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Many-body ground states of local Hamiltonians can be pegpeia unitary evolution in cold atomic systems.
Given the initial state and a fixed time for the evolution, fadase can we get to a desired ground state if we can
tune the Hamiltonian in time? Here we study this optimal oariroblem focusing on Luttinger liquids with
tunable interactions. We show that the optimal protocollmanbtained using the simulated annealing method.
Rather surprisingly, we find that in the Luttinger liquid eake interaction strength in the optimal protocol can
have anon-monotonidime-dependence. We find a marked difference in the behaf¥ithre system when the
ratio /L of the preparation time to the system size exceeds a critalak around 1/8. In this regime, the
optimal protocol can prepare the states with almost pedeatracy. Finally, we argue that the time-scale of the
optimal evolution defines a dynamical measure of distant@dsn quantum states.

The ability to manipulate systems of atomic gases loadethe final state
onto optical lattices, together with the fact that thesdesys 7 At H(e()))
are quite well isolated from their environment, provides an [W(r)) =Te "o I )

opportunity to explore the non-equilibrium properties oéq- . 5 .
tum matter|[1}, 2]. The central objectin such studiesis a manybe to the desired ground state,)? Here7” represents time-

body quantum pure state undergoing unitary evolution genePrde”ng' The precise meaning dbsenessbove depends .
ated by a time-dependent local Hamiltonian. on the measure used. There are several popular measures like

. L ) the excess energy or the density of quasi-particle exoitati
Unitary evolution is of course not confined to the ground|_|ere we use the wave function overlap

state manifold. In an important class of problems, however,

we are specifically interested in transforming an initiatet Flgt)}] = (¥ (r)|Ws)]2. (1)

that is the ground state of a local Hamiltonian to the ground

state of another Hamiltonian via the unitary evolution. ISuc  The final overlap depends upon the ramp shiggge) } [11]
problems appear for example in the context of the adiabatiand the problem is then reduced to finding the time-dependent
guantum computing [3] or for the preparation of non-trivial {¢(¢)} that maximizes the functional above. This interesting
ground states in regimes where direct cooling is diffiau [4 open question in quantum dynamics [7] is in fact a typical
6]. Ground state preparation is the key to simulating manyproblem in optimal control theory, a field of applied mathe-
body model Hamiltonians with cold atoms. matics with a wide range of applications from engineering to

If one had infinite time to wait, according to the adiabatic social science. Let us emphasize that in this optimal cbntro
theorem of quantum mechanics, the unitary transformatioRroblem, we are concerned only with theal state and main-
can be done with arbitrary accuracy in any finite system. Exi@ining adiabaticity during the evolution, as for example in
trinsic losses and quantum decoherence, however, set an ugef- [9], isnota constraint.
per bound on the practical time to carry out the process. In The focus of this work is the Luttinger model, whose
any finite timer non-adiabatic effects are therefore unavoid-Hamiltonian density is given by the following quadraticrfor
able [7]. These effects are most severe in the absence of an
energy gap [8]. In this paper we focus precisely on dynamics H
within the gapless phase by studying unitary evolution & th

Luttinger liquid. where®(z) is a bosonic field related to the charge density via
Let us start by casting the question of finding the optimaly(z) = V&(z)//7 andIl(z) is its conjugate momentum.
dynamical protocol in a generic way. Assume we have a locathe parameters and K are respectively the velocity of the

u

5 (K % (z) + %(vyx))?)

Hamiltonian with a finite number of terms charge carriers and the Luttinger parameter. In Fouriezespa
we can then write the Hamiltonian as follows
M
_ . 1
H({g}) = Z} 9: Oi H=uY (K Mg + 2 ¢ <I>q<1>_q) )
= q>0

where theO;s are local operators and tlges are coupling where®, are bosonic fields and,, their conjugate momenta
constants that, within a given range, can be tuned to angvalwith [ ®,,II,, ] = id,y. We consider the problem where
as a function of time. We would like to transfoif;) which  particle number is fixed, focusing explicitly the case offhal
is the ground state off ({¢1}) to |¥2), the ground state of filling, and therefore we have excluded in the above expres-
H({g2}) in a given timer. Assuming we are able to giamy  sion the zero mode which is responsible for changing the par-
time-dependence to the coupling constgmts howclosecan  ticle number sector in the bosonized description. Assuming
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we have an odd number of sitésn the system, the momenta unimportant overall phase, the solution of the above déffier

q are given byy = 273 forn =1- % tial equation is

This Luttinger Hamiltonian is the Iow-energy effective the
ory for models of spinless interacting fermions on a one- 2q 1 9
dimensional lattice, in particular the 1D Hubbard model (@) ={— [§R 2g(O)] T exp (—q z4(t) ¢*)  (5)

1 1 hereRt indicates the real part ang(t) is a complex-valued
H= t +h.c.+V it1— =) - wher - part a . : PX
Z { ey (=21 = 3) function that satisfies the following Riccati equation:
3)

With the hopping amplitude set to unity, the Luttinger pa- i24(t) =¢q @ [zg(t) — QQ(t)] (6)
rameters, and K are related td/ via the Bethe ansatz (see a(t)

Ref. [13] for example). We will consider trajectories foand

K that are parametrized by a time-dependé(i): v = u(V)
and K = K (V). Notice that while the relation between the
Luttinger liquid (LL) and the 1D Hubbard model holds at low .
energies, the results we find for the optimum dynamical proWlse constant function over the interval.. . 7]. This allows
tocol in the former should be applicable to the later when> to write the final overlap, which is a functional ),

: : . as a multi-variable function that can be maximized numeri-
the total momentungn, in each harmonic oscillator mode X : .
. . . ; cally. An optimal protocol is found once there is convergenc
in Eq. (2), wheren, is the occupation number, is small com-

pared tor /2. (We will indeed check a posteriori that for all in the final overlap as we increase the number of discretinati

. : L ) .. points.
.optlm.allprotocols_that y|e|q high final ove rlaps, this cdruf Physically, the piecewise-constant function describes-a s
is satisfied at all times during the evolution.)

At half filling, the gapless Luttinger liquid (LL) descrip- quence of sudden quenches. Let us assume a seqijgia

tion holds for—2 < V/t < 2. At V/t = 2, the system with 1At NTS/l;\t;h :/r\}gffc/h(e% e:/t\:/(())rc((j)rr_e;)ﬁlzdfnts<ejuAetnces
becomes unstable to charge density wave (CDW) order and'a 2 ond o f 20 = At 9 e obtain th(ffollo gn ?ec -
gap opens up. An optimal power-law protocol for bringing the U o;. If 23 = z(jAL), W : wing recu
system from the gapped phase to the critical point was founaIon relation forzﬂ by solving Eg.[(¥) for time-independeat
in Ref. [10] using adiabatic perturbation theary![12]. Here anda,
consider the problem of transforming the system initially a i1

q uj At + arctan <—i 2 )1 .M

J

with a(t) = 1/K(t) and the initial conditior, (0) = %~

To perform the optimization for the many-body system, we
discretize time and approximate a genérdk) by a piece-

the CDW phase transition critical point to a point deep withi ZZ =ia; tan
the gapless LL phase.

We proceed by expressiig, = —i dp,. The many-body
ground state wave function (in thé®, }) basis) is

Our focus here is finding an optimal protocol but Hg. (7)
above is of interest in its own right since it gives an exati-so
_ tion of the non-equilibrium wave-function for any sequente

P{2q}) = H [Va(90, K) Yalpg, K)] @ sudden quenches in the interaction strength. Notice thz on

we knowz,(¢) for all modes, we have the many-body wave-

whereg, andy, are respectively the real and imaginary partsfunction as a simple product of single mode wave-functions.

of ¢, and Recursively solving the above relation Ed.] (7) yields

zq(T) = zév for any given piece-wise constant interaction

q>0

_(2q T q 9 strength. The overlap Ed.](8) can then be determined from
bq(¢, K) = (ﬁ) exp (—Ed’)- 24(7) as follows
Let us assume we are initially in the ground state for R 24(7)
K; = K(V1) (at the phase transition poift = 2, K = %). FW,... = exp [Zlﬂ (40‘ |2 + iq( ) |2)
q>0

We would like to find the time-dependent interaction stréangt
—2 < V(t) < 2 for t betweerD andr that yields the max-
imum overlap with the ground state corresponding/oat
time 7.

At intermediate times, the wave function remains a produc

[I50 [¥a(dg, )W q(pg,t)] WhereW,(o,t) is the solution of
the following Schrodinger equation:

(8)
whereay; = 1/ K.
The overlap above is written as a multi-variable function
Ff {V;}. To find the optimal protocol, we minimize the cost
unction£({V;}) = —In F({V;}) with respect to the con-
figuration{V;}. Many methods for finding the minimum of
a function of multiple variables, such as the conjugateigrad
_ K(t) 1 5, ants, are geared toward finding a local minimum and are not
{Zaﬁ — u(t) (_T s T Kt q ¢ >] Uy(4,t) =0 suitable for our problem due to the presence of many such
minima. Monte-Carlo methods on the other hand have a bet-
with the initial condition®,(¢,0) = ,(¢, K1). Up to an  ter chance of finding the global minimum. We do simulated
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FIG. 1. The final€ vs. 7/L for the linear and the best power-law FIG. 2. The finalS obtained by Monte-Carlo (MC) simulations com-
protocols and several system sizes. pared to the linear and best-power-law protocols. The Smdlinges

by several orders of magnitude foy L approximately larger than

1 S >
z- Note that in this regime, the data merely represents anruppe

annealing calculations with kinetic moves consisting cdr bound on&(7) and the actual overlap could be even better. This
dom small change in a randomly chosén upper bound already provides almost perfect overlap.

We compare the results of the optimal protocol against two

a_lddmonal calculations. We consider the one-paramet@aiva geyere for larger systems. This implies that the upper bound
tional protocolV(¢) = Vi + (Vo — V1) (¢/7)"for0 <t <7 t5und by Monte-Carlo simulations becomes looser as the sys-
and calculate the final overlap for the linear protoco(1)  em size is increased. We also observe that different initia
as well as for the the best power-law protocol € 7min  conditions and annealing histories lead to different prot®
with 9, &(r) = 0). The optimal protocol found by Monte- it close costS(7) in ther > 7. regime. The difficulty
Carlo simulations performs significantly better than both o ¢ convergence to a unique optimal protocol in this regime is
the above. reminiscent of the complex energy landscape in glasses. In

The final&(7) is plotted in Fig[l as a function of/L for  this case finding the global minimum becomes exceedingly
the linear and the best-power-law protocols and for severadifficult, specially for larger systems, due to the presenice
system sizes. It appears from the collapse of the data thaany local minima.
for the best-poWer-laW pl’OtOCO|, the finélis a function of We can Speculate a possib'e exp'anation for this behav-
7/L only. The linear protocol however exhibits correctionsior, Najvely, we expect to be able to find an exact solution
to scaling of the forn€(7, L) = f(r/L)In L. This suggests ¢(r) = ( if we haveN = L — 1 unknowns{V;} to solve the
that in the thermodynamic limit, the linear protocol leads t j _ | equationsz, (1) = a for all modes. This is of course
orthogonal wave functions for any finite/ 2. The optimal ot possible for short even if N > L. When the timer
exponentyi, (7, L) has a cross-over from a functionobnly  pecome of order, the equatiory,(7) = a» becomes con-
for short times to a function of/ L for longer times. sistent under-determined for any single madier large N.

In Fig.[2, we show the finaf for L = 65, 129 and257  Simultaneously solving the equations above for all modas is
for the optimal protocol obtained by an unbiased Monte-€arl much more complex problem however and an exact solution
simulation. We also plof for the linear and best power-law may need longer times than= O(L) (possibly exponential).
protocols for comparison. Whery L becomes larger than a Nevertheless, the complexity of the energy landscape may be
critical value, the finaf obtained by Monte-Carlo optimiza- related to having consistent under-determined equatfoats t
tion exhibits a qualitative change of behavior and shootedo  for each mode;, admit an infinite number of solutions to the
by severalorders of magnitude. Using the protocol obtainedinequality |z,(7) — as| < € with an infinitesimale. In this
by Monte-Carlo, we can then prepare the quantum states witbase, a large number of such solutions may simultaneously
virtually perfectaccuracy as long as > 7. o< L. Inthis  satisfy the inequality for all modes.
regime, the convergence is not very good and the value of the A striking feature of the optimal protocol as seen in the
cost function obtained by Monte-Carlo simulations is merel Fig.[3 is that the interaction strength is a monotonic oty
an upper bound on the actual minimum. For shorter times ofunction. Fig[B shows the convergence of the optimal proto-
the other hand, we have good convergence as the number @bl with increasing the number of discretization pointsr Fo
discretization pointsV is increased. large enough systems, the period of the oscillation does not

Notice that despite the qualitative change of behavios it i have a strong dependence on the system Kine the prepa-
not clear from the finite-size scaling of the obtairfgd) that  ration timer. The oscillations therefore are a consequence
there is a transition in the thermodynamic limit. Neveréiss,  of short-distance physics, i.e. the discrete lattice. Thmts
we observe that the difficulty in convergence becomes mordistance length scale is the lattice spacing which is sehé o
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FIG. 3. The interaction strengifi(¢) as a function of time for the op-
timal protocol obtained by Monte-Carlo simulations. Witltieas-
ing the number of discretization poindg, the optimal protocol con-
verges to a non-monotonic oscillatory function.
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FIG. 4. The optimal protocol interaction strengtt{¢) for different
values ofl%.

in our problem. As seen Fi] 4, the period of the oscillations
decreases d8 becomes larger. This observation is consistent

with a short-distance cut-off controlling the oscillatgsince
the velocityu (V') is an increasing function of the interaction
strengthV/.

4

This new measure of distance can lead to a new classification
of quantum phases relevant for non-equilibrium physice Th
importance of local unitary transformations, such as theson
generated by the Hamiltonian evolution, in classifyingesta
was recently pointed out in [[15].

In summary, we used simulated annealing to address an out-
standing open problem in the non-equilibrium dynamics of
interacting quantum systems, namely finding unbiased opti-
mal protocols for unitary preparation of strongly corretht
states. We focused on transforming states in the Luttinger
liquid phase of interacting fermions with tunable interact
strength. Quite surprisingly, we found optimal protocdiatt
exhibit oscillatory behavior. For/L larger than a critical
value, we found that the states can be transformed with almos
perfect accuracy. Finally, based on this optimal controbpr
lem, we defined a new measure of distance between quantum
ground states that is relevant for out-of-equilibrium ghys
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