Generalization of a theorem of Clunie and Hayman

Matthew Barrett and Alexandre Eremenko^{*}

November 18, 2010

Abstract

Clunie and Hayman proved that if the spherical derivative ||f'|| of an entire function satisfies $||f'||(z) = O(|z|^{\sigma})$ then $T(r, f) = O(r^{\sigma+1})$. We generalize this to holomorphic curves in projective space of dimension *n* omitting *n* hyperplanes in general position. MSC 32Q99, 30D15.

Introduction

We consider holomorphic curves $f : \mathbf{C} \to \mathbf{P}^n$; for the general background on the subject we refer to [7]. The Fubini–Study derivative ||f'|| measures the length distortion from the Euclidean metric in \mathbf{C} to the Fubini–Study metric in \mathbf{P}^n . The explicit expression is

$$||f'||^2 = ||f||^{-4} \sum_{i < j} |f'_i f_j - f_i f'_j|^2,$$

where (f_0, \ldots, f_n) is a homogeneous representation of f (that is the f_j are entire functions which never simultaneously vanish), and

$$||f||^2 = \sum_{j=0}^n |f_j|^2.$$

See [3] for a general discussion of the Fubini-Study derivative.

^{*}Supported by NSF grant DMS-055279 and by the Humboldt Foundation.

We recall that the Nevanlinna–Cartan characteristic is defined by

$$T(r,f) = \int_0^r \frac{dt}{t} \left(\frac{1}{\pi} \int_{|z| \le t} \|f'\|^2(z) dm(z) \right),$$

where dm is the area element in **C**. So the condition

$$\limsup_{z \to \infty} |z|^{-\sigma} \|f'(z)\| \le K < \infty$$
(1)

implies

$$\limsup_{r \to \infty} \frac{T(r, f)}{r^{2\sigma + 2}} < \infty.$$
(2)

Clunie and Hayman [4] found that for curves $\mathbf{C} \to \mathbf{P}^1$ omitting one point in \mathbf{P}^1 , a stronger conclusion follows from (1), namely

$$\limsup_{r \to \infty} \frac{T(r, f)}{r^{\sigma+1}} \le KC(\sigma).$$
(3)

In the most important case $\sigma = 0$, a different proof of this fact for n = 1 is due to Pommerenke [8]. Pommerenke's method gives the exact constant C(0). In this paper we prove that this phenomenon persists in all dimensions.

Theorem. For holomorphic curves $f : \mathbf{C} \to \mathbf{P}^n$ omitting *n* hyperplanes in general position, condition (1) implies (3) with an explicit constant $C(n, \sigma)$.

In [6], the case $\sigma = 0$ was considered. There it was proved that holomorphic curves in \mathbf{P}^n with bounded spherical derivative and omitting n hyperplanes in general position must satisfy T(r, f) = O(r). With a stronger assumption that f omits n + 1 hyperplanes this was earlier established by Berteloot and Duval [2] and by Tsukamoto [9]. The proof in [6] has two drawbacks: it does not extend to arbitrary $\sigma \ge 0$, and it is non-constructive; unlike Clunie–Hayman and Pommerenke's proofs mentioned above, it does not give an explicit constant in (3).

It is shown in [6] that the condition that n hyperplanes are omitted is exact: there are curves in any dimension n satisfying (1), $T(r, f) \sim cr^{2\sigma+2}$ and omitting n-1 hyperplanes.

Preliminaries

Without loss of generality we assume that the omitted hyperplanes are given in the homogeneous coordinates by the equations $\{w_j = 0\}, 1 \le j \le n$. We fix a homogeneous representation (f_0, \ldots, f_n) of our curve, where f_j are entire functions, and $f_n = 1$. Then

$$u = \log \sqrt{|f_0|^2 + \ldots + |f_n|^2}$$
(4)

is a positive subharmonic function, and Jensen's formula gives

$$T(r,f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(re^{i\theta})d\theta - u(0) = \int_{0}^{r} \frac{n(t)}{t} dt,$$

where $n(t) = \mu(\{z : |z| \le t\})$, and $\mu = \mu_u$ is the Riesz measure of u, that is the measure with the density

$$\frac{1}{2\pi}\Delta u = \frac{1}{\pi} \|f'\|^2.$$
 (5)

This measure μ is also called Cartan's measure of f. Positivity of u and (2) imply that all f_j are of order at most $2\sigma + 2$, normal type. As $f_j(z) \neq 0, 1 \leq j \leq n$ we conclude that

$$f_j = e^{P_j}, \quad 1 \le j \le n,$$

where

 P_j are polynomials of degree at most $2\sigma + 2$. (6)

We need two lemmas from potential theory.

Lemma 1. [6] Let v be a non-negative harmonic function in the closure of the disc B(a, R), and assume that $v(z_1) = 0$ for some point $z_1 \in \partial B(a, R)$. Then

$$v(a) \le 2R |\nabla v(z_1)|.$$

Lemma 2. Let v be a non-negative superharmonic function in the closure of the disc B(a, R), and suppose that $v(z_1) = 0$ for some $z_1 \in \partial B(a, R)$. Then

$$|\mu_v(B(a, R/2))| \le 3R |\nabla v(z_1)|.$$

Proof. Function v(a + Rz) satisfies the conditions of the lemma with R = 1. So it is enough to prove the lemma with a = 0 and R = 1. Let

$$w(z) = \int_{|\zeta| < 1} G(z, \zeta) d\mu_v(\zeta)$$

be the Green potential of μ_v . Then $w \leq v$ and $w(z_1) = v(z_1)$ which implies that

$$|\nabla v(z_1)| \ge \left|\frac{\partial w}{\partial |z|}(z_1)\right|.$$

Minimizing $|\partial G/\partial |z||$ over |z| = 1 and $|\zeta| = 1/2$ we obtain 1/3 which proves the lemma.

Proof of the theorem

We may assume without loss of generality that f_0 has infinitely many zeros. Indeed, we can compose f with an automorphism of \mathbf{P}^n , for example replace f_0 by $f_0 + cf_1$, $c \in \mathbf{C}$ and leave all other f_j unchanged. This transformation changes neither the n omitted hyperplanes nor the rate of growth of T(r, f) and multiplies the spherical derivative by a bounded factor.

Put $u_j = \log |f_j|$, and

$$u^* = \max_{1 \le j \le n} u_j.$$

Here and in what follows max denotes the pointwise maximum of subharmonic functions.

Proposition 1. Suppose that at some point z_1 we have

$$u_m(z_1) = u_k(z_1) \ge u_j(z_1)$$

for some $m \neq k$ and all $j; m, k, j \in \{0, \dots, n\}$. Then

$$||f'(z_1)|| \ge (n+1)^{-1} |\nabla u_m(z_1) - \nabla u_k(z_1)|.$$

Proof.

$$\|f'(z_1)\| \ge \frac{|f'_m(z_1)f_k(z_1) - f_m(z_1)f'_k(z_1)|}{|f_0(z_1)|^2 + \ldots + |f_n(z_1)|^2} \ge (n+1)^{-1} \left| \frac{f'_m(z_1)}{f_m(z_1)} - \frac{f'_k(z_1)}{f_k(z_1)} \right|,$$

and the conclusion of the proposition follows since $|\nabla \log |f|| = |f'/f|$.

Proposition 2. For every $\epsilon > 0$, we have

$$u(z) \le u^*(z) + K(2+\epsilon)^{\sigma+1}(n+1)|z|^{\sigma+1}$$

for all $|z| > r_0(\epsilon)$.

Proof. If $u_0(z) \leq u^*(z)$ for all sufficiently large |z|, then there is nothing to prove. Suppose that $u_0(a) > u^*(a)$, and consider the largest disc B(a, R)centered at a where the inequality $u_0(z) > u^*(z)$ persists. If z_0 is the zero of the smallest modulus of f_0 then $R \leq |a| + |z_0| < (1 + \epsilon)|a|$ when |a| is large enough.

There is a point $z_1 \in \partial B(a, R)$ such that $u_0(z_1) = u^*(z_1)$. This means that there is some $k \in \{1, \ldots, n\}$ such that $u_0(z_1) = u_k(z_1) \ge u_m(z_1)$ for all $m \in \{1, \ldots, n\}$. Applying Proposition 1 we obtain

$$|\nabla u_k(z_1) - \nabla u_0(z_1)| \le (n+1) ||f'(z_1)||.$$

Now $u_0(z) > u^*(z) \ge u_k(z)$ for $z \in B(a, R)$, so we can apply Lemma 1 to $v = u_0 - u_k$ in the disc B(a, R). This gives

$$u_0(a) - u_k(a) \le 2R |\nabla u_k(z_1) - \nabla u_0(z_1)| \le 2R(n+1) ||f'(z_1)||.$$

Now $R < (1 + \epsilon)|a|$ and $|z_1| \le (2 + \epsilon)|a|$, so

$$u_0(a) \le u^*(a) + K(2+\epsilon)^{\sigma+1}(n+1)|a|^{\sigma+1},$$

and the result follows because $u = \max\{u_0, u^*\} + O(1)$.

Next we study the Riesz measure of the subharmonic function

$$u^* = \max\{u_1, \ldots, u_n\}.$$

We begin with maximum of two harmonic functions. Let u_1 and u_2 be two harmonic functions in \mathbf{C} of the form $u_j = \operatorname{Re} P_j$ where $P_j \neq 0$ are polynomials. Suppose that $u_1 \neq u_2$. Then the set $E = \{z \in \mathbf{C} : u_1(z) = u_2(z)\}$ is a proper real-algebraic subset of $\overline{\mathbf{C}}$ without isolated points. Apart from a finite set of ramification points, E consists of smooth curves. For every smooth point $z \in E$, we denote by J(z) the jump of the normal (to E) derivative of the function $w = \max\{u_1, u_2\}$ at the point z. This jump is always positive and the Riesz measure μ_w is given by the formula

$$d\mu_w = \frac{J(z)}{2\pi} |dz|,\tag{7}$$

which means that μ_w is supported by E and has a density $J(z)/2\pi$ with respect to the length element |dz| on E.

Now let $E_{i,j} = \{z : u_i(z) = u_j(z) \ge u_k(z), 1 \le k \le n\}$, and $E = \bigcup E_{i,j}$ where the union is taken over all pairs $1 \le i, j \le n$ for which $u_i \ne u_j$. Then E is a proper real semi-algebraic subset of $\overline{\mathbf{C}}$, and ∞ is not an isolated point of E. For the elementary properties of semi-algebraic sets that we use here see, for example, [1, 5]. There exists $r_0 > 0$ such that $\Gamma = E \cap \{r_0 < |z| < \infty\}$ is a union of finitely many disjoint smooth simple curves,

$$\Gamma = \cup_{k=1}^{m} \Gamma_k.$$

This union coincides with the support of μ_{u^*} in $\{z : r_0 < |z| < \infty\}$.

Consider a point $z_0 \in \Gamma$. Then $z_0 \in \Gamma_k$ for some k. As Γ_k is a smooth curve, there is a neighborhood D of z_0 which does not contain other curves $\Gamma_j, j \neq k$ and which is divided by Γ_k into two parts, D_1 and D_2 . Then there exist i and j such that $u^*(z) = u_i(z), z \in D_1$ and $u^*(z) = u_j(z), z \in D_2$, and $u^*(z) = \max\{u_i(z), u_j(z)\}, z \in D$. So the restriction of the Riesz measure μ_{u^*} on D is supported by $\Gamma_k \cap D$ and has density $J(z)/(2\pi)$ where

$$|J(z)| = |\partial u_i / \partial n - \partial u_j / \partial n|(z) = |\nabla (u_i - u_j)|(z),$$

and $\partial/\partial n$ is the derivation in the direction of a normal to Γ_k . Taking into account that $u_j = \operatorname{Re} P_j$ where P_j are polynomials, we conclude that there exist positive numbers c_k and b_k such that

$$J(z)/(2\pi) = (c_k + o(1))|z|^{b_k}, \quad z \to \infty, \quad z \in \Gamma_k.$$
(8)

Let $b = \max_k b_k$, and among those curves Γ_k for which $b_k = b$ choose one with maximal c_k (which we denote by c_0). We denote this chosen curve by Γ_0 and fix it for the rest of the proof.

Proposition 3. We have

$$b \leq \sigma$$
 and $c_0 \leq 3 \cdot 4^{\sigma} K(n+1)$.

Proof. We consider two cases.

Case 1. There is a sequence $z_n \to \infty$, $z_n \in \Gamma_0$ such that $u_0(z_n) \leq u^*(z_n)$. Then (1) and Proposition 1 imply that

$$J(z_n) \le (n+1)K|z_n|^{\sigma},$$

and comparison with (8) shows that $b \leq \sigma$ and $c_0 \leq K(n+1)/(2\pi)$.

Case 2. $u_0(z) > u^*(z)$ for all sufficiently large $z \in \Gamma_0$. Let *a* be a point on Γ_0 , $|a| > 3r_0$, and $u_0(a) > u^*(a)$. Let B(a, R) be the largest open disc centered at *a* in which the inequality $u_0(z) > u^*(z)$ holds. Then

$$R \le |a| + O(1), \quad a \to \infty \tag{9}$$

because we assume that f_0 has zeros, so $u_0(z_0) = -\infty$ for some z_0 .

In B(a, R) we consider the positive superharmonic function $v = u_0 - u^*$. Let us check that it satisfies the conditions of Lemma 2. The existence of a point $z_1 \in \partial B(a, R)$ with $v(z_1) = 0$ follows from the definition of B(a, R). The Riesz measure of μ_v is estimated using (7), (8):

$$|\mu_v(B(a, R/2))| \ge |\mu_v(\Gamma_0 \cap B(a, R/2))| \ge c_0 R(|a| - R/2)^b.$$

Now Lemma 2 applied to v in B(a, R) implies that

$$|\nabla v(z_1)| \ge (c_0/3)(|a| - R/2)^b.$$
(10)

On the other hand (1) and Proposition 1 imply that

$$|\nabla v(z_1)| \le K(n+1)(|a|+R)^{\sigma}$$

Combining these two inequalities and taking (9) into account, we obtain $b \leq \sigma$ and $c_0 \leq 3 \cdot 4^{\sigma} K(n+1)$, as required.

We denote

$$T^{*}(r) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u^{*}(re^{i\theta})d\theta - u^{*}(0);$$

This is the characteristic of the "reduced curve" (f_1, \ldots, f_n) .

Proposition 4.

$$T^*(r) \le 6 \cdot 4^{\sigma} K \frac{n(n+1)^2}{\sigma+1}.$$

Proof. By Jensen's formula,

$$T^*(r) = \int_0^r \nu(t) \frac{dt}{t},$$

where $\nu(t) = \mu_{u^*}(\{z : |z| \leq t\})$. The number of curves Γ_k supporting the Riesz measure of u^* is easily seen to be at most $2n(n-1)(\sigma+1)$. The density of the Riesz measure μ_{u^*} on each curve Γ_k is given by (8), where $c_k \leq c_0$ and $b_k \leq b$, and the parameters c_0 and b are estimated in Proposition 3. Combining all these data we obtain the result.

It remains to combine Propositions 2 and 4 to obtain the final result.

References

- R. Benedetti and J. Risler, Real algebraic and semi-algebraic sets, Hermann, Paris, 1990.
- [2] F. Berteloot et J. Duval, Sur l'hyperbolicité de certains complémentaires, Enseign. Math. (2) 47 (2001), no. 3-4, 253–267.
- [3] W. Cherry and A. Eremenko, Landau's theorem for holomorphic curves in projective space and the Kobayashi metric on hyperplane complement, to appear in: Pure and Appl. Math. Quarterly, 2010.
- [4] J. Clunie and W. Hayman, The spherical derivative of integral and meromorphic functions, Comment. math. helv., 40 (1966) 373–381.
- [5] M. Coste, An introduction to semialgebraic geometry, Inst. editoriali e poligrafici internazionali, Pisa, 2000.
- [6] A. Eremenko, Brody curves omitting hyperplanes, Ann. Acad. Sci. Fenn., 35 (2010) 565-570.
- [7] S. Lang, Introduction to complex hyperbolic spaces, Springer-Verlag, New York, 1987.
- [8] Ch. Pommerenke, Estimates for normal meromorphic functions, Ann. Acad. Sci. Fenn., Ser AI, 476 (1970).
- [9] M. Tsukamoto, On holomorphic curves in algebraic torus. J. Math. Kyoto Univ. 47 (2007), no. 4, 881–892.

Purdue University, West Lafayette IN 47907 USA