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Jason Rosenhouse’s ‘great big Monty Hall book’ [12] is published by Oxford; but it was on one of my
occasional pilgrimages to Cambridge that I stumbled upon it. As one who has taken an unnatural
interest in this subject over the years, I found it unsurprising that enough material existed out there
to fill a book on the Monty Hall problem, but Rosenhouse is to be commended for having taken the
trouble to write it. And he has done so with suitable breadth, from the raw maths of the problem
and others like it, to its psychological and philosophical implications.

The Monty Hall problem is the TV game scenario where you, the contestant, are presented with
three doors, with a car hidden behind one and goats hidden behind the other two. After you select
a door, the host (named Monty Hall after the actual host of Let’s Make a Deal, a 1960s American
TV show) opens a second door to reveal a goat. You are then invited to stay with your original
choice of door, or to switch to the remaining unopened door, and claim whatever you find behind
it. Assuming your objective is to win the car, is your best strategy to stay or switch, or does it
not matter? Rosenhouse provides the definitive analysis of this game, along with several intriguing
variations, and discusses many of the wider issues that emerge.

Some reviewers, such as David Spiegalhalter in the LMS Newsletter [13] and Donald Granberg
in Science [5] have queried the mathematical level of the book. Indeed the maths content is in a
seldom-acknowledged middle place: uncomfortably informal for those used to an academic standard
of rigour, but still undeniably heavy for those expecting a popular treatment. Yet the style of
presentation is not as off-beat as might be thought by either ‘experts’ or non-mathematicians: it
will be quite familiar to engineers, for example. The “contention” in Rosenhouse’s title clearly
doesn’t reside on one side or other of C.P. Snow’s Two Cultures—where one is either a robotic
theorem-prover or a learned hater of equations—and nor can a book like this. Those who take
enough interest in brainbenders like Monty Hall to read books about it tend to be generalists who’ve
kept closely in touch with their high school or undergrad mathematics. Recreational maths tragics
like myself, in other words.

I’ve certainly had fun digesting The Monty Hall Problem and engaging critically with its contents.
The following—a much longer article than I had intended, for which I apologise in advance—is an
attempt to share some of my reflections on the book’s contents, as well as to detail just one or two
criticisms.

Probability as Logic

Part of what drives people to read or to write books about puzzles like Monty Hall is that there
is a serious side beneath the sheer entertainment value of arguing about strategy in TV game
shows. To a diehard Bayesian like myself, whose take on probability theory owes much to having
read Edwin Jaynes’ posthumous text on the subject [9], the Monty Hall problem is a made-to-order
demonstration of probability theory as the logical analysis of information—or ‘epistemic probability’,
as Rosenhouse later describes it in his Chapter 7.

As Rosenhouse makes very clear, the problem is fundamentally all about information. In most
versions of the problem, Monty is presumed to know what is behind each door, making clear that the
only ‘uncertainty’ involved is your own lack of information about where the car is. You will assign
initial probabilities based on this lack of information, which should then be updated as information
is revealed over the course of the game. On the ‘logical Bayesian’ view expounded by the Jaynes
school, the probabilities do not just represent your own subjective beliefs: they are definite quantities
that measure the plausibility of a proposition such as “the car is behind door 1” on the basis of
specific information.
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Consider the situation at the outset. A fundamental assumption is that you are completely
ignorant as to where Monty has concealed the car, except that it is behind one of the three doors.
What this means more precisely is that if (in some parallel universe) you were presented with the
same three doors but in a different order, this would not affect your probability assignments. In
other words, your background knowledge gives you no reason to rate any one door as more likely
than any other to conceal the car: the doors are ‘exchangeable’. The only rational course is then to
assign the same probability to each door, and since there are three doors and you know the car is
certainly behind one of them, you give each a probability of 1/3.

As Rosenhouse explains fully in his Chapter 3, the correct procedure for updating these proba-
bilities in the light of new information, such as revealed by Monty opening a door, is given by rules
including Bayes’ Theorem and the Law of Total Probability. Rosenhouse presents these rules in the
way one is accustomed to seeing in high school: conditional probability is introduced as a subor-
dinate concept defined in terms of joint and single probabilities, and it is shown how the formulae
that result are intuitively plausible.

Yet the reader, like many thoughtful high school students, might harbour some lingering doubts
about the universal validity of such a postulated definition. A neat resolution to this question was
actually provided some decades ago, though it is not widely known. First, note that it can be
shown (the working is quite similar to that found in Rosenhouse’s Chapter 3 and most high school
textbooks) that the rules of basic probability all follow from two fundamental formulae, which we
might call the ‘sum rule’ and ‘product rule’:

P (A|I) + P (Ā|I) = 1, (1)

P (AB|I) = P (A|I)P (B|AI). (2)

(Here I have followed the Bayesian convention of making all probabilities conditional on the term I,
which represents a collection of propositions defining our ‘background information’. I may include,
for example, the specification of the ‘probability space’ which gives probabilities according to the
standard Borel-Kolmogorov formulation of probability theory. This inclusion of I may seem just
a needless distraction, but Rosenhouse will himself acknowledge the importance of this, right at
the end of his book. The notation Ā is used for the Boolean negation of A, or its set-theoretic
complement when A is a subset of a sample space.)

The physicist R.T. Cox showed in a 1961 monograph [3] that the rules (1) and (2) emerge
as theorems in a certain kind of multi-valued logic. In this logic, any two propositions A and B
determine a real number P (A|B) which is taken to measure the degree of plausibility of proposition
A in light of the truth of proposition B. (This of course corresponds to what we generally mean by
conditional probability, but where A and B may be any propositions we care to state.) If the truth
of B implies that A is in fact true (respectively, false), then P (A|B) is given its largest (respectively,
smallest) allowable value; these can be taken as 1 and 0 respectively with no loss of generality.
Crucially, in this special case of true and false propositions, Cox required his multi-valued logic
to conform with ordinary Boolean logic. (So for example, P (AB|C) should be 1 whenever both
P (A|C) = 1 and P (B|C) = 1, but should be zero when either of the latter are zero.) It was also
posulated on fairly reasonable grounds that, for example, if the truth of C increases the probability
of A but leaves the probability of B unchanged, then it should not reduce the probability of the
joint proposition AB; but on the other hand it should reduce the probability of Ā. It turns out that
these basic considerations suffice to prove (1) and (2), so that it is no longer necessary to postulate
the latter a priori.

Rosenhouse introduces his basic probability concept in Chapter 2. Here, the probability P (A)
is defined for “outcomes” A which are considered to be subsets of a predefined sample space. A
Bayesian would write this as P (EA|I), where I states the definition of the sample space and the
‘experiment’ being conducted, and EA is the proposition “the outcome of the experiment belongs
to the subset A of the sample space.” But the distinction is largely just one of syntax, and there is
(mostly!) no difficulty in regarding P (A) as a convenient shorthand and interpreting all of Rosen-
house’s probabilities according to a strict Bayesian framework.

So why bother with the Bayesian framework at all, rather than just being content to define
probabilities for subsets of an underlying sample space? Most of the time, I would agree it doesn’t
matter: the notion of drawing from a sample space works admirably, for the most part, throughout
the mathematical discussions in The Monty Hall Problem.

Occasionally, however, it pays to have the extra flexibility to discuss arbitrary propositions. I
will consider one example in some detail. Throughout all discussions of the ‘classical’ Monty Hall
problem, Rosenhouse gives great emphasis to the need for Monty to choose at random between
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the two remaining doors in the case where he knows they both conceal goats. This assumption is
necessary to ensure that when we assign probability 1/2 to each outcome in this situation, those
probabilities do in fact correctly measure the way the sample space is carved up by Monty over many
repetitions of the game.

But as I said at the outset, the Monty Hall problem is all about information. Rosenhouse points
out that most statements of the classical Monty Hall problem fail to include any explicit assumption
about Monty’s behaviour when he has two goats to choose from, merely stating that Monty will
always open a door that conceals a goat. Yet those who state the problem this way still manage to
reason, mostly correctly, to the conclusion that switching wins the car with probability 2/3. And
in any case, what does it mean to say that Monty “chooses at random” when we are interested in
the outcome of just a single instance of the game? Rosenhouse touches on this question in Chapter
7, when discussing some philosophical arguments about different interpretations of probability. I’ll
have more to say about those arguments in due course.

For now, let us consider Proposition X : “Monty knows that two doors both conceal goats, and
will open one of them, but you do not know how he decides which to open.” Proposition X does
not talk about subsets of a sample space, or about long-run frequencies in a random experiment,
but it is a valid proposition of Cox logic. So if we can find a reasonable way to assign unique
numbers P (A|X) and P (B|X), where A and B postulate that Monty opens the first or second door
respectively, then ordinary probability theory will still produce a reasonable and unique answer to
our problem.

The answer that immediately suggests itself is the same one indicated in our initial situation,
where we have three doors and no knowledge of which one conceals the car. As in that case, we
can argue that since we have no reason to believe Monty is more likely to choose one door than any
other, the two doors are exchangable and hence we should put P (A|X) = P (B|X) = 1/2.

This seems quite reasonable, but perhaps not yet quite convincing. Jaynes, in a key 1968 pa-
per on prior probabilities [8], provides an ingenious combinatorial argument that assigning equal
probabilities really is the most appropriate and ‘conservative’ choice in light of assumptions like
Proposition X . Consider a large number N of identical trials in which Monty chooses either the
first or the second door. Suppose he opens the first door in M of these trials, and the second door
in the remaining N −M trials. Then the ratio p = M/N is the statistical frequency which ought to
closely match our probability assignment P (A|X).

Jaynes’ argument focusses on the number of ways in which Monty can realise this frequency as
the outcome of the N trials. For a given value of M , this is just the binomial coefficient

(

N
M

)

, out of
a total of 2N possible ways of choosing one or other door over the course of N trials. If N and M
are sufficiently large, it turns out we can approximate this huge number of combinations as

(

N

M

)

≈ eN ·H(p) (3)

where

H(p) = −p log(p)− (1− p) log(1− p), p =
M

N
. (4)

The formula (4) is the Shannon entropy of an event having probability p (which is discussed by
Rosenhouse in a slightly different form in Chapter 4). H(p) takes its maximum value when p = 1/2,
which means that according to (3), the frequency p = 1/2 is the one that can be realised in the
greatest possible number of ways. But what may not be apparent from (3) is just how great this
greatest number is. Suppose we have N = 1000 trials; then there are some 5.4 × 10130 ways to
achieve p = 0.5, but just 6.5× 10126 ways to achieve p = 0.4. That is to say, there are some 10,000
more combinations giving p = 0.5 than there are giving p = 0.4.

It follows that if one is to assign probabilities P (A|X) and P (B|X) that express ‘maximum
ignorance’ about Monty’s behaviour, there is a further compelling reason to set P (A|X) = P (B|X) =
1/2: this turns out to be consistent with the greatest possible range of future actions by Monty.
This ‘maximum entropy’ rule readily generalises, and has proved to be a valuable tool in Bayesian
data analysis.
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Variations and Pitfalls

Naturally, the above pertains to the ‘classical’ Monty Hall problem, where Monty always contrives to
open a door that conceals a goat, and your probability of winning by switching is 2/3. Rosenhouse
devotes Chapter 3 to explaining why this probability actually drops to 1/2 in the subtly different
case where Monty selects a door to open at random, and happens to reveal a goat. In this situation,
unlike the classical game, there is a very real chance that Monty will reveal the car and end the
game; the fact that he does not reveals information that is relevant to the location of the car. We are
now in the domain of elementary ‘Bernoulli sampling without replacement’, where the probabilities
depend only on the number and type of outcomes that remain available, independently of what
has been drawn previously and of which door we choose. It’s not out of the question that because
most of us learn about probability this way, this leads people to think the same should apply in the
classical Monty Hall problem as well (and in Chapter 6, we see some experimental evidence along
these lines).

In Chapters 4 and 5, Rosenhouse further develops the problem by analysing the manifold varia-
tions that have appeared in the mathematical literature. Among these variations are some, originally
discussed in a paper by Georges and Craine [4], that consider the presence of multiple cars, and
more generally, a variety of prizes of differing value, certain of which may or may not be revealed
by Monty. It is here that I suggest, with great trepidation, that Rosenhouse has committed his one
serious mathematical error—or rather, recycled an error committed earlier by others.

Paulo Ventura Araújo, reviewing the book for the Newsletter of the European Mathematical

Society [1], states that these mathematical variations “are not the stuff of bedtime reading.” Perhaps
he did not have nutty engineers like me in mind. In any case, it was while reading Chapter 5 in bed
one night that I came across the following passage in Section 5.4 (emphasis mine):

This time we still have n doors, but now there are 1 ≤ j ≤ n− 2 cars and n− j goats.
After making your initial choice, Monty opens one of the other doors at random. Should
you switch?

Since there are j cars and n doors, we see that our initial choice conceals a car with
probability j/n. This probability will not change regardless of what Monty reveals, and
therefore represents the probability of obtaining a car by sticking.

This was enough to jolt me awake. After all, it had just been carefully argued in Chapter 3 that
when Monty chooses a door randomly, this does affect the posterior probability that our initial choice
concealed the car!

Sure enough, we can repeat the calculation using Bayes’ Theorem to show that the conclusion
of Section 5.4 is erroneous: the probability of winning a car by switching to an unopened door does
not go up or down relative to the probability of winning by sticking, depending whether Monty’s
random choice reveals a car or a goat. Instead, the effect of Monty’s random choice is to redistribute
the probabilities evenly over all the unopened doors—just as Chapter 3 concluded in the three-door,
single-car case. So the probability of winning a car in this case is j/(n− 1) if Monty reveals a goat
and (j − 1)/(n − 1) if Monty reveals a car, no matter whether you stick with the original door or
switch to any other door.

Here is the calculation. Following Rosenhouse’s notation, let Fc and Fg denote the propositions
that your first choice conceals a car, respectively a goat, and Sc and Sg the propositions that you
switch to a door concealing a car, respectively a goat. Also, let Mc and Mg denote the propositions
that Monty selects at random a door concealing a car, respectively a goat. On our background
information I alone, before anything else has happened, we clearly have

P (Fc|I) =
j

n
, P (Fg|I) =

n− j

n
.

So far so good. Now, suppose that Monty reveals a goat. Since Monty does not open the door you
have selected, the probabilities here depend on whether your first choice was good or bad. In fact it
is readily seen that

P (Mg|FcI) =
n− j

n− 1
, P (Mg|FgI) =

n− j − 1

n− 1
.

The conditional probabilities of winning a car by switching are correctly calculated by Rosenhouse
as

P (Sc|FcMgI) =
j − 1

n− 2
, P (Sc|FgMgI) =

j

n− 2
,
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but now, to apply the Law of Total Probability we need to calculate Pswitch, the probability you win
by switching, as

Pswitch = P (Sc|MgI) = P (Sc|FcMgI)P (Fc|MgI) + P (Sc|FgMgI)P (Fg|MgI).

Thus we need the probabilities of your first choice concealing a car or a goat, conditional on the
information that Monty revealed a goat. These can be calculated using Bayes’ Theorem as

P (Fc|MgI) =
P (Fc|I)P (Mg|FcI)

P (Mg|FcI)P (Fc|I) + P (Mg|FgI)P (Fg |I)

=
j

n
·
n− j

n− 1

(

n− j

n− 1
·
j

n
+

n− j − 1

n− 1
·
n− j

n

)

−1

=
j

n− 1

and

P (Fg|MgI) =
P (Fg|I)P (Mg|FgI)

P (Mg|FcI)P (Fc|I) + P (Mg|FgI)P (Fg|I)
=

n− 1− j

n− 1
.

Plugging these into the formula for Pswitch gives

Pswitch =
j − 1

n− 2
·

j

n− 1
+

j

n− 2
·
n− 1− j

n− 1
=

j

n− 1
.

As anticipated, both Pswitch and P (Fc|MgI)—the probability you win by sticking with your first
choice—come out as j/(n − 1), which is the number of remaining cars divided by the number of
remaining doors.

The working is similar if Monty reveals a car. Now we have

P (Mc|FcI) =
j − 1

n− 1
, P (Mc|FgI) =

j

n− 1
,

and

P (Sc|FcMcI) =
j − 2

n− 2
, P (Sc|FgMcI) =

j − 1

n− 2
.

Again, we need the posterior probabilities of your first choice, conditional on Mc:

P (Fc|McI) =
P (Fc|I)P (Mc|FcI)

P (Mc|FcI)P (Fc|I) + P (Mc|FgI)P (Fg|I)

=
j

n
·
j − 1

n− 1

(

j − 1

n− 1
·
j

n
+

j

n− 1
·
n− j

n

)

−1

=
j − 1

n− 1

and

P (Fg|McI) =
P (Fg |I)P (Mc|FgI)

P (Mc|FcI)P (Fc|I) + P (Mc|FgI)P (Fg|I)
=

n− j

n− 1
.

Finally, we have

Pswitch = P (Sc|McI) = P (Sc|FcMcI)P (Fc|McI) + P (Sc|FgMcI)P (Fg |McI)

=
j − 2

n− 2
·
j − 1

n− 1
+

j − 1

n− 2
·
n− j

n− 1
=

j − 1

n− 1
.

Once again, the probability of winning a car is equal to the number of remaining cars divided by
the number of remaining doors—here (j − 1)/(n− 1)—regardless of whether you switch or not.

(Interestingly, the same paper by Georges and Craine, and the same uncorrected mistake, also
features in a recent e-book by another of my favourite semi-popular mathematical writers, Julian
Havil [6]. Havil’s book is concerned with much more wide-ranging fare, but Chapter 6 does include
a discussion of the Monty Hall problem, including the same Georges-Craine inspired variation and
the same erroneous conclusion: that Monty increases your probability of having a winning door by
revealing a car and reduces it by revealing a goat.)

Of course, this raises the question: what conditions are necessary in this more general case to
ensure your probability of picking a car the first time is unchanged after Monty opens another door?
The answer: only if the probability Monty reveals a goat does not change according to whether your
first chosen door conceals a car or a goat. To see this, we use Bayes’ Theorem again. The condition
we require is that

P (Fc|MgI) = P (Fc|I).
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From our formula for P (Fc|MgI) above, this condition is equivalent to saying that

P (Mg|FcI) = P (Mg|FcI)P (Fc|I) + P (Mg|FgI)P (Fg|I),

or
P (Mg|FcI) (1− P (Fc|I)) = P (Mg|FgI)P (Fg |I).

But since your first choice of door is certain to conceal either a car or a goat, we surely have

1− P (Fc|I) = P (Fg|I).

Substituting this above and simplifying (assuming that P (Fg|I) > 0) leads immediately to

P (Mg|FcI) = P (Mg|FgI).

Note that if there is just one car (which it is possible for you to choose at the outset) then this
condition effectively forces Monty to always reveal a goat. In general, if Monty behaves so as always
to reveal a goat, this suffices to ensure your probability of having picked the car does not change
when Monty reveals it. But if there are multiple cars, it is possible for Monty to behave in other
ways—including to always reveal a car—and still leave your probability unchanged. Nevertheless,
if Monty simply chooses a door at random, then the above condition will always be violated, since
random Monty is always slightly more likely to reveal a goat if your chosen door conceals the car.

The good news is that the next piece of analysis in Section 5.4, where Monty is assumed to reveal a
goat with probability p and a car with probability 1−p, all goes through correctly—precisely because
the probability P (Mg|I) is assumed equal to p irrespective of your first choice of door. Therefore
the above condition is fulfilled, and the prior and posterior probabilities of Fc and Fg are identical.
Likewise, in the multiple-door scenario that follows, it is assumed that Monty opens m doors to
reveal k cars, thus Monty’s behaviour is the same irrespective of whether Fc or Fg is true and the
analysis goes through as Rosenhouse describes.

In Section 5.6, Rosenhouse moves on to consider the most general Monty Hall scenario (again
drawing on [4]), with an arbitrary number of doors and an arbitrary number of prizes with arbitrary
values. Here it appears we may have run into trouble once again, because in this variation Monty is
once again assumed to choose doors at random, yet Rosenhouse states that “these probabilities [of
winning a specific prize with our first guess] do not change when Monty opens a door.” It turns out
Rosenhouse is correct as long as he is talking about the winnings from the ‘stick’ strategy, but not
with the winnings from the ‘switch’ strategy.

Because the prizes now have differing values, the winnings are now framed in terms of expected
values over the long run. The reasoning for the ‘stick’ strategy is unproblematic: if each door conceals
a prize (where some ‘prizes’ may have zero value) and the mean value of all prizes is V , then the
expected value of the winnings if you never switch doors is V , regardless of what Monty reveals each
time the game is played. This is because in this case, the additional information revealed by Monty
exerts no logical influence on your prize. You are then free to calculate the expectations based on
the prior probabilities and ignoring what Monty does, or based on the posterior probabilities with
Monty taken into account—and the answer will be the same in each case.

Consider again the scenario with three doors, one car (of value 3V ) and two goats (of value zero).
If Monty’s random selection reveals a goat, then it is true that you win a car half the time out of

those specific games where Monty revealed a goat, and your expected winnings from those specific

games are 3V/2. But Monty will only reveal a goat from a random door 2/3 of the time; in the
other 1/3 of cases Monty reveals the car and your winnings are zero. Sure enough, when you average
out the expected winnings of 3V/2 two-thirds of the time and zero one-third of the time, the overall
expected winnings are V , the same as one calculates on the prior probabilities.

The situation is murkier when you switch doors, because now the expected winnings are insepa-
rable from Monty’s actions. At this point Rosenhouse is dealing with conditional expectations, which
obey a Law of Total Probability of their own. Unfortunately, Rosenhouse (like the authors in [4])
calculates with these values without explicitly stating they are conditional, or what the exact con-
ditioning proposition is. In fact, all expectations calculated for the ‘switch’ strategy are conditional
on the type of prize revealed by Monty; accordingly, the probabilities they are weighted by need to
be conditional on what Monty reveals as well.

Rosenhouse’s concrete example is a six-door game where two doors conceal cars each worth
$20,000, two doors conceal motorcycles each worth $10,000, and two doors conceal refrigerators
each worth $300. Let Fc, Fm and Fr denote the propositions that your first choice of door conceals a
car, a motorcycle and a refrigerator respectively, and let Mc be the proposition that Monty opens a
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door at random and reveals a car. Rosenhouse calculates the conditional expectations for the value
VS of the second choice as

E[VS |FcMc] = $5,150, E[VS |FmMc] = $7,650, E[VS |FrMc] = $10,075,

and then determines the overall expectation conditional on Mc as

E[VS |Mc] =
1

3
($5,150) +

1

3
($7,650) +

1

3
($10,075) = $7,625.

It is in the latter calculation that a mistake has occurred, because the weights ought to be the
posterior probablities like P (Fc|McI), but instead the calculation has used the prior probabilities
like P (Fc|I). We can correct this easily by calculating the posterior probabilities as

P (Fc|McI) =
1

5
, P (Fm|McI) =

2

5
, P (Fr|McI) =

2

5
,

in which case the correct expected value is

E[VS |Mc] =
1

5
($5,150) +

2

5
($7,650) +

2

5
($10,075) = $8,120.

In the general case, there are assumed to be m doors and ni prizes each worth vi, where
∑

i ni =
m. We set t =

∑

i(nivi); this is the same as mV where V is the mean value of all prizes, and
the expected winnings under the ‘stick’ strategy. The expected value of the prize when switching,
conditional on Fi (“your first choice of door conceals a prize of value vi”) and on Mr (“Monty’s
revealed prize has value vr”) is correctly calculated as

E[VS |FiMr] =
t− vi − vr
m− 2

.

Now we require the posterior probabilities P (Fi|MrI). Each of these is given by Bayes’ Theorem as

P (Fi|MrI) =
P (Fi|I)P (Mr|FiI)

∑

k P (Fk|I)P (Mr|FkI)
.

For all i we have P (Fi|I) = ni/m, while the value of P (Mr|FiI) is nr/m if i 6= r and (nr − 1)/m if
i = r. It follows that

∑

k

P (Fk|I)P (Mr|FkI) =
∑

k

nk

m

nr

m
−

nr

m2
=

nr

m

m− 1

m

and so

P (Fi|MrI) =

{

ni

m−1 if i 6= r,
ni−1
m−1 if i = r.

Finally, we have

E[VS |Mr] =
∑

i

ni

m− 1

t− vi − vr
m− 2

−
1

m− 1

t− 2vr
m− 2

=
1

(m− 1)(m− 2)

(

∑

i

ni(t− vr)−
∑

i

nivi + (2vr − t)

)

=
(m− 2)(t− vr)

(m− 1)(m− 2)

=
t− vr
m− 1

.

But here is a surprise. This new expression for the expected value of switching is equal to t/m = V ,
the expected value of sticking, precisely when vr = V : exactly as found by Rosenhouse using the
erroneous calculation! So despite the earlier mistake, Rosenhouse has nonetheless made the correct
conclusion: if the prize revealed by Monty has value less than V , then you should stick; if greater
than V , you should switch; and if equal to V , it makes no difference.
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Philosophical Entanglements

Chapter 7 of Rosenhouse’s book rounds out the discussion by considering some philosophical co-
nundrums around the distinction that is often drawn between so-called ‘epistemic’ and ‘statistical’
probability. It is central to the Bayesian view that outside the realm of thought experiments, and
leaving aside debates about the interpretation of quantum mechanics, all ‘real world’ probabilities
are ‘epistemic’ in the sense Rosenhouse means here. Furthermore, as long as one is always careful to
update one’s ‘epistemic’ probability assignments as any new information comes to light, these proba-
bilities in the long run should always coincide with ‘statistical’ observed frequencies in multiple runs
of an experiment. (Rosenhouse notes that many authors prefer to use the term ‘epistemic statistical
probability’ when the new information comes in the form of data from statistical trials, but the prin-
ciple is a general one.) If any discrepancy remains between probabilities and observed frequencies,
this indicates to a Bayesian the presence of some relevant information that has not properly been
taken into account. Accordingly, any suggestion that epistemic and statistical probabilities should
in principle differ should be closely scrutinised.

Rosenhouse reproduces an argument of Moser and Mulder [11] which purports to find a difference
between the appropriate ‘statistical’ probability in long runs of the Monty Hall game, and the
appropriate ‘epistemic’ probability in a single instance of the game. The argument hinges on our
ignorance of Monty’s procedure for revealing a goat; an issue that was extensively discussed earlier
in this article. The conclusion reached there is that faced with a lack of information, you should
assign the probability that gives Monty maximum ‘freedom’ to act, in the sense of our maximum
entropy rule. This assignment of probability leads to the 2/3 probability of winning by switching,
and this remains true whether we are considering a single game or a long run of similar games.

But this reasoning may appear to break down when Rosenhouse illustrates the Moser-Mulder
argument with a slightly altered Monty Hall game. In this variation the doors are numbered; and
when Monty has to choose which door to open because both his options conceal goats, he acts in
accordance with one of two hypotheses: the first (say H1) is that Monty selects a door randomly;
the second (H2) is that Monty always selects the higher-numbered door. There is also a $100 bonus
paid whenever you do not switch, to break the tie that occurs when you decide the car is equally
likely to be behind the two unopened doors.

The crux of the matter is this: it’s been shown in detail that on hypothesis H1, you win the car
2/3 of the time by switching, and your best strategy is always to switch. On hypothesis H2, you also
win the car 2/3 of the time by switching; but here you also have the opportunity to improve your
winnings (slightly) by using what you know about Monty’s behaviour. If for example you initially
pick door 3 and Monty opens door 1, then on H2 this signals that Monty was forced to open door 1
because door 2 conceals a car (since Monty would not open door 1 otherwise), and you win the car
with certainty by switching. This or an equivalent scenario will occur 1/3 of the time. The other
2/3 of the time, if you choose door 3 then Monty will open door 2, either because door 1 conceals
a car or because Monty has a choice of doors and applies the ‘higher-numbered door’ rule. Each of
these alternatives occurs with probability 1/2 (out of those occasions where the car is not behind
door 2), so by staying with door 3 you win the car half the time (just as you do by switching), but
also pocket the $100 bonus on each of these occasions. Your best strategy on H2, in other words, is:
“switch if Monty opens the lower-numbered of the two doors available to him; otherwise, stay with
your initial choice.”

It follows that in some particular cases—say, where you initially select door 3 and Monty opens
door 2—your best action is different depend on whether H1 or H2 is true. This is despite H1 and
H2 both giving the same ‘statistical’ probabilty 2/3 to winning by switching. As Rosenhouse states:

Both versions lead to the same statistical probabilities for winning by switching. But
they mandate different behaviour in the individual case.

All the same, this conclusion is not quite right, because it is not really true that the ‘statistics’ are
entirely the same for each hypothesis. H1 and H2 do both lead to a uniform 2/3 probability across
all cases. But H2 additionally partitions the possible cases into two subsets, which you can tell apart
as soon as Monty opens a door. And in one of these subsets the probability for winning by switching
is 1, while in the other it is 1/2. This is precisely what leads you to behave differently in different
cases. So Rosenhouse, quite correctly, dismisses the notion put by Moser and Mulder that there are
somehow cases in which the rational course of action in a single instance actually differs from the
rational course of action based on long-run considerations.

Also surviving the challenge is my own immodest contention above, that (epistemic) probabilities
and observed frequencies will always converge on each other in the long run provided one accounts
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for all available information. It is true enough that a statistical observed frequency, by itself, will
not always yield sufficient information to identify the best strategy in any individual case; but this is
quite different from saing that ‘epistemic’ and ‘statistical’ probabilities can fail to agree in the long
run. Notice after all that if Monty really were behaving according to H2, then we could take the
observed outcomes and also partition them into our two recognisable subsets. And in each of these
subsets, as well as the entire population of cases, the observed frequency will be found to match the
probability given by Bayesian calculus. Rosenhouse quotes a response by Horgan [7] to Moser and
Mulder, in which Horgan argues similarly for the equivalence of epistemic and ‘epistemic statistical’
probabilities; I would go further, and contend that the asymptotic equivalence also extends to actual
observed frequencies.

The other controversy featured in Chapter 7 has, in both Rosenhouse’s view and my own, a much
simpler resolution. Baumann [2] describes a two-player variation on the Monty Hall problem, where
two players select doors without each other’s knowledge, and Monty then opens a door based on
both their selections, before offering both the opportunity to switch. Baumann’s analysis indicates
that for either player, there is a 3/7 probability of winning a car by staying with their original choice
and a 4/7 probability of winning by switching. (An alternative line of argument by Levy [10] is
dismissed by Rosenhouse, correctly in my view.)

Baumann wishes to conclude from his correct analysis of the two-player problem that it leads
to a paradox, on the basis that the two players are supposedly faced with identical information
and yet can assign different probabilities to propositions such as “the car is behind door 2”. Here,
Rosenhouse correctly identifies the fallacy in this reasoning: the two players are in fact not faced
with identical information, because they have selected different doors to start with, and neither is
provided with information on which door the other has selected. Despite Baumann’s objection, the
part of each player’s background information that stipulates their initial selected door is relevant to
the players’ probabilities, because it is logically connected to them via Monty’s actions in response
to the players’ choices. This, of course, underlines the importance of the background information I
in a probability symbol like P (A|I): as Jaynes [9] explains, many a ‘paradox’ has been generated by
failing to recognise that two people are generating probabilities from different prior information.

There ends Rosenhouse’s tour of the Monty Hall problem and my own reflections thereon. Far
from its humble TV game show origins, the problem has acquired formidable power, so that even
world-leading mathematicians such as Paul Erdös have succumbed to it. Together with its numerous
cunning variations, the Monty Hall problem has astounding capacity to trip the wary and the unwary
alike. But study of the problem also proves to have its rewards, yielding precious insights into the
subtle workings of probability theory. And that’s worth a lot more than a goat.
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