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Optimal control for unitary preparation of many-body states: application to Luttinger liquids
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Many-body ground states of local Hamiltonians can be prepared via unitary evolution in cold atomic systems.
Given the initial state and a fixed time for the evolution, howclose can we get to a desired ground state if we can
tune the Hamiltonian in time? Here we study this optimal control problem focusing on Luttinger liquids with
tunable interactions. We show that the optimal protocol canbe obtained using the simulated annealing method.
Rather surprisingly, we find that in the Luttinger liquid case the interaction strength in the optimal protocol can
have anon-monotonictime-dependence. We find a marked difference in the behaviorof the system when the
ratio τ/L of the preparation time to the system size exceeds a criticalvalue around 1/8. In this regime, the
optimal protocol can prepare the states with almost perfectaccuracy. Finally, we argue that the time-scale of the
optimal evolution defines a dynamical measure of distance between quantum states.

The ability to manipulate systems of atomic gases loaded
onto optical lattices, together with the fact that these systems
are quite well isolated from their environment, provides an
opportunity to explore the non-equilibriumproperties of quan-
tum matter [1, 2]. The central object in such studies is a many-
body quantum pure state undergoing unitary evolution gener-
ated by a time-dependent local Hamiltonian.

Unitary evolution is of course not confined to the ground
state manifold. In an important class of problems, however,
we are specifically interested in transforming an initial state
that is the ground state of a local Hamiltonian to the ground
state of another Hamiltonian via the unitary evolution. Such
problems appear for example in the context of the adiabatic
quantum computing [3] or for the preparation of non-trivial
ground states in regimes where direct cooling is difficult [4–
6]. Ground state preparation is the key to simulating many-
body model Hamiltonians with cold atoms.

If one had infinite time to wait, according to the adiabatic
theorem of quantum mechanics, the unitary transformation
can be done with arbitrary accuracy in any finite system. Ex-
trinsic losses and quantum decoherence, however, set an up-
per bound on the practical time to carry out the process. In
any finite timeτ non-adiabatic effects are therefore unavoid-
able [7]. These effects are most severe in the absence of an
energy gap [8]. In this paper we focus precisely on dynamics
within the gapless phase by studying unitary evolution in the
Luttinger liquid.

Let us start by casting the question of finding the optimal
dynamical protocol in a generic way. Assume we have a local
Hamiltonian with a finite number of terms

H({g}) =
M
∑

i=1

gi Oi

where theOis are local operators and thegis are coupling
constants that, within a given range, can be tuned to any value
as a function of time. We would like to transform|Ψ1〉 which
is the ground state ofH({g1}) to |Ψ2〉, the ground state of
H({g2}) in a given timeτ . Assuming we are able to giveany
time-dependence to the coupling constants{g}, howclosecan

the final state

|Ψ(τ)〉 = T e−i
∫

τ

0
dt′H({g(t′)})|Ψ1〉

be to the desired ground state|Ψ2〉? HereT represents time-
ordering. The precise meaning ofclosenessabove depends
on the measure used. There are several popular measures like
the excess energy or the density of quasi-particle excitations.
Here we use the wave function overlap

F [{g(t)}] = |〈Ψ(τ)|Ψ2〉|2. (1)

The final overlap depends upon the ramp shape{g(t)} [11]
and the problem is then reduced to finding the time-dependent
{g(t)} that maximizes the functional above. This interesting
open question in quantum dynamics [7] is in fact a typical
problem in optimal control theory, a field of applied mathe-
matics with a wide range of applications from engineering to
social science. Let us emphasize that in this optimal control
problem, we are concerned only with thefinal state and main-
taining adiabaticityduring the evolution, as for example in
Ref. [9], isnot a constraint.

The focus of this work is the Luttinger model, whose
Hamiltonian density is given by the following quadratic form

H =
u

2

(

K Π2(x) +
1

K
(∇Φ(x))2

)

whereΦ(x) is a bosonic field related to the charge density via
ρ(x) = ∇Φ(x)/

√
π andΠ(x) is its conjugate momentum.

The parametersu andK are respectively the velocity of the
charge carriers and the Luttinger parameter. In Fourier space,
we can then write the Hamiltonian as follows

H = u
∑

q>0

(

K ΠqΠ−q +
1

K
q2 ΦqΦ−q

)

(2)

whereΦq are bosonic fields andΠq their conjugate momenta
with [ Φq,Πq′ ] = iδqq′ . We consider the problem where
particle number is fixed, focusing explicitly the case of half-
filling, and therefore we have excluded in the above expres-
sion the zero mode which is responsible for changing the par-
ticle number sector in the bosonized description. Assuming
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we have an odd number of sitesL in the system, the momenta
q are given byq = 2π n

L
for n = 1 · · · , L−1

2 .
This Luttinger Hamiltonian is the low-energy effective the-

ory for models of spinless interacting fermions on a one-
dimensional lattice, in particular the 1D Hubbard model

H =
∑

j

[

−tc†jcj+1 + h.c.+ V (nj −
1

2
)(nj+1 −

1

2
)

]

.

(3)
With the hopping amplitudet set to unity, the Luttinger pa-
rametersu andK are related toV via the Bethe ansatz (see
Ref. [13] for example). We will consider trajectories foru and
K that are parametrized by a time-dependentV (t): u = u(V )
andK = K(V ). Notice that while the relation between the
Luttinger liquid (LL) and the 1D Hubbard model holds at low
energies, the results we find for the optimum dynamical pro-
tocol in the former should be applicable to the later when
the total momentumqnq in each harmonic oscillator mode
in Eq. (2), wherenq is the occupation number, is small com-
pared toπ/2. (We will indeed check a posteriori that for all
optimal protocols that yield high final overlaps, this condition
is satisfied at all times during the evolution.)

At half filling, the gapless Luttinger liquid (LL) descrip-
tion holds for−2 < V/t < 2. At V/t = 2, the system
becomes unstable to charge density wave (CDW) order and a
gap opens up. An optimal power-law protocol for bringing the
system from the gapped phase to the critical point was found
in Ref. [10] using adiabatic perturbation theory [12]. Herewe
consider the problem of transforming the system initially at
the CDW phase transition critical point to a point deep within
the gapless LL phase.

We proceed by expressingΠq = −i ∂Φq
. The many-body

ground state wave function (in the|{Φq}〉 basis) is

Ψ({Φq}) =
∏

q>0

[ ψq(φq,K) ψq(ϕq,K) ] (4)

whereφq andϕq are respectively the real and imaginary parts
of Φq and

ψq(φ,K) =

(

2 q

πK

)
1

4

exp
(

− q

K
φ2
)

.

Let us assume we are initially in the ground state for
K1 = K(V1) (at the phase transition pointV = 2, K = 1

2 ).
We would like to find the time-dependent interaction strength
−2 < V (t) < 2 for t between0 andτ that yields the max-
imum overlap with the ground state corresponding toV2 at
time τ .

At intermediate times, the wave function remains a product
∏

q>0 [Ψq(φq , t)Ψq(ϕq, t)] whereΨq(φ, t) is the solution of
the following Schrödinger equation:
[

i∂t − u(t)

(

−K(t)

4
∂2φ +

1

K(t)
q2 φ2

)]

Ψq(φ, t) = 0

with the initial conditionΨq(φ, 0) = ψq(φ,K1). Up to an

unimportant overall phase, the solution of the above differen-
tial equation is

Ψq(φ, t) =

(

2 q

π

)
1

4

[ℜ zq(t)]
1

4 exp
(

−q zq(t) φ2
)

(5)

whereℜ indicates the real part andzq(t) is a complex-valued
function that satisfies the following Riccati equation:

i żq(t) = q
u(t)

α(t)

[

z2q(t)− α2(t)
]

(6)

with α(t) ≡ 1/K(t) and the initial conditionzq(0) = 1
K1

.
To perform the optimization for the many-body system, we

discretize time and approximate a generalV (t) by a piece-
wise constant function over the interval[0 . . . τ ]. This allows
us to write the final overlap, which is a functional ofV (t),
as a multi-variable function that can be maximized numeri-
cally. An optimal protocol is found once there is convergence
in the final overlap as we increase the number of discretization
points.

Physically, the piecewise-constant function describes a se-
quence of sudden quenches. Let us assume a sequenceVj with
j = 1 . . .N such thatV (t) = Vj for (j − 1)∆t < t < j∆t
with ∆t = τ/N . We then get two corresponding sequences
uj andαj . If zjq ≡ zq(j∆t), we obtain the following recur-
sion relation forzjq by solving Eq. (6) for time-independentu
andα,

zjq = i αj tan

[

q uj ∆t+ arctan

(

−i
zj−1
q

αj

)]

. (7)

Our focus here is finding an optimal protocol but Eq. (7)
above is of interest in its own right since it gives an exact solu-
tion of the non-equilibrium wave-function for any sequenceof
sudden quenches in the interaction strength. Notice that once
we knowzq(t) for all modes, we have the many-body wave-
function as a simple product of single mode wave-functions.

Recursively solving the above relation Eq. (7) yields
zq(τ) = zNq for any given piece-wise constant interaction
strength. The overlap Eq. (8) can then be determined from
zq(τ) as follows

F(V1, . . . VN ) = exp

[

∑

q>0

ln

(

4 α2
ℜ zq(τ)

| α2 + zq(τ) |2
)

]

.

(8)
whereα2 ≡ 1/K2.

The overlap above is written as a multi-variable function
of {Vj}. To find the optimal protocol, we minimize the cost
function E({Vj}) ≡ − lnF({Vj}) with respect to the con-
figuration{Vj}. Many methods for finding the minimum of
a function of multiple variables, such as the conjugate gradi-
ants, are geared toward finding a local minimum and are not
suitable for our problem due to the presence of many such
minima. Monte-Carlo methods on the other hand have a bet-
ter chance of finding the global minimum. We do simulated
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FIG. 1. The finalE vs. τ/L for the linear and the best power-law
protocols and several system sizes.

annealing calculations with kinetic moves consisting of a ran-
dom small change in a randomly chosenVj .

We compare the results of the optimal protocol against two
additional calculations. We consider the one-parameter varia-
tional protocolV (t) = V1 + (V2 − V1) (t/τ)

r for 0 < t < τ
and calculate the final overlap for the linear protocol (r = 1)
as well as for the the best power-law protocol (r = rmin

with ∂r E(r) = 0). The optimal protocol found by Monte-
Carlo simulations performs significantly better than both of
the above.

The finalE(τ) is plotted in Fig. 1 as a function ofτ/L for
the linear and the best-power-law protocols and for several
system sizes. It appears from the collapse of the data that
for the best-power-law protocol, the finalE is a function of
τ/L only. The linear protocol however exhibits corrections
to scaling of the formE(τ, L) = f(τ/L) lnL. This suggests
that in the thermodynamic limit, the linear protocol leads to
orthogonal wave functions for any finiteτ/L. The optimal
exponentrmin(τ, L) has a cross-over from a function ofτ only
for short times to a function ofτ/L for longer times.

In Fig. 2, we show the finalE for L = 65, 129 and257
for the optimal protocol obtained by an unbiased Monte-Carlo
simulation. We also plotE for the linear and best power-law
protocols for comparison. Whenτ/L becomes larger than a
critical value, the finalE obtained by Monte-Carlo optimiza-
tion exhibits a qualitative change of behavior and shoots down
by severalorders of magnitude. Using the protocol obtained
by Monte-Carlo, we can then prepare the quantum states with
virtually perfectaccuracy as long asτ > τc ∝ L. In this
regime, the convergence is not very good and the value of the
cost function obtained by Monte-Carlo simulations is merely
an upper bound on the actual minimum. For shorter times on
the other hand, we have good convergence as the number of
discretization pointsN is increased.

Notice that despite the qualitative change of behavior, it is
not clear from the finite-size scaling of the obtainedE(τ) that
there is a transition in the thermodynamic limit. Nevertheless,
we observe that the difficulty in convergence becomes more

FIG. 2. The finalE obtained by Monte-Carlo (MC) simulations com-
pared to the linear and best-power-law protocols. The finalE plunges
by several orders of magnitude forτ/L approximately larger than
1

8
. Note that in this regime, the data merely represents an upper

bound onE(τ ) and the actual overlap could be even better. This
upper bound already provides almost perfect overlap.

severe for larger systems. This implies that the upper bound
found by Monte-Carlo simulations becomes looser as the sys-
tem size is increased. We also observe that different initial
conditions and annealing histories lead to different protocols
with close costE(τ) in the τ > τc regime. The difficulty
of convergence to a unique optimal protocol in this regime is
reminiscent of the complex energy landscape in glasses. In
this case finding the global minimum becomes exceedingly
difficult, specially for larger systems, due to the presenceof
many local minima.

We can speculate a possible explanation for this behav-
ior. Naively, we expect to be able to find an exact solution
E(τ) = 0 if we haveN = L− 1 unknowns{Vj} to solve the
L − 1 equationszq(τ) = α2 for all modes. This is of course
not possible for shortτ even ifN ≫ L. When the timeτ
become of orderL, the equationzq(τ) = α2 becomes con-
sistent under-determined for any single modeq for largeN .
Simultaneously solving the equations above for all modes isa
much more complex problem however and an exact solution
may need longer times thanτ = O(L) (possibly exponential).
Nevertheless, the complexity of the energy landscape may be
related to having consistent under-determined equations that,
for each modeq, admit an infinite number of solutions to the
inequality |zq(τ) − α2| < ǫ with an infinitesimalǫ. In this
case, a large number of such solutions may simultaneously
satisfy the inequality for all modes.

A striking feature of the optimal protocol as seen in the
Fig. 3 is that the interaction strength is a monotonic oscillatory
function. Fig. 3 shows the convergence of the optimal proto-
col with increasing the number of discretization points. For
large enough systems, the period of the oscillation does not
have a strong dependence on the system sizeL or the prepa-
ration timeτ . The oscillations therefore are a consequence
of short-distance physics, i.e. the discrete lattice. The short
distance length scale is the lattice spacing which is set to one
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FIG. 3. The interaction strengthV (t) as a function of time for the op-
timal protocol obtained by Monte-Carlo simulations. With increas-
ing the number of discretization pointsN , the optimal protocol con-
verges to a non-monotonic oscillatory function.
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FIG. 4. The optimal protocol interaction strengthV (t) for different
values ofV2.

in our problem. As seen Fig. 4, the period of the oscillations
decreases asV2 becomes larger. This observation is consistent
with a short-distance cut-off controlling the oscillations since
the velocityu(V ) is an increasing function of the interaction
strengthV .

To check the applicability of the results to the Hubbard
model, we consider the occupation number of modesnq.
Writing the occupation number asnq = 〈εq〉/2ε0q−1/2where
ε0q is the ground state energy of a mode, we obtain

nq(t) =
1

4ℜzq(t)

(

K(t) |zq(t)|2 +
1

K(t)

)

− 1

2
. (9)

When the final overlap is large, the evolution does not typ-
ically excite electrons too far away from the Fermi surface.
For example, the protocol forL = 129 andτ = 16 in Fig. 3
hasmaxq,t [qnq(t)] = 0.302 which is in the linear regime.

We now discuss a new measure of distance between quan-
tum states based on optimal preparation. The dual problem to
finding an optimal protocol for a given timeτ is finding the
minimum time required to reach a given wave function over-
lap, namelyτmin(L, E). In the asymptotic limit ofL → ∞
andE → 0, we expectτmin ∼ f(L)g(E). TheE found in
Fig. 2 for example has different asymptotic formsg(E) but the
samef(L) ∼ 1/L for both the optimal and best-power-law
protocols. The asymptotic form forτmin defines a dynamical
measure of distance between the ground states|Ψ1〉 and|Ψ2〉.

This new measure of distance can lead to a new classification
of quantum phases relevant for non-equilibrium physics. The
importance of local unitary transformations, such as the ones
generated by the Hamiltonian evolution, in classifying states
was recently pointed out in [15].

In summary, we used simulated annealing to address an out-
standing open problem in the non-equilibrium dynamics of
interacting quantum systems, namely finding unbiased opti-
mal protocols for unitary preparation of strongly correlated
states. We focused on transforming states in the Luttinger
liquid phase of interacting fermions with tunable interaction
strength. Quite surprisingly, we found optimal protocols that
exhibit oscillatory behavior. Forτ/L larger than a critical
value, we found that the states can be transformed with almost
perfect accuracy. Finally, based on this optimal control prob-
lem, we defined a new measure of distance between quantum
ground states that is relevant for out-of-equilibrium physics.

We are grateful to F. Burnell, C. Castelnovo, C. De Grandi,
A. Hamma, P. Krapivsky, A. Polkovnikov and S. Simon for
helpful discussions. Toward the completion of this work, we
became aware of a recent manuscript [16] where a similar
problem is studied for small ramps in infinite dimensions with
dynamical mean field theory. Here we used an exact solution
in one space dimension and performed a completely unbiased
optimization over all ramp shapes. This work was supported
by the DOE Grant DE-FG02-06ER46316.
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