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Abstract

It is known that a best low-rank approximation to multi-way arrays or higher-order tensors

may not exist. This is due to the fact that the set of multi-way arrays with rank at most

R is not closed. Nonexistence of the best low-rank approximation results in diverging rank-1

components when an attempt is made to compute the approximation. Recently, a solution to

this problem has been proposed for real I×J×2 arrays. Instead of a best rank-R approximation

the best fitting Generalized Schur Decomposition (GSD) is computed. Under the restriction of

nonsingular upper triangular matrices in the GSD, the set of GSD solutions equals the interior

and boundary of the rank-R set. Here, we show that this holds even without the restriction. We

provide a complete classification of interior, boundary, and exterior points of the rank-R set of

real I × J × 2 arrays, and show that the set of GSD solutions equals the interior and boundary

of this set.
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1 Introduction

This paper is an addendum to Stegeman and De Lathauwer [11] who study the following subject.

Let ◦ denote the outer-product, and define the outer-product rank of Y ∈ R
I×J×K as

rank◦(Y) = min{R | Y =

R
∑

r=1

xr ◦ yr ◦ zr} . (1.1)

Let

SR(I, J,K) = {Y ∈ R
I×J×K | rank◦(Y) ≤ R} , (1.2)

and let SR(I, J,K) denote the closure of SR(I, J,K), i.e. the union of the set itself and its boundary

points in R
I×J×K .

Let Z ∈ R
I×J×K and || · || denote the Frobenius norm on R

I×J×K. Consider the following

low-rank approximation problem.

min{||Z−Y|| | Y ∈ SR(I, J,K)} . (1.3)

Assuming rank◦(Z) > R, an optimal solution of (1.3) will be a boundary point of the set SR(I, J,K).

However, the set SR(I, J,K) is not closed for R ≥ 2, and problem (1.3) may not have an optimal

solution due to this fact; see De Silva and Lim [2]. Nonexistence of an optimal solution results in

diverging rank-1 components when an attempt is made to compute a best rank-R approximation,

see Krijnen, Dijkstra and Stegeman [5]. In order to overcome this fallacy, [2] proposed to consider

instead

min{||Z−Y|| | Y ∈ SR(I, J,K)} . (1.4)

Note that if (1.3) has an optimal solution, then it is also an optimal solution of (1.4). To solve

problem (1.4), we need to characterize the boundary points of SR(I, J,K) and we need an algorithm

to find an optimal boundary point. For R = 2, the boundary points are determined in [2], and an

algorithm to solve (1.4) is proposed in Rocci and Giordani [7]. For a general approach to obtain

an optimal solution to (1.4) from an attempt to solve (1.3), see Stegeman [10].

In Stegeman and De Lathauwer [11] the case K = 2 is considered. Let
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PR(I, J, 2) = {Y ∈ R
I×J×2 | Yk = QaRk Q

T
b , k = 1, 2, with QT

aQa = QT
b Qb = IR

and Rk (R×R) upper triangular} , (1.5)

denote the set of arrays with a full Generalized Schur Decomposition (GSD). Here, Yk (I × J)

denotes the kth frontal slice of Y. Note that a GSD exists only for R ≤ min(I, J). In [11] it is

shown that the problem

min{||Z−Y|| | Y ∈ PR(I, J, 2)} , (1.6)

is guaranteed to have an optimal solution. Moreover, it holds that PR(I, J, 2) = SR(I, J, 2) under

the restriction that only arrays are considered that have a GSD with R1 and R2 nonsingular. Also,

a Jacobi algorithm (based on De Lathauwer, De Moor and Vandewalle [1]) is presented for solving

(1.6). Hence, under the above restriction, for K = 2 problem (1.4) can be solved by solving problem

(1.6).

In this note we show that the restriction used in [11] is not necessary. That is, we prove that

PR(I, J, 2) = SR(I, J, 2) holds for R ≤ min(I, J).

We use the notation (S,T,U) ·Y to denote the multilinear matrix multiplication of an array

Y ∈ R
I×J×K with matrices S (I2×I), T (J2×J), and U (K2×K). The result of the multiplication

is an I2 × J2 ×K2 array. We refer to (II , IJ ,U) ·Y with U (K ×K) nonsingular as a slicemix.

For later use we mention that, for nonsingular S, T, U, and X = (S,T,U) · Y, we have

rank◦(X) = rank◦(Y) and X is an interior (boundary, exterior) point of SR(I, J,K) if and only if

Y is an interior (boundary, exterior) point of SR(I, J,K).

2 The case I = J = R

Here, we consider the case where the arrays have two I × I slices and the number of components

equals I. In [11] only arrays are considered that have two nonsingular slices. In Proposition 2.2

below we present a complete classification of I × I × 2 arrays into interior, boundary, and exterior

points of the set SR(I, J, 2). This classification is used to show that PI(I, I, 2) = SI(I, I, 2) in
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Theorem 2.3. In the proofs of Proposition 2.2 and Theorem 2.3 we use the following lemma which

extends the theory on real matrix pencils and may be of interest in itself.

Lemma 2.1 Let Y ∈ R
I×I×2 with I × I slices Y1 and Y2 such that det(µY1 + λY2) = 0 for all

µ, λ ∈ R. Then Y ∈ PI(I, I, 2).

Proof. As shown in Moler and Stewart [6] (see also Golub and Van Loan [3, Section 7.7.2]) there

exist orthonormal Q and Z such that G = QY2Z is upper triangular and F = QY1Z is quasi-

upper triangular. That is, F is block-upper triangular where its diagonal blocks are 2× 2 or 1× 1

in size. The proof is complete if we show that there exist orthonormal Q̃ and Z̃ such that Q̃F Z̃

and Q̃G Z̃ are upper triangular.

Let F have diagonal blocks F1, . . . ,Fm, where Fi is 2 × 2 or 1 × 1. Denote the corresponding

diagonal blocks of G by Gi, i = 1, . . . ,m. We have

det(µY1 + λY2) =

m
∏

i=1

det(µFi + λGi) = 0 , for all µ, λ ∈ R . (2.1)

This can only hold if

for some l , det(µFl + λGl) = 0 , for all µ, λ ∈ R . (2.2)

It is shown in Moler and Stewart [6, Section 5] that if Fi is a 2 × 2 block and det(Fi + λGi) = 0

for some λ ∈ R, then 2 × 2 orthonormal Q̃ and Z̃ can be found such that Q̃Fi Z̃ and Q̃Gi Z̃ are

upper triangular. Hence, we may assume without loss of generality that if Fi is a 2× 2 block, then

det(Fi + λGi) 6= 0 for all λ ∈ R.

Let index l be as in (2.2). From the discussion above it follows that we may assume that Fl is

1× 1. Hence, F and G have a zero on their diagonals in the same position. Suppose the common

zero appears right after a 2× 2 block Fi, i.e.







Fi f

0T 0






=













∗ ∗ ∗

∗ ∗ ∗

0 0 0













,







Gi g

0T 0






=













∗ ∗ ∗

0 ∗ ∗

0 0 0













. (2.3)

Let z1 ∈ R
3 be orthogonal to the second rows of the matrices in (2.3). Then postmultiplying (2.3)

by any orthonormal Z̃ = [z1|z2|z3] brings both matrices into upper triangular form and leaves the
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common zero in the same position. Analogously, if the common zero appears right before a 2 × 2

block Fi, then premultiplying by a suitable orthonormal Q̃ does the trick.

If the common zero on the diagonals of F and G is not adjacent to a 2 × 2 block Fi, then

we resort to simultaneously reordering the diagonal blocks of F and G (except the common zero)

such that it is. It suffices to show that swapping adjacent 2 × 2 and 1 × 1 blocks is possible by

orthonormal transformations. Let Fi be 2× 2 and consider the 3× 3 matrices






Fi f

0T fi+1






,







Gi g

0T gi+1






. (2.4)

Swapping the diagonal blocks i and i + 1 by orthonormal transformations is possible if x,y ∈ R
2

exist such that they satisfy the so-called generalized Sylvester equation (see e.g. Kressner [4, Section

5]):

Fi x− fi+1 y = f , Gi x− gi+1 y = g . (2.5)

We may assume that fi+1 and gi+1 are not both zero. Let gi+1 6= 0 (the proof for fi+1 6= 0 is

analogous). Then (2.5) is satisfied for

y = (Gi x− g)/gi+1 , x = (Fi − (fi+1/gi+1)Gi)
−1 (f − (fi+1/gi+1)g) . (2.6)

Note that det(Fi − (fi+1/gi+1)Gi) 6= 0 by assumption, and the solution (2.6) is unique. Hence,

the diagonal blocks can be swapped. Analogously, it can be shown that a 1× 1 block i and a 2× 2

block i+ 1 can be swapped. This completes the proof. 2

Proposition 2.2 Let Y ∈ R
I×I×2.

(a) If there exists a U nonsingular such that X = (II , II ,U) ·Y has nonsingular slice X1, then

(a1) Y is an interior point of SI(I, I, 2) if X2X
−1

1
has I distinct real eigenvalues.

(a2) Y is a boundary point of SI(I, I, 2) if X2X
−1

1
has I real eigenvalues but not all distinct.

(a3) Y is an exterior point of SI(I, I, 2) if X2X
−1

1
has at least one pair of complex eigenvalues.

(b) If there does not exist a U nonsingular such that X = (II , II ,U) · Y has nonsingular slice

X1, then Y is a boundary point of SI(I, I, 2).
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Proof. The proofs of (a) follow from the fact that multilinear matrix multiplication leaves the prop-

erty interior (boundary, exterior) point invariant, and application of Stegeman and De Lathauwer

[11, Lemma 3.1] which is due to Stegeman [8].

Next we prove (b). From Lemma 2.1 it follows that Y = (Qa,Qb, I2) · R, where R has two

upper diagonal slices. Below, we show that R is a boundary point of SI(I, I, 2). Since Qa and Qb

are nonsingular, it follows that also Y is a boundary point of SI(I, I, 2).

It holds that det(µR1 + λR2) = 0 for all µ, λ ∈ R, which implies that R1 and R2 have a zero

on their diagonals in the same position. A small perturbation of the diagonals of R1 and R2 yields

slices H1 (nonsingular) and H2, with H2H
−1

1
(upper triangular) having I real eigenvalues, and

||R−H|| < ǫ for any ǫ > 0. Next, we show that it is possible to choose the perturbation such that

H2H
−1

1
has a pair of identical eigenvalues. For simplicity, we assume that the diagonals of R1 and

R2 contain one common zero. A proof for the general case is analogous.

Let (R1)ii = (R2)ii = 0 and set (H1)ii = δ1 and (H2)ii = δ2. This yields a nonzero eigenvalue

δ2/δ1 for H2H
−1

1
(assuming small perturbations of the other zeros on the diagonal of R1, such that

H1 is nonsingular). Unless stated otherwise, we only perturb the zero diagonal elements of R1

and R2. If, for some j 6= i, (R1)jj 6= 0 and (R2)jj 6= 0, then let λ = (R2)jj/(R1)jj, and choose

δ2 = λ δ1. This yields H2H
−1

1
with two identical real eigenvalues δ2/δ1 = λ for any δ1 > 0. If no

common nonzero diagonal elements of R1 and R2 exist, then we proceed as follows. If, for some

j 6= i, (R1)jj 6= 0 and (R2)jj = 0, then let (H2)jj = η, and choose δ1 =
√
δ2 (R1)jj and η =

√
δ2.

This yields H2H
−1

1
with two identical real eigenvalues δ2/δ1 = η/(R1)jj for any δ2 > 0. If, for some

j 6= i, (R1)jj = 0 and (R2)jj 6= 0, then let (H1)jj = η, and choose δ2 =
√
δ1 (R2)jj and η =

√
δ1.

This yields H2H
−1

1
with two identical real eigenvalues δ2/δ1 = (R2)jj/η for any δ1 > 0. Hence, it

is possible to get H2H
−1

1
with a pair of identical eigenvalues.

By Proposition 2.2 (a2), the array H is a boundary point of SI(I, I, 2). Since ||R−H|| < ǫ for

any ǫ > 0, it follows that R can be approximated arbitrarily closely from SI(I, I, 2). Hence, we

obtain R ∈ SI(I, I, 2). Moreover, since for any ǫ > 0 the array H is a boundary point of SI(I, I, 2),

it follows that R itself must be a boundary point of SI(I, I, 2). 2

We are now ready to present our result for I = J = R.
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Theorem 2.3 It holds that PI(I, I, 2) = SI(I, I, 2).

Proof. First, observe that X = (II , II ,U) ·Y with nonsingular U has a full GSD if and only if Y

has a full GSD. Indeed, a slicemix of upper triangular slices results in upper triangular slices.

This observation, together with Stegeman and De Lathauwer [11, Lemma 5.1], yields the fol-

lowing results for the arrays Y in Proposition 2.2. If Y satisfies (a1) or (a2), then Y ∈ PI(I, I, 2).

If Y satisfies (a3), then Y /∈ PI(I, I, 2).

Lemma 2.1 shows that an array Y satisfying (b) lies in PI(I, I, 2). Since (a)-(b) defines a par-

tition of RI×I×2, we have shown that Y ∈ PI(I, I, 2) if and only if Y ∈ SI(I, I, 2). This completes

the proof. 2

3 Extension to general I, J, R

AGSD exists only for R ≤ min(I, J). However, nonexistence of an optimal solution to problem (1.3)

for I × J × 2 arrays does not seem to occur for R > I or R > J ; see Stegeman [9]. In Theorem 3.2

below we show that PR(I, J, 2) = SR(I, J, 2) for R ≤ min(I, J). This extends Theorem 2.3. In the

proof of Theorem 3.2, we make use of Theorem 2.3 and the following lemma, which concerns an

orthogonal equivalence between interior and boundary points of SR(I, J, 2) and those of SR(R,R, 2).

Lemma 3.1 Let Y ∈ R
I×J×2 with R ≤ min(I, J). Then Y ∈ SR(I, J, 2) if and only if there exist

S (I×R) and T (J×R) with STS = TTT = IR such that Y = (S,T, I2) ·X with X ∈ SR(R,R, 2).

Moreover, Y ∈ SR(I, J, 2) if and only if X ∈ SR(R,R, 2).

Proof. See [2, Theorem 5.2]. 2

Theorem 3.2 Let R ≤ min(I, J). It holds that PR(I, J, 2) = SR(I, J, 2).

Proof. Let Y ∈ SR(I, J, 2). By Lemma 3.1 and Theorem 2.3 we have Y = (S,T, I2) · X with

X ∈ SR(R,R, 2) = PR(R,R, 2). This implies

Yk = SXk T
T = (SQa)Rk (TQb)

T , k = 1, 2 . (3.1)
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Since the matrices SQa and TQb are column-wise orthonormal and Rk is R×R upper triangular,

(3.1) implies that Y ∈ PR(I, J, 2).

Next, let Y ∈ PR(I, J, 2). Then Yk = QaRk Q
T
b for k = 1, 2, which is equivalent to

Y = (Qa,Qb, I2)·R, whereR ∈ R
R×R×2 has two upper triangular slices. Hence, R ∈ PR(R,R, 2) =

SR(R,R, 2) by Theorem 2.3. An application of Lemma 3.1 yields Y ∈ SR(I, J, 2). This completes

the proof. 2

4 Conclusion

We have shown that the set of I × J × 2 arrays with a full GSD of size R equals the closure of the

set of I × J × 2 arrays with at most rank R. Also, we have provided a complete classification of

interior, boundary, and exterior points of the latter set. This extends the theoretical results in [11],

which were limited to the case of nonsingular upper triangular matrices in the GSD.
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