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SMALL RANDOM PERTURBATIONS OF A DYNAMICAL SYSTEM WITH BLOW-  UP

PABLO GROISMAN AND SANTIAGO SAGLIETTI

ABSTRACT. We study small random perturbations by additive whitesa@f a spatial discretization
of a reaction-diffusion equation with a stable equilibriamd solutions that blow up in finite time. We
prove that the perturbed system blows up with total proligtaind establish its order of magnitude
and asymptotic distribution. For initial data in the domafexplosion we prove that the explosion
time converges to the deterministic one while for initiatadan the domain of attraction of the stable
equilibrium we show that the system exhibits metastabletieh

1. INTRODUCTION

We consider small random perturbations of the following ODE

U = 5(-Ui+Uy),
(1.1) U = zUn—-2Ui+Uig) 2<i<d-1,
Uy = W(_Ud +Ug-1-+hg(Uyg)).

Hereg: R — R is a reaction term given bg(x) = (x")P —x with p > 1, andh > 0 is a parameter.
We also impose an initial conditiddg € RY. This kind of systems arise as spatial discretizations of
diffusion equations with nonlinear boundary conditiondNeumann type. In fact, it is known that as
h — 0 solutions to this system converge to solutions of the PDE

U(t,X) = ux(t,x) 0<x<1,0<t<T,
u(0,t) = 0 0<t<T,
U(1,t) = g(u(Lt)) 0<t<T,
u(x,0) = up(x) 0<x<1l

This and more general reaction-diffusion problems inclgdor instance the possibility of a non-
linear source term likg and other type of boundary conditions appear in severalchesof pure
and applied mathematics. They have been used to model &estdr, exothermic chemical reactions,
population growth models, geometric flows, etc.

An important feature of this type of problems is that they d@dmlutions which are local in time,
with the possibility of blow-up in finite time. The asympiotbehavior of solutions td_(1.1) can
be briefly summarized as follows (we give a detailed dedoripafterwards): the system has two
equilibriumsUg = 0 andUg = 1. The first one is stable while the second is unstable. Heheeg
exists a domain of attractioDg for the zero solution such thatlify € Do then the solutiofd (t) =
(U1(t),...,Uq(t)) with initial conditionUg is globally defined antll (t) — 0 ast — . There exists
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also a stable manifold for the unstable equilibrium whicbfigo-dimension one and coincides with
the boundary obDg. ForUg € Do’ the solutionJ blows up in finite timeT =T (Up).

Since mathematical models are not exact, it is importannttetstand what changes arise in the
behavior of the system when it is subject to perturbations. sSiddy random perturbations given by
additive white-noise. More precisely we consider Stotb&xfferential Equations (SDE) of the form

dU;® = S(—U Uy %) dt -+ edw,

2
1.2) 't = % (U5 — 20" + UM dt + edw 2<i<d-1,
dUg® = &H(-Ug®+Ug" +hg(Ug®)) dt + edg,

which can be written in matrix form as
2
(1.3) dU“® = (—~AUYE + Hg(U;’s)ed)dt+st\/.

HereW = (W4, ...Wy) is ad—dimensional standard Brownian motiat;> 0 is a small parameter and
eq = (0,...,1) is thed-th canonical vector oRY. In the sequel we usg'¢ for a solution to [(T.R)
with initial conditionU“¢(0) = u € RY. In the case = 0 we are left with the deterministic equation
and so we use the notatiaft' := U9 to denote a solution t@ (1.1).

The fieldb(U ) := —AU + %g(Ud)ed is a gradientlf = —[g) with potential given by

p+1 2
o) = <AUU> h( |l|;+|1 _Uzd)'

The SDE associated to this energy functional can be compéitkdhe classic double-well potential
model, which we now briefly summarize. We refer[tol[10, p. 2&4Ja more detailed description.

In the double-well potential model one considers a stoahdgterential equation of the form
(1.4) dX® =r(X®)dt+edwW

whereW is a standardil-dimensional Brownian motion andis a globally Lipschitz gradient field
over RY given by the double-well potentiap. More precisely, this potentiap possesses exactly
three critical points: two local minima and q of different depth and a saddle ponwvith higher
energy, that isp(z) > @(p) > @(q) . Each minimum corresponds to a stable equilibrium and hence
for initial data lying outside the stable manifold nfthe deterministic systent & 0) converges to
one of them depending on the initial condition. When comaiderandom perturbations, for compact
time intervals the stochastic system converges as0 to the deterministic one uniformly but the
qualitative behavior of the perturbed system is quite diffé from that of the deterministic solution
for large times. If the potential grows fast enough at infiriiie resulting stochastic system admits
a stationary probability measure which converges to a Diedta concentrated at the bottom of the
deepest well;. Hence, for initial data in the domain of attraction of the@dbst wellp we observe
that

(i) Due to the action of the field, the process is attracted towards the bottom of the shavtdbst
p; once neam, the field becomes negligible and the process is then pushkad faom the
bottom of the well by noise. Being apart from noise becomes overpowered by the field
and this allows for the previous pattern to repeat itselfargé number of attempts to escape
from the given well, followed by a strong attraction towartdsbottom. This phase is known
asthermalization

(i) Eventually, after many frustrated attempts, the pesceucceeds in overcoming the barrier of
potential and reaches the deepest well. Since the protyabilisuch an event is small, we
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expect thistunneling timeto be exponentially large. Moreover, due to the large nunaber
attempts that are necessary, we expect this time to shéevrtigmory.

(iii) Once in the deepest well, the process behaves as irsiiiice the new barrier of potential is
higher, the next tunneling time is expected to happen orgaidime scale.

This description was proved rigorously A [35[7[ 4, 8] gsdifferent techniques. The phenomenon
is known asmetastability For a detailed description of it we refer o [10].

Coming back to our potentia, the situation is slightly more complex. Instead of havirdeapest
well, we have a direction along which the potential goes-to and, hence, the size of the “deepest
well” is now infinity and there is no return from there. Mor@oysince the potential behaves like
—sP*Lin this direction, if the system falls in this “well”, it rehes infinity in finite time (explosion).

The purpose of this paper is to study the metastability pmemmn for this kind of potentials
where there is a shortest (finite) well and a deepest well lwhields to infinity in finite time. The
ideas developed here can be extended to other systems witlantiie structure. The typical situation
with this kind of geometry is the case of reaction-diffusegquations where the reaction comes from
a nonlinear source with superlinear behavior at infinityhsais

U = Uxx+ Uia
with p > 1, in a bounded domain & and homogeneous Dirichlet boundary conditions. In thigcas

the diffusive term pushes the solution towards zero (astafuilibrium) while the sourceﬁ pushes
it to infinity. In this situation we expect the same behavistlae one of solutions t6 (1.2).

Since the drift in[(1.R) is not globally Lipschitz, we are prable to prove the existence of local
solutions and in fact, explosions occur for solutions[oP(1.In particular, classical large deviation
principles as well as other Freidlin-Wentzell estimatesidbapply directly. All of these results deal
with globally Lipschitz coefficients. Also, the loss of memdor the tunneling time was proved
only in the globally Lipschitz case where explosions do natus. The only exception is the work
of Azencott [2] where locally Lipschitz coefficients are satered and explosions are allowed, but
the large deviations estimates developed there apply omigighborhoods of solutions which do not
explode in a fixed time interval (and hence the perturbedeayss automatically defined in the whole
interval fore small enough). In that work the author also considers thefxh a domain problem,
but explosions are not allowed in his analysis.

As opposed to this last case, we specifically focus on tr@jest that blow up in finite time. The
asymptotic behavior (as— 0) of the explosion time fo (112) is not understood yet, amd is the
goal of this article.

In order to study this kind of systems, localization teclueisjmay be applied but this has to be done
carefully. The main difficulties lie in (i) the geometry ofetlpotential (and its respective truncations)
which is far from being as simple as in the double-well patrand (i) the explosion phenomena
itself. Localization techniques apply reasonably well &aldwith the process until it escapes any
bounded domain, but dealing with process from there up texpéosion time requires different tools,
which include a careful study of the blow-up phenomenonaflyelocalization arguments are useless
for this last part.

The paper is organized as follows. In Sectidn 2 we give thessary definitions, review some
Freidlin-Wentzell estimates and detail the results of tmicle. Sectioi13 is devoted to giving a
detailed description of the deterministic systdm(1.1). Skction[# we begin our analysis of the
stochastic system. We prove that explosions occur withahitiby one for every initial datum. In
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Section(b we prove that for initial data in the domain of esfo, the explosion time converges to
the deterministic one as— 0. Finally, throughout Sectidd 6 we study the charactesssissociated
to metastability for initial datum in the domain of attragtiof the origin: exponential magnitude of
the explosion time and asymptotic loss of memory.

2. DEFINITIONS AND RESULTS

2.1. Solutions up to an explosion time.Throughout the paper we study stochastic differential equa
tions of the form

(2.1) dX = b(X)dt+edw

wheree > 0 andb : RY — RY is locally Lipschitz. It is possible that such equations do admit
strong solutions in the usual sense as these may not belgldeéhed but definedp to an explosion
timeinstead. We now formalize the idea of explosion and prop#eline the concept of solutions for
this kind of equations. We follovy [9].

Definition 2.1. A solution up to an explosion tina the stochastic differential equatidn (2.1) on the
probability spac€Q, 7 ,P), with respect to a filtratior{ #; );>o satisfying the usual conditions and a
fixed Brownian motion\W, #)i>o with (a.s. finite) initial conditiorg, is an adapted proce3s with
continuous paths taking valueslif U {0} which satisfies the following properties:

o If we definet" =inf{t > 0:|X(t)| = n} then for everyn > 1 we have
tAT"
P / BX(9))|ds< 4@ | =1 VO<t< foo
0
and
t
P(X(t/\r“) :E+/ D(X(S))Liscrny ds+EW(tAT"); VOt < +00> =1

0 <

e X has the strong Markov property, i.e. if we nate= lim,_. . T" andT is a stopping time
of X then, conditional orf < T andX(T) = x, the future{X"(t) = X(t+1):t <1—T}is
independent of the pa$K(s): s< T} and identical in law to the process startec.at

We call T the explosion timefor X. Notice that the assumption of continuity Xfin RY U {o}
implies that

T=inf{t >0:X(t)¢RY} and X(1—)=X(1) =0 on {1 < +w}.

We stipulate thak (t) = o provided thatt <t < 4o but we do not assume that km; . X(t) exists
whent = 4o,

Notice that the assumption of finitenessfajrants usP(t > 0) = 1. Also, if P(T = 4) = 1 then
we are left with the usual definition of strong solution to dggiation.

Remark2.1 It can be proved that ib C(RY) then there exists a unique solution f {2.1) up to an
explosion time (seé [6, 9]).



SMALL RANDOM PERTURBATIONS OF A DYNAMICAL SYSTEM WITH BLOW-UP 5

2.2. Freidlin-Wentzell estimates. One of the most valuable tools in the study of perturbations b
additive white noise of an ODE is the Freidlin-Wentzell theevhose main results we briefly describe
here.

Let X*€ be a solution to the SDE
dX*® = b(X*€) dt+edw

with initial conditionx € RY, whereb is globally Lipschitz with Lipschitz constamt. Fix T > 0 and
let PST denote the law oK*¢ on C([0,T],RY). Let us also considex* the unique solution to the
deterministic equation _

X(t) = b(X(t))
with initial conditionx € RY.

Theorem 2.2(Freidlin and Wentzell[J4]) For eachx € RY andT > 0 the family(Pf’T)Do satisfies a
large deviations principle o8([0, T],RY) with scalinge =2 and (good) rate functiok¥ given by

110 19(s) —b(d(s))|?ds if ¢ is absolutely continuous ami{0) = x

17(9) =
400 otherwise

As a matter of fact, we need only the following weaker stateni@r our analysis: for every fixed
T > 0 andd > 0 there exist positive constar@ andC, depending o, d andK such that for all
O<e<l1

C
(2.2) supP( sup [X*&(t) — XX(t)| > 6) <Cie 2.
x€Rd te[0,T]

2.3. Main results. We now state the main results of the article. The first of thenterns the explo-
sion time of solutions td(112). In the following, denotes the law of the solution {0 (IL.2) up to the
explosion timery with initial conditionu. When the initial condition is clear we often writginstead

of t¢ to simplify the notation.

Theorem 2.3. LetU"# be a solution ta(1]2). ThelR,(Te < ) = 1.

Let us notice that this result establishes a first differéntehavior with respect to the deterministic
system. While global solutions exist in the deterministic&ion, they do not for the stochastic one.

We then focus on establishing the order of magnitude and pisfim distribution of the explosion
time for the different initial conditionsi € RY. We deal first with initial conditions in the domain of
explosionD and show the following result.

Theorem 2.4. Givend > 0 andu € D, we have
(2.3) limPy(Jte —To| > &) = 0.
e—0

Moreover, the convergence is exponentially fast.

This last theorem shows that for smalt> 0 the behavior of the stochastic system does not differ
significantly from the deterministic one for initial conidits inDe. However, this is not the case for
initial data in the domain of attraction of the origin. Hesewhere important differences appear and
where characteristics associated with metaestabilitplaserved. In order to properly state the results
achieved in this matter, we need to introduce some notation.
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For eacte > 0 we define
Be =inf{t>0:Py(Te > Be) <€ 1}

which is well defined sinc®y(t1e < o) = 1 for everye > 0. We first show that the famil{f3¢)e~0
verifies

lim €?logPe = A
e—=0
with A :=2(¢p(1) — ¢(0)). In fact, we prove the stronger statement featured in tHeviidhg theorem.

Theorem 2.5. For eachu € Dg andd > 0

) A-d A+d
lim Pu<es2 <Tg<ed ) =1
€+

where the convergence is uniform over compact subsddy.of

This theorem characterizes the asymptotic order of madgmitdi the explosion time for any initial
conditionu € Dg. Regarding its distribution, we show the asymptotic lossiemory in our last result.
Theorem 2.6. For eachu € Dg andt > 0
t

lim Py(Te > tBe) = €
e—0

where the convergence is uniform over compact subsddg.of

3. THE DETERMINISTIC SYSTEM

Throughout this section we state some properties and shedyethavior of solutions t6 (1.1). This is
carried out in[[1] for solutions with nonnegative initialraditions. The purpose of this section is to
extend the analysis in][1] to any arbitrary initial data RC.

Let us start by noticing that equatidn_(1.1) can be written as
U(t) =b(U(t)
for b= —Og@whereqis defined as

1 2/ g Pt Ug?
(3.1) (p(U)_§<AU,U>—H( T2 )

HereA is as in [1.2){(1.8). Notice that the potentighas exactly two critical pointsl := (1,...,1)
and the origin. Both of them are hyperbolic. The origin is tmy local minimum of@ while 1

is a saddle point. Our goal is to decomp@®®into distinct regions, each of them having different
asymptotic characteristics under our system. To be abledonaplish such decomposition we need a
few results concerning solutions fo (11.1). We begin withftiwing proposition.

Proposition 3.1. LetU = (Uy,...,Uq) be a solution to[(1]1). Then the applicatiors @U (t)) is
monotone decreasing.

Proof. SinceA is symmetric and) = —AU + %g(Ud)ed, a direct calculation shows that

deU(t)) - 2

T = U (1), AU(D) — £(Ua(t))Ua(t) = 10O <O.
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Next we show that solutions tb (1.1) satisfy a Maximum Pptei

Lemma 3.2(Maximum Principle). LetU = (Uy,...,Uq) be a solution to[(1]1). Thdd satisfies

3.2 Ur(t)] < Uk (0 U
(3.2) kzlgfgj! k()!_max{k:rqg?fd\ k( )\,Orgggg da(s)}

Proof. We prove first that

3.3 U(t)] < Uk (0 U
33)  ma [U(0)] < ma{ max [Uy(0)], max|Ua(s)

”Ogsgt
and then we check that [{(3.3) holds then

max{ max, [Uk(0)], max|Ug(s)[} = max{, max [Uk(0)], maxUa(s)}
which allows us to conclud€(3.2). Lgbe the node that maximizes max<.|U;(s)|. Let us observe
that if j = d then [3:38) is immediately verified. Hence, we can assumeltratj < d. Consider
to = min{t’ € [0,t] : maxp<s<t [Uj(S)| = |U;(t)[}, the first time in which the maximum is attained.

.....

max |Uy(0)] > |U; (t :max(maxu s>> max [Uy(t
M d| k(0)] > |Uj(to)| Jnax 0§S§t| k(S)| = m d| k(D]

and we get[(313). If, > 0 we must consider two casds;(to) > 0 andUj(tg) < 0. If Uj(tp) > 0 then
by definition ofto we get thatj(to) > Uj(s) for all 0 < s<t. From this it follows that)j(to) > 0. On
the other hand, the choice puarantees thai;(tp) > Uk(to) for all k= 1,...,d. This implies that

Uj(to) = h—lz((UHl(to) —Uj(to)) + (Uj-1(to) —Uj(to))) <0 ifl<j<d

and

2 -
U]/_(to) = W(Uz(to) —U4(tp)) <0 if j=1
In any case we conclude that(tp) = 0 and, in particular, that)j,1(to) = Uj(t). We conclude
j + 1 instead ofj. Thus","’an inductive procedure eventually yields tbatto) = U;(to). From here
we obtain [(3.B) ifU;(tg) > 0. The cas&J;(tp) < 0 is analogous. To conclude_(B.2) we notice that if
t; = min{t’ € [0,t] : max<s<t |Ud(S)| = |Uq(t")|} > 0 thenUq(t1) > O because, otherwise, frof (IL.1)
and [3.B) we get that/(t;) > 0 which contradicts the definition of. O

As a consequence of the Maximum Principle we have the foligvaharacterization of globally
defined solutions td (11.1).

Lemma 3.3. LetU be a globally defined solution tb (1.1). Thenis bounded.

Proof. Let us suppose thdl is not bounded. Then by the Maximum Principle we obtain that
MaXo<s<t |Uq(S)] — +o0 ast — +oo.

1. GivenM > 0 we definety := inf{t > 0 : |Uq(t)| > M}. From this definition it follows that
|Ug(tm)| > M and that|Uq(tm)| = maxo<s<ty, (Ud(S)|. If M > max—1__q|Uk(0)| thenty > 0 and
by the Maximum Principle we hav&ly_1(tm)| < Uq(tm). This gives us the inequality

Ug(tm) > %Udp(tm) - (% + %)Ud(tM)-

1111
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2. From here it is easy to see thatfis large enough we have thdy; : [ty,+) — R is monotone
increasing. This implies that for> ty we havelq(t) = max<s<t |Uq(S)| > M and, as a consequence,
thatUj(t) > 2UJ(t) — (& + 2)Uq(t). If M is taken large enough théh verifiesU/(t) > £UJ(t) for

t >ty and, therefore, cannot be globally defined. This is a comfiad which implies that) must
be bounded. 0

From the previous lemma and the fact tHatl(1.1) admits thewyav functional [(3]1) we obtain
the following corollary.

Corollary 3.4. LetU be a solution td(111). Then eithgrexplodes in finite time or is globally defined
and converges to a stationary solutiort as +oo.

With this result at our disposal we can obtain the followihgdrem, whose proof is inl[1].
Theorem 3.5.

(1) Equation[(1.1) has exactly two equilibriutds= 0 andU = 1. The first one is stable and the
second one is unstable.

(2) Letube a nonnegative initial datum such thkt is globally defined and lim, . UY(t) = 1.
Then

e 0<v<u=—UV"isglobally defined ang JlrinU"(t) =0.
— 4o

e U< v=U" explodes in finite time.
(3) Consider > 0 and a nonnegative initial conditian Then there exists. > 0 such that
(@) A < A\c = UM s globally defined and lim, ...UM (t) =0
(b) Ac < A = UM explodes in finite time
(c) A=A, = UM is globally defined and lig, ., UM(t) = 1.

This results allow us to give a good description of the bebraef the deterministic systetd for
the different initial conditionsi € RY. Indeed, we have a decomposition

RY = DoU WU De
whereDg denotes the stable manifold of the origiw,;® is the stable manifold of := (1,...,1) and
De is the domain of explosion, i.e., if e De thenU" explodes in finite time. The seBy andDg are
open inRY. The origin is an asymptotically stable equilibrium of thestem. w is a manifold of
codimension one. Alst admits an unstable manifold of dimension one which we stui# by w .

This unstable manifold is containedm, has nonempty intersection with bdily andDe and joinsl
with the origin. An illustration of this decomposition isvgh in Figurd L for the 2-dimensional case.

4. EXPLOSIONS IN THE STOCHASTIC MODEL

In this section we focus on proving that solutions[fo {(1.2wbLp in finite time with probability
one for any initial conditioru € RY and everye > 0. The idea is to show that, conditioned on non-
explosion, the system is guaranteed to enter a specificrragigpace in which we can prove that
explosion occurs with total probability. From this we camclade that non-explosion must happen
with zero probability. We do this by comparison with an adaquOrnstein-Uhlenbeck process.

Proof of Theorerh 213Let Y¥€ be the solution to

dyre — — <AYy78 + %ngsed> dt+ edW
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Wy De
Do
u=1
Do
&
Uu=0

FIGURE 1. The phase diagram of equati¢n {1.1).

with initial condition Y¥#(0) =y. Notice that the drift term is linear, and given by a negatieénite
matrix. HenceYY€ is in fact ad-dimensional Ornstein-Uhlenbeck process which admitswariant
distribution supported iiR9. We also have convergence to this equilibrium measure fpiiritial
distribution and therefore the hitting time %¥¢ of any open set is finite almost surely.

On the other hand, since the drift term [af (4) is smaller oraé¢juanb we can apply the stochastic
comparison principle to obtain thet“¢(t) > Y¥£ holds a.s. as long d$"¢ is finite, if u >y. From
here, the result follows applying the following lemma ane strong Markov property. O

Lemma 4.1. Consider the set
OM:={yeR%:y,>0forall0<k<d—1,yq>M},

then we have
lim inf Pt =1
M-—scoyc oM y( e < 00)

Proof. Consider the auxiliary proce&:¢ .= U¥€ — eW. Notice that this process verifies the random
differential equation

d2¥¢ = b(Z¥ +eW)dt, Z¥£(0) =

Let us also observe th@¥¢ has the same explosion timeld%t. For eactk € N let us define the set
A := {sup<t<1 W ()| < k}. OnAc we have thaZ¥* verifies the inequality

dzve 4 2
(4.1) = —AZVE mskz e+ H((zg"E —ek)? — Z° —ek)ey.
Observe thal{4]1) can be written as

dz®
dt

> Q2 +a+ (25" —ek)E = Q2 +q,
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whereQ € R%*% andq € RY both depend os, h andk, but not onM. This allows us to conclude the
inequality |Z2¥#| < (M + |g|)exp(|Q|) for all 0 <t < 1. In particular, for the last coordinate we get
dzy

Y. €
> oM+ op(Zf)P ifo<t<1

Z}*(0) > M

for constantsi;, o> which do not depend ohl. It is a straightforward calculation to check that solu-
tions to this one-dimensional inequality blow-up in a firtitee that converges to zero b6 — +o.
Therefore, for eack € N there existdvlk such thaP(Ay) < infy.om Py(Te < o) for all M > M. Since
limy_ 1 P(Ax) = 1, this concludes the proof. O

5. CONVERGENCE OF'l';j FOR INITIAL CONDITIONS IN D¢

This section is devoted to prove that for initial data in tleenéhin of explosion of the deterministic
system, the explosion time is of order one and, moreover-a$ converges to the explosion time of
the deterministic system. Observe that do to the lack of dedness this result do not follow from
standard perturbation arguments for dynamical systemei(uigistic or stochastic). We first introduce
the truncations of the drift that we use here to prove oneebtiunds and we are going to make more
profit of them in Sectiofill6 when we deal with initial data in themain of attraction of the origin.

5.1. Truncations of the potential and localization. The large deviations principle originally formu-
lated by Freidlin and Wentzell for solutions of stochastitfedential equations likel[(2]1) require a
global Lipschitz condition on the drift terim While this condition is met on the classic double-well
potential model, it is not in our case. As a consequence, weatapply such estimates to our system
directly. Nonetheless, the use of localization technicusps us to solve this problem and allows us
to take advantage of the theory developed by Freidlin andtx@émespite the fact that our drift term
is not globally Lipschitz. In the following lines we give @dls about the localization procedure to be
employed in the study of our system.

For everyn € N let G, : R — R be of clas<C? such that

‘u+|p+1_u_2 .
en<u>={ prt —z Tl<n

0 if ju] > 2n.
We consider then the famili") _. of potentials oveR® given by

¢'(u) = %(Au,u> - %Gn(ud).

This family satisfies the following properties:

(i) For everyn € N the potentialp” is of classC? andb" = —0¢" is globally Lipschitz.
(i) For n< me N we haveb” = b™ over the regiori1" = {uc RY: |uq| < n}.
(iii) Foreveryne Nwe have liminfy .« % > 0.

Sinceb" is globally Lipschitz, for each € RY there exists a unique solution to the ordinary differential
equation
Un7u _ bn(U n,U)
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with initial condition u. Such solution is globally defined and describes the sanectosy as the
solution to [.1) starting ai until the escape fromil". In the same way, for eache R? ande > 0
there exists a unique global solution to the stochastiedfitial equation

(5.1) dU”’”’E:b”(U”~“~8)dt+de
with initial condition u.

As before we ust) ™! for U™40, Sinceb" coincides withb over the balB,(0) of radiusn centered
at the origin, if we write

R =inf{t=0:UME) =0}, W= lim

then fort < t§ we have thatl“¢(t) := limp_. U™"(t) is a solution to

(5.2) du'® =bU"#)dt+edwW

until the explosion timey with initial conditionu. Moreover, if we define the stopping times
e =inf{t >0:U™"5(t) ¢ N"},

it can be seen that (ii) implies that .

T, = lim
€ n—>+°°n2

and thatU"# coincides with the procedd™"“¢ until the escape fronfil". On the other hand, (i)
guarantees that for eaohe N andu € RY the family (U n “75)€>0 satisfies a large deviations principle.
Finally, from (iii) we get that there is an unique invariambpability measure for the procelds"¢ for
eache > 0 given by the formula

W (A) ::%/eé“ﬁ(“)du, A€ 3(RY)
s JA

_ 2w . ,
whereZ = [rae ¢ du. Hereafter, when we refer to the solution Bf{5.2) we mean tietisn
constructed in this particular way.

5.2. Proof of Theorem[Z.4. We split the proof of Theoren 2.4 in two parts, the first onerimiediate
from the continuity of the solutions of (1.2) with respectetan intervals where the deterministic
solution is bounded.

Proposition 5.1. For any fixedd > 0 andu € D¢ we have

lim Py(te < 10— 90) =0.
e—0

Proof. We may assume that > & since the proof is trivial otherwise. Now, as the deterntiis
systemU" is defined up untitg, if we takeM := supyu_5 [U'| < +o0 thenty <1, —dimplies that

sup |UPMUE() —UM Y| > 1.
0<t<ty,—-9

By (2.2) we get[(Gl1). O
Proposition 5.2. For anyd > 0 andu € D we have
e—0

Moreover, the convergence is uniform over compact subsdds.o
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Proof. Fix 8> 0, ¥ a compact set containedi and lety" be the solution to the ordinary differential
equation

Y= - (AYu + %Yd“’sed>

with initial conditionu € % . By the Comparison principle we have thét > Y" for as long a®J! is
defined. Sinc&" is the solution to a linear system of ordinary differentiqliations whose associated
matrix is symmetric and negative definite, we get that therstep, € R such that for allu € K
every coordinate df)" remains bounded from below Ipy + 1 up untiltg. If for p€ R andM >0
we write

O :={yeR?:yy>pforall0<k<d-1,ys>M}

then by the Maximum Principle and the previous statementave thafT, := inf{t > 0:U € ©} "%, }

is finite. Moreover, ab)M+2! agrees withJ Y until the escape frorfily, 2, we obtain the expression
Tu=inf{t >0:uM"?" ¢ Oy 1}, Taking Ty = SUR,c4 Tu < +o0 we may compute

Pi(Te(Op, ) > Tu) < Ry(M"2ATe(O) ) > Tu) + Pu(mt 2 < Ty, Te(O) ) > T)

< 2Pu( sup [UM2£(1) —UM+2(t)| > 1)
0<t<Ty

gzpu( sup [UMF2E(t) —UM2(t)]| > 1),

0<t<Ty
from which by [2.2) we obtain
(5.3) lim supP, (te(©} ) > Ty) =0.

5_>0ue7(
On the other hand, by the strong Markov propertyddr we get
Pu(Te > To+8) < Py(Te > Tu+8) < sup RBy(te > 8)+ SUpPu(Tg(O'F\)AK) >Ty).

ye@’gﬂx uex

Taking into consideratiori (5.3), in order to finish the pra@f only need to show that the first term on
the right hand side tends to zerosas> 0 for an adequate choice M. To see this we consider for
eache > 0 andy € G)?,"X the processegY-¢ andz¥:¢ defined by

2
dYHE = — (AVH® 4 5Y) ey ) di+edW,

andzZ¥® ;= UY® —Y¥E respectively. Notice that sind€¢ is globally defined and botb¥:¢ andz¥¢
have the same explosion time. Also note Bt satisfies the random differential equation

dzre = — (A2 4 % ([’ g Z4%)e) dt.

The continuity of trajectories allows us to use the Fundaaiefheorem of Calculus to show that
almost surelyZ¥#(w) is a solution to the ordinary differential equation

(5.4) ZYE () (w) = —AZ*E(0) + % ( [(ugﬁ)*} ") - zgs(w)) e,



SMALL RANDOM PERTURBATIONS OF A DYNAMICAL SYSTEM WITH BLOW-UP 13

For eachy G)Q"K ande > 0 let QY be a set of probability one in which(5.4) holds. Notice that f
everyw € QY we have the inequality

: 2
2¥(w) > ~AZ () - L2 (w)es
Using the Comparison Principle we conclude tB4t(w) > 0 for everyw € QY and, therefore, that
the inequalityU¥#(w) > Y¥#(w) holds for as long a&¥:#(w) is defined.
For eachy € G)?,"X ande > 0 let us also consider the set
QY = {ooe Q: sup [Y¥E(w,t) =YY (w,t)] <1, sup |eW(w,t)] < 1}.
0<t<d 0<t<d
Note that lim_,o infyeey P(QY) = 1. Our goal is to show that M is chosen adequately then for fixed
K ~
ye O'F\,"K the trajectoryJ¥€(w) explodes before tim& for all w € QYN QY. From this we get that

inf P(QY) =

inf P(QNQY) < inf Py(te <8).
yeeg'x ycoM ( & 8)_ye®g', y( &= )

Px X
and by lettinge — 0 we conclude the result.

So let us takg € OMX , we QYN Q, and suppose that"¢(w) is defined in the intervaD, 3]. Notice

that sincew € QY N Q; then the(d — 1)-th coordinate of¥¢(w,t) is bounded from below bp, — 1
for t € [0,8]. By comparison we know that th@ — 1)-th coordinate ofJ**(w,t) is bounded from
below byp4 —1 as well.

From here we deduce that the last coordinatd ¥f(w) verifies the integral equation
UJE(ot) > UJ 5 (w,9) +/st h_22 (—Ué”s(oo,r) +px — 1+ hg(Ué”s(w,r))> dr—1
fors<t e [0,8]. We can takeVl € N large enough to guarantee that there exists a constar@ such
that for allm > M we have
h_22 (—m+pgx —1+hg(m)) > amP.
If we recall thatJ} (w,0) > M then our selection dfl implies that

t
UJE(o,t) > M — 1+0(/ (UY*(0,u))Pdu
0

for all t € [0,9]. But if this inequality holds andW is large enough, one can check thit®(w)
explodes before tim&, which contradicts our assumptions. Thereforey, eia‘G)?,"K andw € QYN Q,
thenU¥#(w) explodes before tim& and this fact concludes our proof. O

Combining these two propositions we get Theokem 2.4. Obsbat the bounds obtained decay to
zero exponentially fast due to Propositibn {2.2).

6. METASTABLE BEHAVIOR FOR INITIAL CONDITIONS IN Dg

Finally we focus on initial data iDg, where the metastability phenomenon can be appreciated. We
start with the construction of an auxiliary domain that @ms$ the origin and such that the exit time
from this domain is asymptotically equivalent to the exjmogime.
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6.1. Construction of an auxiliary domain. In order to proceed with our analysis of the explosion
time we must first construct an auxiliary bounded domain. pimgpose behind this construction is
to reduce our problem to a simpler one, the escape from thisbo This is easier because we may
assume that the drift coefficiebtis globally Lipschitz, as the escape only depends on thevimha
of the system while it remains inside a bounded region. Is tlaise, large deviations estimates as
the ones proved by Freidlin and Wentzell apply. We need a dedimlomainG which verifies the
following properties:

(1) Gis bounded, containkand the origin.

(2) There existg > 0 such thaB(0) C G and for ally € B¢(0) the systenY is globally defined
and tends to zero without escapiGg

(3) The border ofG can be decomposed in two par#8:andoG \ 1. The region of the bordei!
is closed and satisfies minc @(u) = minycs: @(u) and

inf u) > mino(u).
ueaG\alcp( ) ueBG(p( )

(4) For ally € 9* the deterministic systetdY explodes in finite time.

The domainG can be constructed as follows. Let us consider the valygabfthe saddle poirt,
¢1)=-1/(p+1)+1/2>0=¢0) andc > 0 such thatp(u) < @(1) for u € B¢(0).

For each point € 0B¢(0) consider the rayw, := {Au: A > 0}. Since the vectof is not tangent
to w} at1, we may take a sufficiently small neighborhoddf c1 such that for allu € V N 0B (0)
the rayR, intersectsw N (R.0)%. For suchv we may then defind, = inf{A > 0:Auc w5} for
u €V NaB(0). If we considel

= uea[vquch(O)] Gru) > @(1)
then the fact thap(U (1)) is strictly decreasing (see Propositionl3.1) allows us tmgN into a smaller
neighborhood/* of c1 such thatp(v) =n for all ve d[V*N0B¢(0)]. Let us also observe that sintés
the only saddle point we can takesufficiently small so as to guarantee that figAu) : A > 0} > n
for all u € 9B.(0) \V*. Then if we take the level cun@, = {x € R%: @(x) = n} every rayR, with
u € 0B¢(0) \ V* intersectsCy,. With this we may define for eaahe 9B(0)

A if ueVv*
A=

inf{A >0:AueC,} if ueB0)\V*

Notice that the application— Aj is continuous. Due to this fact,@:= {Au:0< A <\%,ucaB(0)}
thendG = {Aju: u € 0B(0)}. To finish the construction of our domain we must make a sligtial
expansion of5, i.e., fora > 0 considelG defined by the formula

G:={A:0<A<(14+0a)A;,ucdB.(0)}.

Let us observe that TheordmB.5 insures tatrifies condition(1). SinceA;, > 1 for all u € 0B¢(0)

then it must also verify2). Also, if we defined! := {(1+ o)A*(u) : A*(u)u € V*} theno? is closed
and ifa > 0 is taken small enough théB) holds. Finally, due to Theorem 3.5 we haeC De and
so(4) is verified. See Figufe8.1.

Iy 0[V NoB¢(0)] we mean the border of thel — 1)-dimensional manifol&/ N dBc(0).
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S
Wl

FIGURE 2. The level curve&C,, and the stable manifold df

6.2. The escape fromG. The behavior of the explosion time for initial datiec Dg is proved by
showing that, with overwhelming probability as— 0, the stochastic system describes the following
path:

(i) It enters a neighborhood of the origBy(0) in before a finite timél that does not depend on
€.
(i) Once inB¢(0) the system remains i@ for a time of ordere’/¢* and then escapes frofa
througha? since the barrier imposed by the potential is the lowesether
(iii) After escapingG throughd? the system explodes before a finite tim&hich does not depend
one.

The fact that the domai@ is bounded allows us to assume thas globally Lipschitz if we wish
to study the behavior of our system while it remains ingBldndeed, we may takey € N such that
G C By, (0) and study the behavior of the solution [0 {5.1) since it ddies with our process until
the escape fron®. Then we can proceed as in the double-well potential casbt&irthe following

results (see [10, pp 295-300] for their proofs). Hereaig(0) denotes the neighborhood of the
origin highlighted in the construction @ in the previous section.

Theorem 6.1. Givend > 0 we have

i A3 A+d
lim sup R, (e_ef < T1¢(0G) < e_s7> =1
e-0 ueB¢(0)

Theorem 6.2. The stochastic system verifies

lim sup P,(U%(1¢(8G)) ¢ 8*) =0.

E%OUGEC(O)
From these two theorems we can obtain the following usefidlizoy.
Corollary 6.3. For anyd > 0 we have

lim sup Py (rg(al) > eAs+26> =0.

€0 ueB¢(0)
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Proof. One can easily check that
A+d

sup Pu<rg(61) > e%a) < sup Pu(Ts(aG) > 957) + sup Ry (Urse(aG> # 61)'
ucBg(0) ueBe(0) uEBe(0)

Concerning the asymptotic distribution G 0G) we can obtain the following result.

Theorem 6.4. Lety; > 0 be defined by the relation
Po(Te(0G) > ve) =e L.
Then there existp > 0 such that for alt > 0 we have
lim sup |Py(Te(dG) > tye) —e | = 0.
EﬁoueEp(O)

6.3. Bounds for the explosion time. This section is devoted to the lower and upper bounds for the
explosion time. More precisely, in this section we show tfiaend > 0, for allu € Dg one has

. a3
lim PL,<Ts <ee ) =0
e—0
and
. A+d
lim P, (Tg > e_s7> =0,
e—0
where the convergence can be taken uniform over compactisutf®y. The proofs of these bounds
essentially follow[[10], where analogous bounds are givartiie tunneling time. However, unlike

the double-well potential model, the use of localizatiochtgques becomes necessary at some points
throughout our work. We begin first with the lower bound.

Proposition 6.5. Givend > 0 andu € Dg we have
(6.1) IimP, (rg < e%a) =0.
e—0
Moreover, the convergence is uniform over compact subg$ddg.o
Proof. First observe that since fore G we haveR,(1s > 1:(0G)) = 1 then[€.1) holds uniformly over
any small neighborhood of the origin by Lemfal6.1. Next, weegalize the result for any € D.
For eachu € Dg there exisfT, > 0, 8, > 0 andn, € N such that the deterministic system beginning at

u reacheBg (0) beforeTy, remaining inBy, (0) and at a distancd, from 0By, (0) on [0, Ty]. It follows
thatU™ " does so as well. From this we obtain

Pu(te(Bp(0)) > Tu) < Pu(min{t, 1e(Bp(0))} > Tu) + Pu(Te* < o)

0
<R sup Um0 ~Un)| > O ) 1Ry sup uE) -Un) > ).
0<t<Ty 2 0<t<T, 2
Using estimation{Z]2) for the familfu"¢)__ we conclude

Therefore, if we write
A-d

P, (rg < eAa;ZB> <P, (rs(Ep(O)) <Te < es;z) +Py(Te < Ty) + Pu(te(Bp(0)) > Tu),
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then the last two terms on the right tend to zero when0 as a consequence of what we stated above.
By the strong Markov property fdd“¢ we have

Pu (Tg(Ep(O)) <Te < e%’) < sup Py(rg < eAs_EB> < sup Py<T”°(aG) < e%’)
y€Bp(0) y€By(0)
whereng is taken as in the first step. Since the rightmost term tenzdsrmby Lemma6]1 we conclude

the result for arbitrarys € Dy. The uniform convergence over compact subgetsf Dg is proved in
a similar fashion by taking, andT, uniformly overx as in Propositiof 5]2. O

Now we turn to the proof of the upper bound. As we stated befehen studying the behavior of
the stochastic system under initial conditians G and for smalk > 0 we typically observe that the
procesd) "¢ escapes fron® throughd?! since the cost imposed by the potential is the lowest there.
Once ind* the influence of noise becomes negligible and the processdéscribes a path similar
to the deterministic trajectory until exploding in a finiiene. We formalize this statement in the
following proposition.

Proposition 6.6. There existslp > 0 such that
lim supPy(te > To) = 0.

€20 eat

Proof. Sinced! is a compact set contained i, the proof follows from Proposition 5.2 and the fact
that sup_s: T8 < +. O
With this proposition we are able to conclude the upper bound
Proposition 6.7. For eachd > 0 andu € Dg we have
. 40
lim Pu(rg > e¢ ) =0.
e—0
Moreover, the convergence is uniform over compact sub$ddg.o

Proof. We proceed in two steps.

1. We check that given > 0 we get
, 443
(6.3) lim sup P (rg > e ) =0.
Eﬁoerc(O)

It is not hard to show that far > 0 small enough the strong Markov property yields

a+3
sup R, (Tg > eATEG) < sup P (@Y > e @ | +supPy(te > To) + sup Pu(Ug 56) ¢ 0%
ueBc(0) ueBc(0) ueot ueBc(0)

whereTp > 0 is taken as in Propositidn 6.6. We finish this first step byeolisg that the right hand
side converges to zero. Indeed, the first term does so by l@ori@.3, the second by Propositibn16.6
and the third by Lemma g.2.

2. We now generalize the result farc Dg. This follows from the fact that

- e _
Pu<r8 > e ) < sup Py 1e > + Py(1e(Bc(0)) > Tu)
ueBc(0) 2




18 PABLO GROISMAN AND SANTIAGO SAGLIETTI

by the strong Markov property. Observing that the first temrtlee right hand side of the equation
tends to zero by (613) and that the second term doek bly (6e2pptain our result. The convergence
over compact subsets bf can be seen as in Proposition]5.2. O

6.4. Asymptotic distribution of the explosion time. Our main objective in this section is to prove
the asymptotic memory loss of the normalized explosion t{jfneThe proof focuses on studying the
escape fronG. The asymptotic memory loss fag can be deduced once we show that the time in
which the process exits froi@ and the explosion time are asymptotically similar. We fdreeathis
last statement in the following proposition.

Proposition 6.8. There exists a positive constafgtsuch that for alu € DoN G
e—0

Proof. Let us observe that by the strong Markov property

Pu(te > 1£(0G) + To) < su;l)Py(rg > To) + Pu(T1e(0G) < 1¢(Bc(0))) + sup Ru(Ug og) ¢ ah).
yeod ueB¢(0)

We can now conclude our desired result by the use of Propoi6 and Lemma6.2. O

We are now ready to establish the asymptotic memory loseahthlosion time. Having the former
proposition at our disposal, the rest of the proof is veryilginto the one offered in the double-well
potential model. We emphasize that the main difference thithcase lies in how to show this last
proposition. In the double-well potential the correspogdstatement to Propositién 6.8 holds due
to the fact that the tunneling time for initial conditionstire deepest well is of order one. This can
be easily deduced from the Freidlin-Wentzell estimatesaldgously, in our model Propositidn 6.8
holds since now the explosion time for initial dataDgis of order one. However, the lack of a global
Lipschitz condition forces us to proceed differently in @rdo show this last fact. We recall that a
proof of this is contained essentially in Proposition] 5.2 kéw give a brief sketch of the rest of the
proof of Theoreni 2]6 in the following lines and refer [td [5i farther details.

Sketch of proof of Theorem(2.6

(1) We first check that, fop > 0 small enough, lif,0SUR,cg, (o) [Pu(Te(0G) > tBs) —e'| = 0.

This is due to the fact that ligno & = 1.

(2) Next, we prove thay(te > tBe) = e ' fort > 0. This is done with the help of Propositibn 5.8
and the previous step.

(3) With the help of appropriate coupling techniques weldista the uniform convergence over
any small enough neighborhood of the origin.

(4) Finally, by using the strong Markov property, we con@ube result for arbitrary initial data
u € Do.
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