
(S,H) =

(

1 +O((d3 + s2d+ d2s)/n)
)

(dn)−h/2

s
∏

i=1

[d]ki.

Proof. Since d2s = o(n), we have h = O(ds) = o(n) and hence d4/(dn − h) = O(d3/n).
Similarly,

M1(d, R) = dn+O(ds), Mi(d, L) = O(dis) (i = 1, 2), M2(d, R) = d(d− 1)(n− O(s))

and hence from (2.1)–(2.3)

µ0(d
′) =

d− 1

2
+O(ds/n), µ1(d

′) = O
(

d2s/n
)

, µ2(d
′) =

(d− 1)2

4
+O(d2s/n).

Thus µ0(d
′) + µ1(d

′) + µ2(d
′) = (d2 − 1)/4 +O(d2s/n).

The corollary now follows upon applying Stirling’s formula in the form n! =
√
2πn(n/e)n(1+

O(n−1)) to obtain (ignoring negligible error terms)

(dn− ds)!(dn/2)!2ds−h/2

((dn− 2ds+ h)/2)!(dn)!
=

(

dn

e

)−h/2
(1− s/n)dn−ds

(1− 2s/n+ h/dn)(dn−2ds+h)/2
.

Another interesting special case is when H is empty.

Corollary 2.5 Assume d = o(n1/3). Then for any S ⊂ [n] with s = |S| < n/2,

P(S is independent) =
(

1 +O(d3/n)
)

exp (f(d, δ))
s
∏

i=1

(dn− ds)!(dn/2)!2ds

((dn− 2ds)/2)!(dn)!
,

where δ = δ(n) = s/n, and

f(d, δ) = −δ(d − 1)(δd− 2 + δ)

4(1− δ)2
.

Proof. This is a simple application of Corollary 2.3 with h = 0, noting that

µ0 =
(d− 1)(n− 2s)

2(n− s)
, µ1 =

(d− 1)2s

2(n− s)
, µ2 =

(d− 1)2(n− 2s)2

4(n− s)2
.

Note that if d(n− 2s) → ∞, then the probability that S is independent under the conditions
in Corollary 2.5 can be further simplified using Stirling’s formula to

(

1 +O(d3/n) +O(1/(dn− 2ds))
)

√

1− δ

1− 2δ

(

(1− δ)1−δ

(1− 2δ)(1−2δ)/2

)dn

exp (f(d, δ)) .
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3 The main switchings

We can use the pairing model to generate B-graphs with the vertex partition L ∪ R and
the degree sequence d = {d1, . . . , dn}. Consider n buckets representing the n vertices. Let
each bucket i contain di points. Take a random pairing of these points. We say a pairing is
restricted if no pair has both ends in the buckets representing vertices in L. Let M(L,R,d)
be the class of all restricted pairings. Every such pairing corresponds to a B-multigraph by
contracting all points in each bucket to form a vertex. In the rest of the paper, a bucket in a
pairing is also called a vertex. A pair in a pairing is called a mixed (pure) pair if it corresponds
to a mixed (pure) edge in the corresponding B-multigraph. Thus, in a restricted pairing, each
pair is either mixed or pure; pure pairs have both points in a vertex in R. Note that any
simple B-graph corresponds to

∏n
i=1 di! restricted pairings in M(L,R,d). Hence, all simple

B-graphs occur with the same probability in the pairing model.

The main goal of this section is to compute the probability that a B-multigraph generated
by the pairing model is simple. We say that {{u1, u

′
1}, {u2, u

′
2}, {u3, u

′
3}} is a triple pair if u1,

u2, u3 are in one vertex and u′
1, u

′
2, u

′
3 are in another vertex. We call the two vertices involved

the end vertices of the triple pair. If the end vertices are in L and R respectively, the triple
pair is called a mixed triple pair, and otherwise it is pure. Given a random restricted pairing,
let T1 and T2 be the number of mixed and pure triple pairs respectively. In this section,
there is only one degree sequence d referred to, so we drop the notation d from M(d) and
Mi(d, L), Mi(d, R), µi(d) for simplicity. Since M1(R) ≥ M1(L) by assumption (2.4), we have
M1(R) ≥ M/2.

Lemma 3.1 E(T1) = O(d4max/M) and E(T2) = O(d4max/M).

Proof. For any two vertices i ∈ L and j ∈ R, we compute the probability that there is
a triple pair with end vertices i and j. There are

(

di
3

)

ways to choose three points from the

vertex i and
(

dj
3

)

ways to choose three points from the vertex j. There are 6 ways to match
the six chosen points to form a triple pair. For any positive even integer m, let U(m) denote
the number of pairings of m points. Then

U(m) =

m/2−1
∏

i=0

(m− 2i− 1) =
m!

2m/2(m/2)!
.

The probability for the three particular pairs to occur is

[M1(R)− 3]M1(L)−3U(M1(R)−M1(L))

[M1(R)]M1(L)U(M1(R)−M1(L))
∼ M1(R)−3

(noting that M1(R) ≥ M1(L) implies M1(R) → ∞). This is because the number of ways
to match the remaining M1(R) − 3 points in L to points in R, except for the three chosen
points in the vertex j, is [M1(R)− 3]M1(L)−3, and the number of matchings of the remaining
M1(R) − M1(L) points in R is U(M1(R) − M1(L)), whilst the total number of restricted
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pairings is [M1(R)]M1(L)U(M1(R)−M1(L)). Hence we have

E(T1) ∼
∑

i∈L

∑

j∈R

6

(

di
3

)(

dj
3

)

M1(R)−3 = O

((

∑

i∈L

d3i

)(

∑

j∈R

d3j

))

M−3

= O

(

d4maxM1(L)M1(R)

M3

)

= O

(

d4max

M

)

,

where the second equality uses M/2 ≤ M1(R) ≤ M .
A similar argument gives

E(T2) ∼
∑

i∈R

∑

j∈R

6

(

di
3

)(

dj
3

)

M1(R)−3 = O

((

∑

i∈R

d3i

)(

∑

j∈R

d3j

))

M−3

= O

(

d4maxM1(R)2

M3

)

= O

(

d4max

M

)

.

A pair {u, u′} is called a loop if u and u′ are contained in the same vertex and two pairs
{u1, u

′
1}, {u2, u

′
2} are called a double pair if u1, u2 are in one vertex and u′

1, u
′
2 are in another

vertex. We call two loops that contain points from a common vertex a double loop. Let I be
the number of double loops. The proof of the following is a simple modification of the proof
of the previous lemma, so is omitted.

Lemma 3.2 E(I) = O(d3max/M).

Lemmas 3.1 and 3.2 show that a.a.s. there are no triple pairs or double loops in a random
restricted pairing, under the assumption d4max = o(M(d)). So we only need to consider loops
and double pairs. In a restricted pairing, there are two types of double pairs. One is that u1,
u2 are contained in a vertex in L and u′

1, u
′
2 are contained in a vertex in R. The other is that

all of u1, u2, u
′
1 and u′

2 are contained in vertices in R. We call the former type mixed and the
latter type pure.

Let B0, B1 and B2 be the numbers of loops, mixed double pairs and pure double pairs
respectively. We first compute the expected value of Bi for i = 0, 1, 2. Recall from (2.1)–(2.3)
that

µ0 =
(M1(R)−M1(L))M2(R)

2M1(R)2
, µ1 =

M2(R)M2(L)

2M1(R)2
, µ2 = µ2

0.

Lemma 3.3 For i = 0, 1, 2 we have EBi = O(µi). If dmax = o(M1/3) and M1(R)−M1(L) →
∞, then, more precisely, EBi ∼ µi for i = 0 and 1, and EB2 = (1 + o(1))µ2 + o(1).

Proof. Using small modifications of the proof of Lemma 3.1, we immediately get

EB0 =
∑

i∈R

(

di
2

)

[M1(R)− 2]M1(L)U(M1(R)−M1(L)− 2)

[M1(R)]M1(L)U(M1(R)−M1(L))

=
∑

i∈R

[di]2
2

O (M1(R)−M1(L))

M1(R)2
= O(µ0);
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EB1 =
∑

i∈L

∑

j∈R

2

(

di
2

)(

dj
2

)

[M1(R)− 2]M1(L)−2U(M1(R)−M1(L))

[M1(R)]M1(L)U(M1(R)−M1(L))

∼ M2(L)M2(R)

2
M1(R)−2 = µ1;

EB2 =
∑

i,j∈R,i<j

2

(

di
2

)(

dj
2

)

[M1(R)− 4]M1(L)U(M1(R)−M1(L)− 4)

[M1(R)]M1(L)U(M1(R)−M1(L))

=
1

2

∑

i∈R

∑

j∈R

2

(

di
2

)(

dj
2

)

[M1(R)− 4]M1(L)U(M1(R)−M1(L)− 4)

[M1(R)]M1(L)U(M1(R)−M1(L))

−1

2

∑

i∈R

2

(

di
2

)(

di
2

)

[M1(R)− 4]M1(L)U(M1(R)−M1(L)− 4)

[M1(R)]M1(L)U(M1(R)−M1(L))
(3.1)

=
M2(R)2

4

O((M1(R)−M1(L))
2)

M1(R)4
− α = O(µ2)− α,

where α = O(d3max/M) is nonnegative. This gives the first part of the lemma.
If furthermore dmax = o(M1/3) and M1(R)−M1(L) → ∞, then all the O(.) terms in the

displayed equations above can be replaced by (1 + o(1))(.). The lemma follows.

Corollary 3.4 If d4max = o(M) and M2(R) = O(d3max), then the probability that there exists
a loop or a double pair is O(d4max/M).

Proof. If d4max = o(M) andM2(R) = O(d3max), then EB0 = O(M2(R)/M1(R)) = O(d3max/M);
EB1 = O(M2(L)d

3
max/M

2) = O(d4max/M) (since M2(L)/M1(R) ≤ M2(L)/M1(L) ≤ dmax);
EB2 = O(d6max/M

2) = o(d2max/M). The result follows by the first moment principle.

We will need to prescribe some upper bounds on the likely values of the random variables
of interest. Define

η(L) = M2(L)/M1(L), η(R) = M2(R)/M1(R)

and let

k0 = max{lnM, 8η(L), 8η(R)}, k1 = k2 = max{lnM, 8η(L)2, 8η(R)2} (i = 1, 2). (3.2)

Clearly η(L) = O(dmax) and η(R) = O(dmax).

Lemma 3.5 If d4max = o(M), then P
(

Bi ≥ ki
)

= O(M−1) for i = 0, 1, 2.

Proof. For any h = o(
√
M), the probability that there exist h loops is bounded above by

the h-th factorial moment of B0. Following the same pattern of proof as for Lemma 3.1, this
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is at most

∑

i1,...,ih∈R
i1<···<ih

(

h
∏

j=1

(

dij
2

)

)

[M1(R)− 2h]M1(L)U(M1(R)−M1(L)− 2h)

[M1(R)]M1(L)U(M1(R)−M1(L))

≤ M2(R)h

2hh!

[M1(R)− 2h]M1(L)U(M1(R)−M1(L)− 2h)

[M1(R)]M1(L)U(M1(R)−M1(L))

=
M2(R)h

2hh!

∏2h−1
i=0 (M1(R)−M1(L)− i)
∏2h−1

i=0 (M1(R)− i)

(

h−1
∏

i=0

(M1(R)−M1(L)− 2i− 1)

)−1

=
M2(R)h

2hh!

∏h−1
i=0 (M1(R)−M1(L)− 2i)
∏2h−1

i=0 (M1(R)− i)
∼ M2(R)h

2hh!

(M1(R)−M1(L))
h

M1(R)2h
. (3.3)

Since M1(R) = Θ(M) and h = o(
√
M), this probability is at most

M2(R)h

2hh!

(

M1(R)h(1 + o(1))
)−1 ≤

(

eM2(R)

2hM1(R)

)h

=

(

eη(R)

2h

)h

.

Similarly we have that for any h = o(
√
M), the probability that there exist h mixed double

pairs is at most

∑

i1,...,ih∈L,j1,...,jh∈R
i1<···<ih

(

h
∏

ℓ=1

2

(

diℓ
2

)(

djℓ
2

)

)

[M1(R)− 2h]M1(L)−2hU(M1(R)−M1(L))

[M1(R)]M1(L)U(M1(R)−M1(L))

≤ M2(L)
hM2(R)h

2hh!
M1(R)−2h ≤

(

e

2h
· M2(L)

M1(R)
· M2(R)

M1(R)

)h

, (3.4)

and the probability that there exist h pure double pairs is at most

∑

i1,...,ih∈R,j1,...,jh∈R
i1<···<ih

(

h
∏

ℓ=1

2

(

diℓ
2

)(

djℓ
2

)

)

[M1(R)− 4h]M1(L)U(M1(R)−M1(L)− 4h)

[M1(R)]M1(L)U(M1(R)−M1(L))

≤ M2(R)hM2(R)h

2hh!

(M1(R)−M1(L))
2h

M1(R)4h
. (3.5)

Note that η(L) and η(R) are both bounded above by dmax. By the definition of ki in (3.2),
ki = O(lnM+d2max) for i = 0, 1, 2. Since d4max = o(M), we therefore have ki = o(

√
M). Hence

P
(

B0 ≥ k0
)

≤
(

eη(R)

2k0

)k0

≤
( e

16

)lnM

< M−1,

P
(

B1 ≥ k1
)

≤
(

e

2k1
· η(L) · η(R)

)k1

≤
( e

16

)lnM

< M−1,

P
(

B2 ≥ k2
)

≤
(

eM2(R)2

2tM1(R)2

)k2

=

(

eη(R)2

2k2

)k2

≤
( e

16

)lnM

< M−1.
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Lemma 3.6 Assuming d4max = o(M),

(i) if M2(R) = O(d5max + d3max ln
2M), then with probability 1 − O(d4max/M), B0 ≤ dmax + 2

and Bi ≤ d2max + 2 for all i = 1 and 2;

(ii) if M1(R)−M1(L) = O(d4max + d2max ln
2M), then with probability 1− O(d4max/M), B0 ≤

dmax + 2 and B2 ≤ d2max + 2;

(iii) if M2(L) = O(d5max + d3max ln
2M), the with probability 1−O(d4max/M), B1 ≤ d2max + 2.

Proof. These statements follow easily, after some simple estimations, from (3.3), (3.4)
and (3.5).

We now redefine the values ki as follows. Let ζ0, ζ1 and ζ2 be (large) constants specified
later. If M2(R) ≤ ζ0(d

5
max + d3max ln

2M), use k0 = dmax + 2 and ki = d2max + 2 for i = 1
and 2; if M1(R) − M1(L) ≤ ζ1(d

4
max + d2max ln

2M), k0 = dmax + 2, and k2 = d2max + 2; if
M2(L) ≤ ζ2(d

5
max + d3max ln

2M), use k1 = d2max + 2. With the modified values, we have the
following immediately from the previous two results.

Corollary 3.7 If d4max = o(M), then P
(

Bi ≥ ki
)

= O(d4max/M) for i = 0, 1, 2.

Define Cl0,l1,l2 be the class of restricted pairings in M(L,R,d) that contains l0 loops, l1
mixed double pairs, l2 pure double pairs and no double loop or triple pairs. Also, let P(d) be
the probability that a random pairing P ∈ M(L,R,d) corresponds to a simple B-graph.

The following corollary is obtained from Lemmas 3.1 and 3.2 and Corollary 3.7 by noting
that the sum of |Cl0,l1,l2 | over all l0, l1, l2 is the total number of pairings with T1 = T2 = I = 0.

Corollary 3.8

1

P(d)
=
(

1 +O(d4max/M)
)

k0
∑

l0=0

k1
∑

l1=0

k2
∑

l2=0

|Cl0,l1,l2|
|C0,0,0|

.

With this corollary in mind, in the rest of the paper when considering |Cl0,l1,l2| we implicitly
assume that 0 ≤ li ≤ ki for i = 0, 1 and 2.

Given a restricted pairing P, we say the ordered pair of pairs ((u1, u
′
1), (u2, u

′
2)) forms a

directed 2-path in P if u′
1 and u2 lie in the same vertex and the three vertices where u1, u

′
1

and u′
2 lie in respectively are all distinct. We then say that the two pairs (u1, u

′
1) and (u2, u

′
2)

are adjacent. For instance, the ordered pair of pairs ((1, 2), (3, 4)) forms a directed 2-path
in the four examples in Figure 1. Note that a directed 2-path in a pairing corresponds to a
directed 2-path in the corresponding B-multigraph. Let v denote the vertex where u′

1 and u2

lie in. We say the directed 2-path ((u1, u
′
1), (u2, u

′
2)) in P is simple if neither of {u1, u

′
1} and

{u2, u
′
2} is contained in a double pair and there is no loop at v.

There are four types of directed 2-paths in which we are interested in this paper. These
2-paths will be used later to define our switching operations. Those with all vertices lying
in R are of type 1. A directed 2-path ((a, b), (c, d)) is of type 2 if a lies in a vertex in L and
the other points all lie in vertices in R, type 3 if a and d are in vertices in L and the vertex

10



containing b and c is in R, and type 4 if a and d lie in vertices in R and the vertex containing
b and c is in L.

Given a restricted pairing P, let t be the number of pure pairs in P. Then

t = (M1(R)−M1(L))/2. (3.6)

Let Ai(P) denote the number of simple directed 2-paths of type i for i = 1, 2, 3, 4 and let

ai(l0, l1, l2) = E(Ai(P) | P ∈ Cl0,l1,l2). (3.7)

Clearly A4(P) =
∑

i∈L d(i)(d(i) − 1) − O(l1dmax) = M2(L) − O(l1dmax) for any P ∈ Cl0,l1,l2
since the number of non-simple directed 2-path of type 4 is bounded by O(l1dmax).

L R

L R

( 1 )

(3 )

L R

L R

( 2 )

(4 )

1 2

3

4

1

1 1

2

2
2

3

3 3

4

4 4

Figure 1: four different types of 2-paths

The switching operations we are going to use are ideologically similar to the switching
operations used by McKay and Wormald [10]. Although those switchings cannot be applied
here because they do not preserve the property of the pairings being restricted, they can easily
be adjusted and adapted to our current needs. The main twist is that there are a number of
alternative switchings available use, and we need to specify which ones should be used, and
for what values of the parameters, to achieve the desired result. The following two switching
operations are used to prove Lemma 3.9.

(a) L1-switching: take a loop {2, 3} and two pure pairs {1, 5}, {4, 6} such that the six points
are located in the five distinct vertices as drawn in Figure 2. Replace the three pairs
{2, 3}, {1, 5}, {4, 6} by {1, 2}, {3, 4}, {5, 6}.

11



(b) L2-switching: take a loop {2, 3} and two mixed pairs {1, 5}, {4, 6} such that the six
points are located in the five distinct vertices as drawn in Figure 3. Replace the three
pairs {2, 3}, {1, 5}, {4, 6} by {1, 2}, {3, 4}, {5, 6}.

1

2 3

4

5 6

1

2 3

4

5 6

R R

v

v

vv

v

0

1

2 3

4

v

v

vv

v

0

1

2 3

4

Figure 2: L1-switching

1
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6
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v

v

v
v

0
1

2

3

4

v
v

v

v
v

0
1

2

3
4

Figure 3: L2-switching

For any switching operation that converts a pairing P1 to another pairing P2, we call the
operation that converts P2 to P1 the inverse of that switching. Thus, the inverse L1-switching
can be defined as follows. Take a 2-directed path (not necessarily simple) ((1, 2), (3, 4)) of
type 1 and a pure pair {5, 6} such that the points 1, 2, 4, 5 and 6 lie in five distinct vertices.
Replace {1, 2}, {3, 4} and {5, 6} by {2, 3}, {1, 5} and {4, 6}. The inverse L2-switching can be
defined in the same way.

The following lemma estimates the ratio |Cl0,l1,l2 |/|Cl0−1,l1,l2 | by counting ways to perform
certain L1-switchings and their inverses. We express the present results in terms of the
numbers ai(l0, l1, l2), defined in (3.7), whose estimation we postpone till later.
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Lemma 3.9 Let a1 = a1(l0 − 1, l1, l2) and a3 = a3(l0 − 1, l1, l2). Assume l0 ≥ 1. Then

(i) : If t ≥ 1,

|Cl0,l1,l2|
|Cl0−1,l1,l2|

=
a1
4l0t

(1 +O(d2max/t+ (l0 + l2)/t)),

(ii) : If M1(L) ≥ 1 and t ≥ 1,

|Cl0,l1,l2|
|Cl0−1,l1,l2|

=
ta3

l0M1(L)2
(1 +O(d2max/M1(L) + d2max/t+ l1/M1(L) + (l0 + l2)/t)).

Proof. Let P ∈ Cl0,l1,l2 and we consider the number of L1-switching operations that convert
P to some P ′ ∈ Cl0−1,l1,l2 . For the purpose of counting, we label the points in the pairs that
are under consideration as shown in Figure 2. So for any pair under consideration, we will
incorporate in our counting the number of ways we can label the points in the pair. Let
N denote the number of ways to choose the pairs and label the points in them so that an
L1-switching can be applied to these pairs, which converts P to some P ′ ∈ Cl0−1,l1,l2 without
any simultaneously created loops or double pairs. This implies that the switching operations
counted by N destroy only one loop and there is no simultaneous creation or destruction of
other loops or double pairs.

We first give a rough count of N , that includes some forbidden cases (due to creating
double pairs, etc) and then estimate the error. There are l0 ways to choose a loop e0 and
t(t−1) ways to choose (e1, e2), an ordered pair of two distinct pure pairs. For any chosen loop
e0, there are two ways to distinguish the two end points to label the points 2 and 3 as shown
in Figure 2. For each of the other pairs, there are two ways to label its two endpoints, as 1
and 5, or 4 and 6, as the case may be. Hence a rough estimation of N is 8l0t(t− 1), including
the count of some forbidden choices of e0, e1 and e2, which we estimate next. Let the vertices
that contain points 2, 1, 5, 6, 4 be denoted by v0, v1, v2, v3, v4 respectively as shown in Figure 2.
The only possible exclusions caused by invalid choices in the above are the following:

(a) the loop e0 is adjacent to e1 or e2, or e1 is adjacent to e2, in which case, the L1-switching
is not applicable since the definition of the L1-switching excludes cases where the edges
are adjacent because it requires the end vertices to be distinct;

(b) there exists a pair between {v0, v1}, or {v0, v4}, or {v2, v3} in P, in which case there will
be more double pairs created after the L1-switching is applied;

(c) the pair e1 or e2 is a loop or is contained in a double pair, in which case there is a
simultaneously destroyed loop or double pair.

First we show that the number of exclusions from case (a) is O(l0tdmax). The number of
pairs of (e0, e1) is at most l0t. For any given e0 and e1, the number of ways to choose a pair
e2 such that e2 is adjacent to e0 or e1 is at most 2dmax since both e0 and e2 are adjacent to at
most dmax pairs. Hence the number of triples of (e0, e1, e2) such that e2 is adjacent to either
e0 or e1 is at most 2l0tdmax. By symmetry, the number of triples of (e0, e1, e2) such that e1 is
adjacent to either e0 or e2 is also at most 2l0tdmax. Hence the number of exclusions from case
(a) is O(l0tdmax).
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Next we show that the number of exclusions from case (b) is O(l0td
2
max). As just explained,

the number of pairs of (e0, e1) is at most l0t. For any given e0 and e1, the number of ways
to choose a pair e2 such that v3 is adjacent to v2 or v4 is adjacent to v0 is at most 2d2max,
since both e0 and e1 have at most d2max edges that are of distance 2 away. Hence the number
of triples (e0, e1, e2) such that v3 is adjacent to v2 or v4 is adjacent to v0 is O(l0td

2
max). By

symmetry, the number of triples (e0, e1, e2) such that v3 is adjacent to v2 or v0 is adjacent to
v1 is O(l0td

2
max). Hence the number of exclusions from case (b) is O(l0td

2
max).

Now we show that the number of exclusions from case (c) is O(l20t + l0tl2). The number
of ways to choose e0, e1, e2 such that e1 or e2 is a loop is at most 2l20t and the number of
ways to choose these three pairs such that e1 or e2 is contained in a double pair is at most
2 · l0t · 2l2 = O(l0tl2). Hence the number of exclusions from case (c) is O(l20t+ l0tl2).

Thus, the number of exclusions in the calculation of N is O(l0td
2
max + l20t + l0tl2). So

N = 8l0t
2(1 +O(d2max/t + (l0 + l2)/t)).

Now choose an arbitrary pairing P ′ ∈ Cl0−1,l1,l2 . Let N
′ be the number of ways to choose

the pairs and label points in them so that an inverse L1-switching operation can be applied
to these pairs such that P ′ is converted to some P ∈ Cl0,t1,t2 without any simultaneously
destroyed loops or double pairs. To apply this operation we need to choose e′0, e

′
1, e

′
2, such

that (e′0, e
′
1) is a simple directed 2-path of type 1 and e′2 is a pure pair. We consider the

directed 2-path (e′0, e
′
1) because it automatically gives a unique way of distinguishing vertices

v1, v0 and v4 and labelling points as 1, 2, 3 and 4 in Figure 2. There are A1(P ′) simple directed
2-paths of type 1, and hence A1(P ′) ways to choose the points as 1, 2, 3 and 4. The number
of ways to choose a pure pair e′2 is t and so there are 2t ways to fix the vertices v2, v3 and the
points {5, 6}. The only possible exclusions to the above choices are listed the following cases.

(a) There exists a pair between {v1, v2} or {v3, v4} in P ′, since then more double pairs will
be created if the inverse L1-switching is applied.

(b) The pair e′2 is a loop, in which case the inverse L1-switching is not applicable, or e′2 is
contained in a double pair, in which case a double pair is destroyed after the application
of the inverse L1-switching.

(c) The pair e′2 is adjacent to the 2-path or is contained in the 2-path, in which case the
inverse L1-switching operation is not applicable.

The number of exclusions from case (a) is O(A1(P ′)d2max) and the numbers of exclusions
from case (b) and (c) are O(A1(P ′)l0 + A1(P ′)l2) and O(A1(P ′)dmax) respectively.

Thus, the number of exclusions from case (a)–(d) is O(A1(P ′)d2max+A1(P ′)l0+A1(P ′)l2).
So

E(N ′) = E
(

2A1t(1+O(d2max/t+(l0+l2)/t)) | P ′ ∈ Cl0−1,l1,l2

)

= 2a1t(1+O(d2max/t+(l0+l2)/t)).

We count the pairs of (P,P ′) such that P ∈ Cl0,t1,t2 , P ′ ∈ Cl0−1,l1,l2 , and P ′ is obtained by
applying an L1-switching to P, which destroys only one loop without any simultaneously
created loops or double pairs. Then the number of such pairs of pairings equals to both
|Cl0,l1,l2 |E(N) and |Cl0−1,l1,l2|E(N ′). Thus,
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|Cl0,l1,l2|
|Cl0−1,l1,l2|

=
a1
4l0t

(1 +O(d2max/t+ (l0 + l2)/t)).

This proves part (i) of Lemma 3.9. Analogously we can deduce the following by analysing the
L2-switching and its inverse.

|Cl0,l1,l2|
|Cl0−1,l1,l2|

=
2ta3 +O(d2maxa3) +O(l0a3 + l2a3)

2l0M1(L)2 +O(d2maxM1(L)l0 + l0M1(L)l1)

=
ta3

l0M1(L)2
(1 +O(d2max/M1(L) + d2max/t+ (l0 + l2)/t+ l1/M1(L))).

Then we obtain part (ii) of Lemma 3.9.

We use the following two switching operations to prove Lemma 3.10.

(a) D1-switching: take a mixed double pair {{3, 4}, {5, 6}} and also two pure pairs {1, 2}
and {7, 8} such that the eight points are located in the six distinct vertices as shown in
Figure 4. Replace the four pairs by {1, 3}, {5, 7}, {2, 4}, {6, 8}.
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Figure 4: D1-switching

(b) D2-switching: take a mixed double pair {{3, 4}, {5, 6}} and also two mixed pairs {1, 2}
and {7, 8} such that the eight points are located in the six distinct vertices as shown in
Figure 5. Replace the four pairs by {1, 4}, {6, 7}, {2, 3}, {5, 8}.

The inverse switchings are defined analogously to the earlier ones. For instance, the
inverse D1-switching is defined as follows. Take a directed 2-path ((1, 3), (5, 7)) of type 4 and
a directed 2-path ((2, 4), (6, 8)) of type 1 such that the eight points are located in six distinct
vertices as shown in Figure 4. Replace these four pairs by {1, 2}, {3, 4}, {5, 6} and {7, 8}.
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Figure 5: D2-switching

Lemma 3.10 Let a1 = a1(0, l1 − 1, l2) and a3 = a3(0, l1 − 1, l2). Assume l1 ≥ 1. Then

(i) : If t ≥ 1 and M2(L) ≥ 1,

|C0,l1,l2 |
|C0,l1−1,l2 |

=
M2(L)a1
8l1t2

(1 +O(d3max/M2(L) + d2max/t + l2/t+ l1dmax/M2(L)));

(ii) : If M1(L) ≥ 1 and M2(L) ≥ 1,

|C0,l1,l2 |
|C0,l1−1,l2 |

=
a3M2(L)

2l1M1(L)2
(1 +O(d2max/M1(L) + d3max/M2(L) + l1/M1(L) + l1dmax/M2(L))).

Proof. For a given pairing P ∈ C0,l1,l2, let N be the number of ways to choose the pairs and
label the points in them so that a D1-switching can be applied to these pairs such that P is
converted to some P ′ ∈ C0,l1−1,l2 without simultaneously creating any loops and double pairs.
In order to apply a D1-switching operation, we need to choose a mixed double pair {e1, e2}
and an ordered pair of distinct pure pairs (e3, e4). The number of ways to choose {e1, e2} is
l1 in C0,l1,l2 and hence the number of ways to label the points as 3, 4, 5, 6 is 2l1. The number
of ways to choose the ordered pair of pure pairs (e3, e4) is t(t − 1). For any chosen (e3, e4),
there are 4 ways to label points as 1, 2, 7, 8. Let the vertices that contain points 3, 4, 1, 2, 7, 8
be v1, v2, v3, v4, v5, v6 as shown in Figure 4. Hence a rough count of N is 8l1t(t− 1) including
the count of a few forbidden choices of e1, e2, e3, e4, which are listed as follows.

(a) The pair e1 is adjacent to e3 or e4, or e3 is adjacent to e4, in which case the D1-switching
is not applicable.

(b) There exists a pair between {v1, v3}, or {v2, v4}, or {v2, v6}, or {v1, v5} in P, since another
double pair will be created after the D1-switching is applied.

(c) The pair e3 or e4 is contained in a double pair, since another double pair is destroyed
after the D1-switching is applied.

The numbers of forbidden choices of e1, e2, e3, e4 coming from case (a), (b) and (c) are
O(l1tdmax), O(l1td

2
max) and O(l1tl2) respectively. So N = 8l1t

2(1 +O(d2max/t+ l2/t)).
For a given pairing P ′ ∈ C0,l1−1,l2 , let N

′ be the number of ways to choose the pairs and
label the points in them so that an inverse D1-switching operation can be applied to these
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pairs which converts P ′ to some P ∈ C0,l1,l2 without destroying any loops or double pairs
simultaneously. In order to apply such an operation, we need to choose two simple directed
2-paths, one of type 1 and the other of type 4. There are A1(P ′) simple directed 2-paths of
type 1, each of which gives a way of labelling points as 2, 4, 6, 8, and there are A4(P ′) simple
directed 2-paths of type 4, each of which gives a way of labelling points as 1, 3, 5, 7. Hence
a rough count of N ′ is A1(P ′)A4(P ′) including the counts of a few forbidden choices of such
two 2-paths which are listed in the following two cases.

(a) If we have vi = vj , for i ∈ {3, 5} and j ∈ {2, 4, 6}, then the operation is not applicable.

(b) If there already exists a pair between {v1, v2}, or {v3, v4}, or {v5, v6} in P ′, then more
than one double pair will be created in this case if the inverse D1-switching is applied.

The numbers of forbidden choices of the two directed 2-paths from case (a) and (b) are
respectively O(A1(P ′)d2max) = O(a1d

2
max) and O(A1(P ′)d3max) = O(a1d

3
max). So E(N ′) =

E
(

A1(P ′)A4(P ′) | P ′ ∈ C0,l1−1,l2

)

+O(a1d
3
max) = a1(M2(L)−O(l1dmax))(1 +O(d3max/M2(L))).

Since l1 ≥ 1, we have M2(L) ≥ 1. Hence

|C0,l1,l2 |
|C0,l1−1,l2 |

=
a1M2(L)(1 +O(d3max/M2(L)) +O(l1dmax/M2(L)))

8l1t2(1 +O(d2max/t) +O(l2/t))

=
a1M2(L)

8l1t2
(1 +O(d3max/M2(L) + d2max/t+ l2/t+ l1dmax/M2(L))),

and this shows part (i) of Lemma 3.10. Similarly we can obtain part (ii) by analysing the
D2-switching and its inverse.

The following two switching operations are used for the next lemma.

(a) D3-switching: take a pure double pair {{1, 2}, {3, 4}} and also two pure pairs {5, 6} and
{7, 8} such that the eight points are located in the six distinct vertices as shown in
Figure 6. Replace the four pairs by {1, 5}, {2, 6}, {3, 7}, {4, 8}.
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Figure 6: D3-switching
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(a) D4-switching: take a pure double pair {{1, 2}, {3, 4}} and also four mixed pairs {5, 6},
{7, 8}, {9, 10}, {11, 12} such that the twelve points are located in the ten distinct vertices
as shown in Figure 7. Replace the six pairs by {6, 10}, {8, 12}, {1, 5}, {3, 9},{2, 11},
{4, 7}.
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Figure 7: D4-switching

The inverse switchings are defined in the obvious way. For example, for the inverse of the
D3-switching, take two directed paths of type 1, ((5, 1), (3, 7)) and ((6, 2), (4, 8)), such that
the eight points are located in six distinct vertices as shown in Figure 6. Replace these four
pairs by {5, 6}, {1, 2}, {3, 4}, {7, 8}. Define bi(l0, l1, l2) = E(Ai(P)2 | P ∈ Cl0,l1,l2) for i = 1
and 3.

Lemma 3.11 Assume l2 ≥ 1. For i = 1, 3, let bi = bi(0, 0, l2 − 1) for short. Then

(i) : If t ≥ 1 and b1 ≥ 1,

|C0,0,l2 |
|C0,0,l2−1|

=
b1

16l2t2
(1 +O(d2max/t+ d3maxa1/b1 + l2/t)).

(ii) : If M1(L) ≥ 1, b3 ≥ 1 and t ≥ 1,

|C0,0,l2 |
|C0,0,l2−1|

=
t2b3

l2M1(L)4
(1 +O(d3maxa3/b3 + d2max/M1(L) + l2/t)).

Proof. For a given pairing P ∈ C0,0,l2 , let N be the number of ways to choose the pairs and
label the points in them so that a D3-switching operation can be applied, which converts P
to some P ′ ∈ C0,0,l2−1 without creating any loops and double pairs simultaneously. In order to
apply a D3-switching operation, we need to choose a pure double pair {e1, e2} and an ordered
pair of distinct pure pairs (e3, e4). The number of ways to choose {e1, e2} is l2 in C0,0,l2 and
there are four ways to label the points as 1, 2, 3, 4 for any chosen double pair. The number
of ways to choose an ordered pair of two pure pairs (e3, e4) is t(t− 1) and hence the number
of ways to label the points as 5, 6, 7, 8 is 4t(t− 1). Hence a rough count of N is 16l2t(t− 1)
including the counts of forbidden choices of pairs e1, . . . , e4 which we estimate next. Let the
vertices that contain points 1, 2, 5, 6, 7, 8 be v1, v2, v3, v4, v5, v6 as shown in Figure 6. The
forbidden choices of the pairs e1, . . . , e4 are listed in the following three cases.
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(a) When e1 is adjacent to e3 or e4 or when e3 is adjacent to e4, then the D3-switching is
not applicable.

(b) If there exists a pair between {v1, v3}, or {v2, v4}, or {v1, v5}, or {v2, v6} in P, then more
double pairs will be created after the application of the switching operation.

(c) If e3 or e4 is contained in a double pair, then another double pair would be destroyed
after the application of the switching operation.

The numbers of forbidden choices of e1, . . . , e4 coming from (a),(b) and (c) are O(l2tdmax),
O(l2td

2
max) and O(l22t) respectively. So N = 16l2t

2(1 +O(d2max/t+ l2/t)).
For any pairing P ′ ∈ C0,0,l2−1, let N ′ be the number of ways to choose the pairs and

label the points in them so that an inverse D3-switching can be applied to these pairs, which
converts P ′ to some P ∈ C0,0,l2 without simultaneously destroying any loops or double pairs.
In order to apply such an operation, we need to choose an ordered pair of distinct simple
directed 2-paths of type 1. The number of ways to do that is A1(P ′)(A1(P ′) − 1). So the
number of ways to label the points 1, 2, . . . , 8 is A1(P ′)(A1(P ′)−1), which gives a rough count
of N ′. The forbidden choices of the two paths whose counts should be excluded from N ′ are
listed in the following cases.

(a) The two paths share some common vertex or common pair. In this case the inverse
D3-switching is not applicable.

(b) There exists a pair between {v1, v2} or {v3, v4} or {v5, v6} in P ′. In this case, more double
pairs will be created after the inverse D3-switching operation is applied.

The numbers of ways to choose the ordered pair of 2-paths in case (a) and (b) areO(A1(P ′)d2max)
and O(A1(P ′)d3max) respectively. Thus, E(N

′) = b1(1 +O(d3maxa1/b1)).
Hence

|C0,0,l2|
|C0,0,l2−1|

=
b1

16l2t2
(1 +O(d2max/t+ d3maxa1/b1 + (l0 + l2)/t)).

Similarly by analysing the D4-switching and its inverse, we obtain Lemma 3.11(ii).

4 More switchings to estimate a’s and b’s

The lemmas in the previous section give ratios of the sizes of ‘adjacent’ classes Ci,j,k, but
those estimates are in terms of ai(l0, l1, l2) (i = 1, 2, 3) defined in (3.7), bi (i = 1, 3) defined
just before Lemma 3.11, and t defined in (3.6). In this section, we use further switchings to
estimate the values of these variables. The following two switchings are used for ai.

(a) S1-switching: Take a mixed pair and label the points in it by {1, 2} as shown in Figure 8.
Take a simple directed 2-path that is vertex disjoint from the chosen mixed pair. Label
the points by 3, 4, 5, 6. Replace these three pairs by {2, 3}, {1, 4} and {5, 6}.

(b) S2 switching: Take a pure pair {5, 6} and a simple directed 2-path ((1, 2), (3, 4)) such
that the six points are located in five distinct vertices shown as in Figure 9. Replace
these three pairs by {1, 2}, {3, 5} and {4, 6}.
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The inverse switchings are defined in the obvious way.

Lemma 4.1 Given l0, l1 and l2, let ℓ = l0 + l1 + l2. We have

(i) : if M1(L) ≤ M/4 and M2(R) ≥ 1,

a1(l0, l1, l2) =
(M1(R)−M1(L))

2M2(R)

M1(R)2
(1 +O(d2max/t+ ℓ/t+ (ℓdmax + l0d

2
max)/M2(R)));

(ii) : if M1(L) > M/4 and M2(R) ≥ 1,

a3(l0, l1, l2) =
M1(L)

2M2(R)

M1(R)2
(1 +O(d2max/M1(L) + ℓ/M1(L) + (ℓdmax + l0d

2
max)/M2(R))).

Proof. Let ai = ai(l0, l1, l2) for i = 1, 2, 3. We use the S1-switching to compute the ratio
a1/a2 and the S2-switching to compute the ratio a3/a2. We count the ordered pairs of pairings
(P,P ′) such that both P and P ′ are from Cl0,l1,l2 , and P ′ is obtained from P by applying an
S1-switching to P without any creation or destruction of loops or double pairs. Let N1 denote
the number of such ordered pairs of pairings.

We first prove part (i). Assume M1(L) ≤ M/4. For any directed 2-path of type 1 in
Cl0,l1,l2, the number of S1-switching operations that can be applied to it is

A1M1(L) +O(A1d
2
max + A1l1) = A1M1(L)

(

1 +O(d2max/M1(L) + l1/M1(L))
)

. (4.1)
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For any directed 2-path of type 2 in Cl0,l1,l2 , the number of inverse S1-switching operations
that can be applied to it is

A2 · 2t +O(A2d
2
max + A2(l0 + l2)) = A2 · 2t

(

1 +O(d2max/t+ (l0 + l2)/t)
)

. (4.2)

The total number of S1-switching operations that can be applied to pairings in Cl0,l1,l2 is

∑

P∈Cl0,l1,l2

A1(P)M1(L)
(

1+O((d2max+l1)/M1(L))
)

= a1M1(L)
(

1+O((d2max+ℓ)/M1(L))
)

|Cl0,l1,l2|,

and the total number of inverse S1-switching operations that can be applied to pairings in
Cl0,l1,l2 is

∑

P∈Cl0,l1,l2

A2(P) · 2t
(

1 +O(d2max/t + (l0 + l2)/t)
)

= a2 · 2t
(

1 +O(d2max/t+ ℓ/t)
)

|Cl0,l1,l2 |.

These two numbers are both equal to N1. Hence

a2
a1

=
M1(L)

2t
(1 +O(d2max/t+ d2max/M1(L) + ℓ/M1(L) + ℓ/t)). (4.3)

Similarly, by the S2-switching and its inverse we get

a3
a2

=
M1(L)

2t
(1 +O(d2max/t+ d2max/M1(L) + ℓ/M1(L) + ℓ/t)). (4.4)

Then (4.3) gives

a2
a1

=
M1(L)

2t

(

1 +O((d2max + ℓ)/t)
)

+O((d2max + ℓ)/t),

and (4.4) gives
a3
a2

=
M1(L)

2t

(

1 +O((d2max + ℓ)/t)
)

+O((d2max + ℓ)/t).

Hence

a2 = a1

(

M1(L)

2t

(

1 +O((d2max + ℓ)/t)
)

+O((d2max + ℓ)/t)

)

a3 = a1

(

M1(L)

2t

(

1 +O((d2max + ℓ)/t)
)

+O((d2max + ℓ)/t)

)2

.

Since M1(L) ≤ M/4, we have M1(L)/t ≤ 1 and so

a3 = a1

(

(

M1(L)

2t

)2
(

1 +O((d2max + ℓ)/t)
)

+O((d2max + ℓ)/t)

)

.
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Hence

a1 + 2a2 + a3 = a1

(

1 +

(

2
M1(L)

2t
+

(

M1(L)

2t

)2
)

(

1 +O((d2max + ℓ)/t)
)

+O((d2max + ℓ)/t)

)

= a1

(

(

1 +
M1(L)

2t

)2
(

1 +O((d2max + ℓ)/t)
)

+O((d2max + ℓ)/t)

)

= a1

(

1 +
M1(L)

2t

)2

(1 +O((d2max + ℓ)/t)). (4.5)

For any pairing P ∈ Cl0,l1,l2 , the number of simple directed 2-paths in P is
∑

v∈L∪R d(v)(d(v)−
1)−O(ℓdmax+l0d

2
max), since the number of non-simple directed 2-path is bounded by O(l0d

2
max+

l1dmax + l2dmax) = O(ℓdmax + l0d
2
max). On the other hand, the number of simple directed 2-

paths in P is A1 + 2A2 +A3 +A4, since 2A2 counts the number of directed 2-paths of type 2
and the opposite direction. Then

A1 + 2A2 + A3 +M2(L)− O(l1dmax) =
∑

v∈L∪R

d(v)(d(v)− 1)−O(ℓdmax + l0d
2
max).

Thus,

A1+2A2+A3 = M2(R)+O(ℓdmax+ l0d
2
max) = M2(R)(1+O((ℓdmax+ l0d

2
max)/M2(R))). (4.6)

Combining this with (4.5), we have

a1 =
(M1(R)−M1(L))

2M2(R)

M1(R)2
(1 +O(d2max/t+ ℓ/t+ (ℓdmax + l0d

2
max)/M2(R))),

which proves part (i).
Next we show part (ii). Assume M1(L) > M/4. We observe that (4.3) also gives

a1
a2

=
2t

M1(L)

(

1 +O((d2max + ℓ)/M1(L))
)

+O((d2max + ℓ)/M1(L)),

and (4.4) gives

a2
a3

=
2t

M1(L)

(

1 +O((d2max + ℓ)/M1(L))
)

+O((d2max + ℓ)/M1(L)).

Thus,

a2 = a3

(

2t

M1(L)

(

1 +O((d2max + ℓ)/M1(L))
)

+O((d2max + ℓ)/M1(L))

)

a1 = a3

(

2t

M1(L)

(

1 +O((d2max + ℓ)/M1(L))
)

+O((d2max + ℓ)/M1(L))

)

.
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Since M1(L) ≥ 1/4, we have t/M1(L) < 1 and so

a1 + 2a2 + a3 = a3

(

1 +
2t

M1(L)

)2
(

1 +O((d2max + ℓ)/M1(L))
)

= M2(R)(1 +O((ℓdmax + l0d
2
max)/M2(R))).

Hence

a3 =
M1(L)

2M2(R)

M1(R)2
(1 +O(d2max/M1(L) + ℓ/M1(L) + (ℓdmax + l0d

2
max)/M2(R))).

This proves part (ii) of the lemma.

Recall the definition of bi(l0, l1, l2) above Lemma 3.11. We next estimate these using
simple modifications of the Si-switchings for i = 1, 3. (Note: in this lemma, our abbreviation
bi contains no shift of index, whilst it did in Lemma 3.11.)

Lemma 4.2 For i = 1, 3, let ai = ai(l0, l1, l2) and bi = bi(l0, l1, l2), and let ℓ = l0 + l1 + l2.
Assume M2(R) ≥ 1. Then

(i) : if M1(L) ≤ M/4, b1 = a21(1 +O(d2max/t+ ℓ/t+ (ℓdmax + l0d
2
max + d3max)/M2(R)));

(ii) : if M1(L) > M/4,

b3 = a23(1 +O(d2max/M1(L) + ℓ/M1(L) + (ℓdmax + l0d
2
max + d3max)/M2(R))).

Proof. For 1 ≤ i ≤ 5, let Xi(P) denote the number of ordered pairs of vertex disjoint simple
2-paths in P where the first path has type ji and the second has type hi, with (j1, h1) = (1, 1),
(j2, h2) = (3, 3), (j3, h3) = (1, 2), (j4, h4) = (1, 3), and (j3, h3) = (2, 3).

The S3-switching, as illustrated in Figure 10, is a slight modification of the S1-switching.
To apply it, we need to choose a mixed pair and two simple 2-paths of type 1 such that they
are pairwise disjoint. To apply its inverse, we need to choose a pure pair and two simple
2-paths of type 2 and 1 respectively such that they are pairwise disjoint. Compared with
the S1-switching, the S3-switching requires an additional simple directed 2-path of type 1.
However, the pairs in the extra 2-path remain after the S3-switching is applied since the
mixed pair and the other simple directed 2-path under consideration are vertex-disjoint from
the additional directed 2-path. The S4-switching, as illustrated in Figure 11, is a similar
modification of the S2-switching.

We will first estimate E(Xi(P) | P ∈ Cl0,l1,l2) for i ∈ [5] and then use this to estimate
b1 and b3. Following the analogous argument as in Lemma 4.1, we can estimate the ratio
E(X3(P) | P ∈ Cl0,l1,l2)/E(X1(P) | P ∈ Cl0,l1,l2) by counting the ordered pairs of pairings
(P,P ′) such that P,P ′ ∈ Cl0,l1,l2 and P ′ is obtained by applying an S3-operation to P without
any creation or destruction of loops or double pairs. The the number of such S3-switching
operations that can be applied to P is X1M1(L) + O(X1d

2
max +X1l1). The number of such

inverse S3-operations that can be applied to P is 2tX3+O(X3d
2
max+X3(l0+ l2)). So the ratio

E(X3(P) | P ∈ Cl0,l1,l2)/E(X1(P) | P ∈ Cl0,l1,l2) equals exactly the right hand side of (4.3)
and the ratio E(X4(P) | P ∈ Cl0,l1,l2)/E(X3(P) | P ∈ Cl0,l1,l2) equals exactly the right hand
side of (4.4).
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Figure 11: S4-switching

On the other hand, by (4.6), for any P ∈ Cl0,l1,l2, A1(P) + 2A2(P) + A3(P) = M2(R)(1 +
O((ℓdmax + l0d

2
max)/M2(R))). Thus,

E(A2
1 | P ∈ Cl0,l1,l2) + 2E(A1A2 | P ∈ Cl0,l1,l2) + E(A1A3 | P ∈ Cl0,l1,l2)

= E(A1(A1 + 2A2 + A3) | P ∈ Cl0,l1,l2)
= E(A | P ∈ Cl0,l1,l2)M2(R)(1 +O((ℓdmax + l0d

2
max)/M2(R)))

= a1(l0, l1, l2)M2(R)(1 +O((ℓdmax + l0d
2
max)/M2(R))). (4.7)

We also have

X1 = A2
1 +O(A1d

3
max), X3 = A1A2 +O(A1d

3
max), X4 = A1A3 +O(A1d

3
max), (4.8)

where the error terms in (4.8) account for the number of ordered pairs of simple 2-directed
paths that are not vertex disjoint. Let a1 = a1(l0, l1, l2). Taking the conditional expectation
on both sides of each equation in (4.8), we obtain

E(X1 | P ∈ Cl0,l1,l2) = E(A2
1 | P ∈ Cl0,l1,l2) +O(a1d

3
max),

E(X3 | P ∈ Cl0,l1,l2) = E(A1A2 | P ∈ Cl0,l1,l2) +O(a1d
3
max),

E(X4 | P ∈ Cl0,l1,l2) = E(A1A3 | P ∈ Cl0,l1,l2) +O(a1d
3
max).
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Combining this with (4.7) we have

E(X1 | P ∈ Cl0,l1,l2) + 2E(X3 | P ∈ Cl0,l1,l2) + E(X4 | P ∈ Cl0,l1,l2)
= a1M2(R)(1 +O((ℓdmax + l0d

2
max + d3max)/M2(R))).

So part (i) follows from an argument similar to that used for Lemma 4.1 and (4.8). Similarly,
by analysing two switching operations similar to those of S3-switching and S4-switching,
except that the extra 2-path is of type 3, we can estimate the ratio E(X5 | P ∈ Cl0,l1,l2)/E(X4 |
P ∈ Cl0,l1,l2) and E(X2 | P ∈ Cl0,l1,l2)/E(X4 | P ∈ Cl0,l1,l2). By the fact that

X5 = A2A3 +O(A3d
3
max), X4 = A1A3 +O(A3d

3
max), X2 = A2

3 +O(A3d
3
max),

and

E(X2 | P ∈ Cl0,l1,l2) + 2E(X5 | P ∈ Cl0,l1,l2) + E(X4 | P ∈ Cl0,l1,l2)
= a3(l0, l1, l2)M2(R)(1 +O((ℓdmax + l0d

2
max + d3max)/M2(R))),

together with Lemma 4.1(ii), part (ii) follows from an argument similar to that in part (i)
and the proof of Lemma 4.1(ii).
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5 Synthesis

We are now ready to substitute the values of the variables ai and bi determined in Section 4
in the ratios determined in Section 3, and from there to prove the main theorem. The reader
should not be surprised at how the separate cases combine to give the same resulting formulae
with the desired error terms; the definitions of the cases and the choices of switchings for each
case were carefully designed to achieve this.

Lemma 5.1 Assume d4max = o(M). Let α0 = ((l1 + l2)dmax + l0d
2
max)/M2(R), α1 = ((l1 +

l2)dmax)/M2(R) and α2 = (l2dmax + d3max)/M2(R). Assume M2(R)/d3max is sufficiently large.
Then

(i)
|Cl0,l1,l2|
|Cl0−1,l1,l2|

=
µ0

l0

(

1 +O

(

d2max + l0 + l2
t

+
l1
M

))

(1 +O(α0)), l0 ≥ 1;

(ii)
|C0,l1,l2|
|C0,l1−1,l2|

=
µ1

l1

(

1 +O

(

d3max + l1dmax

M2(L)
+

d2max + l1 + l2
M

))

(1 +O(α1)), l1 ≥ 1;

(iii)
|C0,0,l2 |
|C0,0,l2−1|

=
µ2

l2

(

1 +O

(

d3max

M2(R)
+

d2max

M
+

l2
t

))

(1 +O(α2)), l2 ≥ 1.

Proof. Let δ = M1(L)/M , so that 0 ≤ δ ≤ 1/2 since M1(R) ≥ M1(L).

Case 1: δ ≤ 1/4.
Here t, which was defined as (M1(R)−M1(L))/2, is Θ(M). By part (i) of Lemmas 3.9–3.11

and 4.1–4.2, and recalling (2.1)–(2.3), we obtain the following, with some of the bounds on
error terms explained below.

|Cl0,l1,l2|
|Cl0−1,l1,l2|

=
µ0

l0
(1 +O(d2max/M + (l0 + l2)/M))(1 +O(α0)),

|C0,l1,l2|
|C0,l1−1,l2 |

=
µ1

l1
(1 +O((d3max + l1dmax)/M2(L) + (d2max + l2)/M))(1 +O(α1)),

|C0,0,l2 |
|C0,0,l2−1|

=
µ2

l2
(1 +O((d2max + l2)/M + d3maxa1/b1))(1 +O(α3)).

For the second equations, note that error terms involving l0 do not appear since l0 = 0, and
similarly l0 = l1 = 0 for the third equation.

Case 2: 1/4 < δ ≤ 1/2.
Here M1(L) = Θ(M). By part (ii) of Lemmas 3.9–3.11 and 4.1–4.2, we obtain the follow-

ing, with some error terms explained below.

|Cl0,l1,l2|
|Cl0−1,l1,l2|

=
µ0

l0
(1 +O((d2max + l1)/M + (d2max + l0 + l2)/t))(1 +O(α0)),

|C0,l1,l2|
|C0,l1−1,l2 |

=
µ1

l1
(1 +O((d2max + l1)/M) + (d3max + l1dmax)/M2(L))(1 +O(α1)),

|C0,0,l2 |
|C0,0,l2−1|

=
µ2

l2
(1 +O(d3maxa3/b3) + d2max/M + l2/t)(1 +O(α2)).
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To obtain the second of these equations, note that l1/M1(L) = O(l1/M) = O(l1dmax/M2(R)) =
O(α1).

Parts (i) and (ii) follow by combining the two cases. To complete the proof of part (iii),
we show that a1/b1 = O(M2(R)−1) when M1(L) ≤ M/4 and a3/b3 = O(M2(R)−1) when
M1(L) > M/4.

First consider M1(L) ≤ M/4. Considering a1/b1, we have the following two cases.

Case 1: M2(R) ≤ ζ2(d
5
max + d3max ln

2M). Then k2 = d2max + 2 according to its redefinition
after Lemma 3.6. Since M2(R)/d3max can be assumed arbitrarily large by the present lemma’s
assumption, the error terms l2dmax/M2(R) and d3max/M2(R) in Lemmas 4.1(i) and 4.2(i) can
be taken arbitrarily small. It follows that a1 = Ω(M2(R)) and b1 = Θ(a21), and so a1/b1 =
O(M2(R)−1).

Case 2: M2(R)/(d5max + d3max ln
2M) > ζ2, which can at this point be taken arbitrarily large.

Then for any l2 ≤ k2 = O(d2max), as defined in (3.2), the error terms in Lemmas 4.1(i) and 4.2(i)
can be made arbitrarily small. Thus a1 = Ω(M2(R)), b1 = Θ(a21), and a1/b1 = O(M2(R)−1).

On the other hand, assuming M1(L) > M/4, a similar argument shows that a3/b3 =
O(M2(R)−1).

Recall that P(d) denotes the probability that a random pairing P ∈ M(L,R,d) corre-
sponds to a simple B-graph.

Proof of Theorem 2.1. Recall thatP(d) denotes the probability that a random pairing P ∈
M(L,R,d) corresponds to a simple B-graph, and U(m) denotes the number m!/

(

(m/2)!2m/2
)

of pairings ofm points. The total number of pairings inM(L,R,d) is thus [M1(R)]M1(L)U(M1(R)−
M1(L)). Since each simple B-graph corresponds to

∏n
i=1 di pairings in M(L,R,d), we have

g(L,R,d) =
M1(R)!P(d)

2(M1(R)−M1(L))/2((M1(R)−M1(L))/2)!
∏n

i=1 di!
,

and it only remains to show that P(d) = e−µ0−µ1−µ2(1 +O(d4max/M)).
If M2(R) = O(d3max), we have µi = O(d4max/M) for i = 0, 1, 2. Then by Corollary 3.4 and

the first moment principle, P(d) = 1− O(d4max/M) and we are done. So we may assume

M2(R)/d3max > C (5.1)

for any arbitrarily large C. (Note we assume throughout that dmax > 0 since otherwise there
is nothing to prove.) By Corollary 3.8, it is enough to show

k2
∑

l2=0

k1
∑

l1=0

k0
∑

l0=0

|Cl0,l1,l2| = |C0,0,0|eµ0+µ1+µ2(1 +O(d4max/M)). (5.2)

Iterating the ratio in Lemma 5.1(i), for any fixed l0 ≤ k0, l1 ≤ k1 and l2 ≤ k2, we get

|Cl0,l1,l2|
|C0,l1,l2|

=
µl0
0

l0!

(

1 +O(d2max/t+ (l0 + l2)/t + l1/M)
)l0 (1 +O(α0))

l0

where α0 is as defined in that lemma.
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First we sum over l0. Here we assume t ≥ 1, since otherwise B0 = 0, which will trivially
give the desired conclusion. Recalling the definition (3.2) of ki and its redefinition after
Corollary 3.6, we have k0 = O(dmax + lnM) and for i = 1, 2, ki = O(d2max + lnM). Consider
the following two cases, recalling t from (3.6).

Case 1: M2(R) ≤ ζ0(d
5
max + d3max ln

2M) or 2t ≤ ζ1(d
4
max + d2max ln

2M).

Here, by the redefinition of ki, we have k0 = O(dmax) and k2 = O(d2max), so α0 = (O(d3max/M2(R))).
Recalling also the definition (2.1) of µ0 as tM2(R)/M1(R)2, and noting M1(R) = Ω(M) and
M2(R) = O(dmaxM), we have from Lemma 5.1(i) that for 1 ≤ l0 ≤ k0 and all relevant l1 and
l2,

|Cl0,l1,l2|
|Cl0−1,l1,l2|

=
1

l0

(

µ0/l0 +O(d3max/M) +O(dmaxl1/M)).

Hence (bounding d3max by d4max for consistency with the later argument),

k0
∑

l0=0

|Cl0,l1,l2 |
|C0,l1,l2|

=

k0
∑

l0=0

(µ0 +O(d4max/M) +O(dmaxl1/M))l0

l0!

= exp
(

µ0 +O(d4max/M + dmaxl1/M)
)

+O
(

(d4max + dmaxl1)/M
)

using
∞
∑

l0=k0+1

(µ0 + x)l0

l0!
=

∞
∑

l0=k0+1

(

O(µ0)
)l0 +

(

O(x))l0

l0!
= O(µk0

0 /k0! + x)

for x = o(1), and noting that µ0 = O(d5max/M) in this case, which is o(dmax) and hence less
than dmax/2 for large M . (In particular, µ0 tends to 0 quickly unless dmax is large.) Hence

k0
∑

l0=0

|Cl0,l1,l2|
|C0,l1,l2|

= exp(µ0)
(

1 +O(d4max/M + dmaxl1/M)
)

.

Case 2: M2(R) > ζ0(d
5
max + d3max ln

2M) and 2t > ζ1(d
4
max + d2max ln

2M).
Here k0 = O(lnM + dmax), ki = O(lnM + d2max) for i = 1, 2. Note that d3max lnM ≤
d4max + d2max ln

2M = O(t), and from here we see that k0d
2
max/t = O(1). Similarly, k0k2 =

O(ln2M + d3max) = O(t). In this way, we find that l0(d
2
max/t+ (l0+ l2)/t+ l1/M +α0) = O(1)

provided li ≤ ki for i = 0, 1, 2. So, from Lemma 5.1(i),

k0
∑

l0=0

|Cl0,l1,l2|
|C0,l1,l2 |

=

k0
∑

l0=0

µl0
0 exp(O(l0(d

2
max/t+ (l0 + l2)/t+ l1/M + α0)))

l0!

=

k0
∑

l0=0

µl0
0

l0!
+O

(

k0
∑

l0=0

µl0
0

l0!
l0

(

d2max + l2
t

+
l1
M

+
(l1 + l2)dmax

M2(R)

)

)

+O

(

k0
∑

l0=0

µl0
0

l0!
l20

(

1

t
+

d2max

M2(R)

)

)

.
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Note also that k0 ≥ 8η(R) ≥ 16µ0, and k0 ≥ lnM . So

∞
∑

l0=k0+1

µl0
0

l0!
= O((k0/16)

k0k0! = O
(

(e/16)k0
)

= o(M−1).

Also, of course,
∑k0

l0=0(µ
l0
0 /l0!)l0 ≤ µ0e

µ0 and
∑k0

l0=0(µ
l0
0 /l0!)l

2
0 ≤ (µ2

0 + µ0)e
µ0 . So we have

k0
∑

l0=0

|Cl0,l1,l2|
|C0,l1,l2 |

= eµ0 − O(M−1) +O

(

eµ0µ0

(

d2max + l2
t

+
l1
M

+
(l1 + l2)dmax + d3max

M2(R)

))

+O

(

eµ0(µ2
0 + µ0)

(

1

t
+

d2max

M2(R)

))

.

Now using

µ0/t = M2(R)/M1(R)2 = O(dmax/M),

µ2
0/t = O(M2(R)2t/M1(R)4) = O(d2max/M1),

µ0 = O(M2(R)/M),

µ0 = O(dmax),

we obtain
k0
∑

l0=0

|Cl0,l1,l2 |
|C0,l1,l2|

= eµ0

(

1 +O

(

(l1 + l2)dmax

M
+

d3max

M

))

.

Combining the two cases, we have (for l1 and l2 in the appropriate range)

k0
∑

l0=0

|Cl0,l1,l2| = |C0,l1,l2| exp(µ0)

(

1 +O

(

(l1 + l2)dmax

M
+

d4max

M

))

.

We will next sum this expression over l1. By Lemma 5.1(ii), for any fixed l1 ≤ k1 and
l2 ≤ k2,

|C0,l1,l2 |
|C0,0,l2 |

=
µl1
1

l1!

(

1 +O

(

d3max + l1dmax

M2(L)
+

d2max

M
+

l1 + l2
M

))l1

(1 +O(α1))
l1

where α1 = (l1 + l2)dmax/M2(R).

Case 1: M2(R) ≤ ζ0(d
5
max+d3max ln

2M) orM2(L) ≤ ζ1(d
5
max+d3max ln

2M). Then k1 = d2max+2,
and summing over 0 ≤ l1 ≤ k1 we obtain

k1
∑

l1=0

k0
∑

l0=0

|Cl0,l1,l2 | = exp(µ0 + µ1)|C0,0,l2 |
(

1 +O

(

l2d
2
max + d4max

M

))

.

Case 2: M2(R) > ζ0(d
5
max + d3max ln

2M) and M2(L) > ζ1(d
5
max + d3max ln

2M). Then for any
l1 ≤ k1, l2 ≤ k2,

l1

(

d3max + l1dmax

M2(L)
+

d2max

M
+

l1 + l2
M

+ α1

)
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is bounded. Estimating error terms similar to Case 2 of the earlier summation over l0, we
obtain the same result as in Case 1.

For summing over l2, the argument is similar, and the final result is (5.2) as required.
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[13] A. Ruciński, When are small subgraphs of a random graph normally distributed? Probab.
Theory Related Fields 78 (1988), 1–10.

30


	1 Introduction
	2 Main results
	3 The main switchings
	4 More switchings to estimate a's and b's
	5 Synthesis

