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TRIANGULINE REPRESENTATIONS

by

Laurent Berger

Abstract. — Trianguline representations are a certain kind of p-adic representations of
Gal(Q

p
/Qp) like the crystalline, semistable and de Rham representations of Fontaine. Their

definition involves the theory of (ϕ,Γ)-modules. In this survey, we explain the theory of
(ϕ,Γ)-modules and the definition and properties of trianguline representations. After that,
we give some examples of their occurrence in arithmetic geometry.

Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1. Representations of Gal(Q/Q). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2. Trianguline representations and (ϕ,Γ)-modules. . . . . . . . . . . . . . . . . . . 2
1.3. Notations and conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. Galois representations and (ϕ,Γ)-modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1. The Robba ring and (ϕ,Γ)-modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Etale (ϕ,Γ)-modules and Galois representations. . . . . . . . . . . . . . . . . . 5
2.3. Trianguline representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4. Slopes of (ϕ,Γ)-modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Examples of trianguline representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1. Fontaine’s rings of periods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2. p-adic Hodge theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3. Crystalline and semistable (ϕ,Γ)-modules. . . . . . . . . . . . . . . . . . . . . . . . 10
3.4. Weights of trianguline representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5. Cohomology of (ϕ,Γ)-modules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6. Trianguline representations of dimension 2. . . . . . . . . . . . . . . . . . . . . . . 12

4. Arithmetic applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1. The p-adic local Langlands correspondence. . . . . . . . . . . . . . . . . . . . . . . 14
4.2. Families of Galois representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3. Overconvergent modular forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.4. Trianguline representations and Selmer groups. . . . . . . . . . . . . . . . . . . 18

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2000 Mathematics Subject Classification. — 11-02; 11F11; 11F33; 11F80; 11F85; 11S20; 14G22.
Key words and phrases. — Galois representations; p-adic Hodge theory; (ϕ,Γ)-modules; trianguline
representations; p-adic local Langlands correspondence; overconvergent modular forms.

http://arxiv.org/abs/1011.3447v1


2 LAURENT BERGER

1. Introduction

1.1. Representations of Gal(Q/Q). — The starting point for this survey is that

one can attach representations of the group Gal(Q/Q) to some objects which occur in

arithmetic geometry, for example elliptic curves and modular forms. Suppose for instance

that A is an elliptic curve defined over Q and choose a prime number p. The group

Gal(Q/Q) acts on the pn-th torsion points A[pn](Q) of A and this gives rise to the Tate

module of A, a 2-dimensional Qp-vector space VpA which is the p-adic representation of

Gal(Q/Q) attached to A.

Let ℓ be a prime number and choose an embedding ιℓ : Q → Qℓ. This gives rise to a

map Gal(Qℓ/Qℓ) → Gal(Q/Q) which is injective and whose image is the decomposition

group Dℓ of a place above ℓ (a different choice of ιℓ gives rise to another subgroup of

Gal(Qℓ/Qℓ) which is conjugate to Dℓ). The group Dℓ contains the inertia subgroup Iℓ

and the quotient Dℓ/Iℓ is isomorphic to Gal(Fℓ/Fℓ) = Ẑ which is topologically generated

by the Frobenius map Frobℓ = [z 7→ zℓ]. We then have the following theorem which says

that the representation VpA is also “attached to A” in a deeper way.

Theorem 1.1.1. — If ℓ ∤ p · Disc(A), then the restriction of VpA to Iℓ is trivial and

det(X − Frobℓ | VpA) = X2 − aℓX + ℓ where aℓ = ℓ+ 1− Card(A(Fℓ)).

As ℓ runs through a set of primes of density 1, the groups Dℓ and their conjugates

form a dense subset of Gal(Q/Q) by Chebotarev’s theorem and therefore theorem 1.1.1

determines the semisimplification of VpA. If ℓ 6= p but ℓ | Disc(A), then we also have a

description of VpA |Dℓ
which now depends on the geometry of A mod ℓ. A much deeper

problem is the description of the restriction of VpA to Dp and this is the goal of Fontaine’s

theory, which we’ll discuss in the next §.

Before we do that, let us recall that one can also attach p-adic representations of

Gal(Q/Q) to modular forms as follows. Let f =
∑

n>1 anq
n be a normalized cuspidal

eigenform of weight k and level N and character ε, and let E be the field generated over

Qp by the images of the an’s in Qp under the chosen embedding. The field E is a finite

extension of Qp and we have the following result of Deligne [Del71] (see theorem 6.1 of

Deligne-Serre [DS74]).

Theorem 1.1.2. — There exists an irreducible 2-dimensional E-linear representation

Vpf of Gal(Q/Q) such that for every prime number ℓ ∤ pN , the restriction of Vpf to Iℓ

is trivial and det(X − Frobℓ | Vpf) = X2 − aℓX + ε(ℓ)ℓk−1.

1.2. Trianguline representations and (ϕ,Γ)-modules. — Let E be a finite exten-

sion of Qp which is the field of coefficients of the representations we consider. The goal
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of Fontaine’s theory is to study the E-linear representations of Gal(Qp/Qp). These may

arise as the restriction toDp of representations of Gal(Q/Q) as above but they are also in-

teresting considered on their own. A p-adic representation of Gal(Qp/Qp) is then a finite

dimensional E-vector space V along with a continuous E-linear action of Gal(Qp/Qp).

Fontaine’s approach has been to construct some rings of periods, for example Bcris,

Bst and BdR and to use these rings to define and study crystalline, semistable and de

Rham representations (see §3.1 for reminders about this). These constructions allow one

to give a complete description of the restriction to Dp of the representations VpA and

Vpf of §1.1 (see §3.2). Another construction of Fontaine’s which is crucial in this survey

is the theory of (ϕ,Γ)-modules which we now describe (and will describe again in more

detail in §§2.1–2.4).

Let R be the ring of power series f(X) =
∑

n∈Z anX
n where an ∈ E and for which

there exists ρ(f) such that f(X) converges on the p-adic annulus ρ(f) 6 |X|p < 1. This

ring is endowed with a Frobenius ϕ given by (ϕf)(X) = f((1 + X)p − 1) and with an

action of Z×
p (now called Γ) given by ([a]f)(X) = f((1 +X)a − 1) if a ∈ Z×

p .

A (ϕ,Γ)-module is a free R-module of finite rank d endowed with a semilinear Frobe-

nius ϕ such that Mat(ϕ) ∈ GLd(R) and with a commuting semilinear continuous action

of Γ. The main result relating (ϕ,Γ)-modules and p-adic Galois representations is the fol-

lowing (it combines theorems of Fontaine, Fontaine-Wintenberger, Cherbonnier-Colmez

and Kedlaya). The ring B̃
†
rig below denotes one of Fontaine’s rings of periods. We say

that a (ϕ,Γ)-module is étale if there exists a basis in which Mat(ϕ) ∈ GLd(O
†
E) where

O†
E is the set of f(X) ∈ R with |an|p 6 1 for all n ∈ Z.

Theorem 1.2.1. — If D is an étale (ϕ,Γ)-module, then V (D) = (B̃†
rig ⊗R D)ϕ=1 is a

p-adic representation of Gal(Qp/Qp) and the resulting functor D 7→ V (D) gives rise to

an equivalence of categories: {étale (ϕ,Γ)-modules} → {p-adic representations}.

We denote by V 7→ D(V ) the inverse functor. The category of étale (ϕ,Γ)-modules

is a full subcategory of the larger category of all (ϕ,Γ)-modules. In particular, if V is

an irreducible p-adic representation, then D(V ) is irreducible in the category of étale

(ϕ,Γ)-modules but it can be reducible in the larger category of all (ϕ,Γ)-modules.

Definition 1.2.2. — If V is a p-adic representation of Gal(Qp/Qp), then we say that V

is trianguline if D(V ) is a successive extension of (ϕ,Γ)-modules of rank 1 (after possibly

enlarging E).

This definition can be seen as some far reaching generalization of the notion of ordinary

representation. It was first given by Colmez in his construction of the “unitary principal

series of GL2(Qp)” which is an important building block of the p-adic local Langlands
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correspondence for GL2(Qp) (see §4.1). Some important examples of trianguline repre-

sentations are (1) the semistable representations of Gal(Qp/Qp) and (2) the restriction to

Gal(Qp/Qp) of the representations of Gal(Q/Q) attached to finite slope overconvergent

modular forms.

This survey has three chapters. In the first one, we give a more detailed description

of the definition and properties of (ϕ,Γ)-modules, including Kedlaya’s theory of Frobe-

nius slopes. In the second one, we give some examples of trianguline representations by

relating the theory of (ϕ,Γ)-modules to p-adic Hodge theory, and then we give Colmez’

construction of a parameter space for all 2-dimensional trianguline representations. In

the last chapter, we explain how trianguline representations occur in the p-adic local

Langlands correspondence, in the theory of overconvergent modular forms and in the

study of Selmer groups.

1.3. Notations and conventions. — The field E is a finite extension of Qp with ring

of integers OE whose maximal ideal is mE and residue field kE. All the representations

and characters in this survey are assumed to be continuous (note that a character δ :

Q×
p → E× is necessarily continuous by exercise 6 of §4.2 of [Ser94]). When we say

that an E-linear object is irreducible, we mean that it is absolutely irreducible, that is it

remains irreducible when we extend scalars from E to a finite extension.

The cyclotomic character χcycl gives an isomorphism χcycl : Gal(Qp(µp∞)/Qp) → Z×
p .

The maximal abelian extension of Qp is Qab
p = Qnr

p · Qp(µp∞) and every element of

Gal(Qab
p /Qp) can be written as Frobnp ·g where Frobp is the lift of [z 7→ zp] and n ∈ Ẑ and

g ∈ Gal(Qp(µp∞)/Qp). If δ : Q×
p → O×

E is a unitary character, then by local class field

theory δ gives rise to a character (still denoted by δ) of Gal(Qp/Qp) which is determined

by the formula δ(Frobn
p ·g) = δ(p)−n · δ(χ(g)) if n ∈ Z. In other words, we normalize class

field theory so that p corresponds to the geometric Frobenius Frob−1
p .

2. Galois representations and (ϕ,Γ)-modules

In this chapter, we explain the theory of (ϕ,Γ)-modules and its relation to p-adic

representations. This allows us to define trianguline representations.

2.1. The Robba ring and (ϕ,Γ)-modules. — The Robba ring R is the ring of power

series f(X) =
∑

n∈Z anX
n where an ∈ E such that f(X) converges on an annulus of the

form ρ(f) 6 |X|p < 1. For example, the power series t = log(1 +X) belongs the Robba

ring (and here ρ(t) = 0).

The Robba ring is endowed with a Frobenius map ϕ given by (ϕf)(X) = f((1+X)p−1).

Let Γ be another notation for Z×
p with the isomorphism Z×

p → Γ denoted by a 7→ [a].
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The Robba ring is endowed with an action of Γ given by ([a]f)(X) = f((1 + X)a − 1)

and this action commutes with ϕ. For example, we have ϕ(t) = pt and [a](t) = at.

Definition 2.1.1. — A (ϕ,Γ)-module over R is a free R-module of finite rank d, en-

dowed with a semilinear Frobenius ϕ such that Mat(ϕ) ∈ GLd(R) and a semilinear action

of Γ which commutes with ϕ.

For example, if δ : Q×
p → E× is a character, then we define R(δ) as the (ϕ,Γ)-module

of rank 1 having eδ as a basis where ϕ(eδ) = δ(p)eδ and [a](eδ) = δ(a)eδ.

Theorem 2.1.2. — Every (ϕ,Γ)-module of rank 1 over R is isomorphic to R(δ) for a

well-defined character δ : Q×
p → E×.

The proof of this theorem (proposition 3.1 of [Col08]) uses the results of §2.2 (the

equivalence between étale (ϕ,Γ)-modules and p-adic representations) and it would be

nice to have a more direct proof which uses only computations in (ϕ,Γ)-modules.

2.2. Etale (ϕ,Γ)-modules and Galois representations. — The ring E † is the sub-

ring of R consisting of those f(X) =
∑

n∈Z anX
n for which the sequence {an}n∈Z is

bounded. The subring of E † consisting of those f(X) =
∑

n∈Z anX
n for which |an|p 6 1

is denoted by O†
E . This is a henselian local ring with residue field kE((X)).

Definition 2.2.1. — We say that a (ϕ,Γ)-module over R is étale if it has a basis in

which Mat(ϕ) ∈ GLd(O
†
E).

In §2.3 of [Ber02], a ring B̃
†
rig is constructed which has the following properties: it is

endowed with a Frobenius ϕ and a commuting action of Gal(Qp/Qp) and it contains the

Robba ring R. This inclusion is compatible with ϕ and with the action of Γ on R in

the sense that if y ∈ R, then g(y) = [χcycl(g)](y). One can think of B̃†
rig as some sort of

“algebraic closure” of R.

If D is a (ϕ,Γ)-module over R, then V (D) = (B̃†
rig ⊗R D)ϕ=1 is an E-vector space,

endowed with the action of Gal(Qp/Qp) given by g(x ⊗ e) = g(x) ⊗ [χcycl(g)](e). This

E-vector space can be finite or infinite-dimensional in general, but we have the following

theorem which combines results of Fontaine (theorem 3.4.3 of [Fon90]), Cherbonnier-

Colmez (corollary III.5.2 of [CC98]) and Kedlaya (theorem 6.3.3 of [Ked05]).

Theorem 2.2.2. — If D is an étale (ϕ,Γ)-module of rank d over R, then V (D) is an

E-linear representation of dimension d of Gal(Qp/Qp) and the resulting functor, from

the category of étale (ϕ,Γ)-modules over R to the category of E-linear representations of

Gal(Qp/Qp), is an equivalence of categories.
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We denote by V 7→ D(V ) the inverse functor which to a p-adic representation attaches

the corresponding étale (ϕ,Γ)-module over R.

For example, the (ϕ,Γ)-module R(δ) is étale if and only if valp(δ(p)) = 0. In this case,

the representation V (R(δ)) is the character of Gal(Qp/Qp) corresponding to δ by local

class field theory as recalled in §1.3.

2.3. Trianguline representations. — We can now give the definition of trianguline

representations (see §0.4 of [Col08]).

Definition 2.3.1. — If V is a p-adic representation of Gal(Qp/Qp), then

1. we say that V is split trianguline if the (ϕ,Γ)-module D(V ) is a successive extension

of (ϕ,Γ)-modules of rank 1;

2. we say that V is trianguline if there exists a finite extension F of E such that F⊗EV

is split trianguline.

The possible extension of scalars from E to F is harmless and on the level of (ϕ,Γ)-

modules consists in extending scalars from the Robba ring with coefficients in E to

the Robba ring with coefficients in F . For example, we’ll see later on that semistable

representations are always trianguline, and they are split trianguline if and only if E

contains the eigenvalues of ϕ on Dst(V ).

It is important to understand that a representation V may well be trianguline without

V itself being an extension of representations of dimension 1. Indeed, the definition is

that D(V ) is a successive extension of (ϕ,Γ)-modules of rank 1, but these (ϕ,Γ)-modules

are generally not étale and therefore do not correspond to subquotients of V .

Note also that a (ϕ,Γ)-module may be written as a successive extension of (ϕ,Γ)-

modules of rank 1 in several different ways, but that the actual triangulation is not part

of the data. This additional data of a triangulation amounts to what Mazur calls a

refinement in [Maz00].

In the rest of this survey, we’ll see several examples of trianguline representations, but

we give here the two main classes:

1. the representations of Gal(Qp/Qp) which become semistable when restricted to

Gal(Qp/Qp(ζpn)) for some n > 0;

2. the representations of Gal(Qp/Qp) which arise from overconvergent modular eigen-

forms of finite slope.

In [Ber10b], some explicit families of 2-dimensional (ϕ,Γ)-modules are constructed

and the trianguline ones are determined.
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2.4. Slopes of (ϕ,Γ)-modules. — We now recall Kedlaya’s theory of slopes for ϕ-

modules over the ring R (free R-modules of finite rank d with a semilinear ϕ such that

Mat(ϕ) ∈ GLd(R)). If a/h ∈ Q, then we say that a ϕ-module over R is pure of slope a/h

if it has a basis in which Mat(p−aϕh) ∈ GLd(O
†
E) (being étale is therefore equivalent to

being pure of slope zero). A ϕ-module over R which is pure of a certain slope is said to

be isoclinic. For example, the (ϕ,Γ)-module R(δ) is pure of slope valp(δ(p)). The main

result of the theory of slopes is theorem 6.10 of [Ked04].

Theorem 2.4.1. — If D is a ϕ-module over R, then there exists a unique filtration

{0} = D0 ⊂ D1 ⊂ · · · ⊂ Dℓ = D of D by sub-ϕ-modules such that:

1. for all i > 1, the ϕ-module Di/Di−1 is isoclinic;

2. if si is the slope of Di/Di−1, then s1 < s2 < · · · < sℓ.

If D is a (ϕ,Γ)-module, then each of the Di is stable under the action of Γ since the

filtration is unique and hence each Di is itself a (ϕ,Γ)-module.

A delicate but crucial point of the theory of slopes is that a ϕ-module over R which

is pure of slope s has no subobject of slope < s by theorem 2.4.1, but it may well have

subobjects of slope> s. This helps to explain the definition of trianguline representations:

an étale (ϕ,Γ)-module over R may be irreducible in the category of étale (ϕ,Γ)-modules

but it can still admit some nontrivial subobjects in the larger category of all (ϕ,Γ)-

modules.

Theorem 2.4.1 also helps to understand theorem 2.2.2. If D is a (ϕ,Γ)-module, then

V (D) = (B̃†
rig ⊗R D)ϕ=1 is constructed by solving ϕ-equations determined by the matrix

of ϕ on D. If the slopes of D are > 0 then these equations have no nonzero solutions while

if the slopes of D are < 0 then the space of solutions if infinite dimensional (see theorem

A of [Ber09] for more precise results). The condition that D is étale is exactly the right

one for V (D) to be a finite dimensional E-vector space of the correct dimension.

3. Examples of trianguline representations

In this chapter, we explain how to relate (ϕ,Γ)-modules and p-adic Hodge theory,

which allows us to give important examples of trianguline representations. After that, we

explain how to compute extensions of (ϕ,Γ)-modules and Colmez’ resulting construction

of all 2-dimensional trianguline representations.

3.1. Fontaine’s rings of periods. — The purpose of Fontaine’s theory is to sort

through p-adic representations and to classify the interesting ones by using objects from

semilinear algebra. Recall that Fontaine has constructed in [Fon94a] a number of rings
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among which Bcris, Bst and BdR. The construction of these rings is quite complicated but

they have a number of properties some of which we now recall and which suffice for this

survey. All of them are Qp-algebras endowed with an action of Gal(Qp/Qp) and some

extra structures which are all compatible with the action of Gal(Qp/Qp). The ring Bst

has a Frobenius ϕ and a monodromy operator N which satisfy the relation Nϕ = pϕN

and the ring Bcris is then BN=0
st . The ring BdR is actually a field and is endowed with a

filtration. The ring Bcris contains Q̂
nr
p and the choice of logp(p) gives rise to an injective

map Qp ⊗Qnr
p
Bst → BdR.

If V is a p-adic representation of Gal(Qp/Qp) and ∗ ∈ {cris, st, dR}, then we set

D∗(V ) = (B∗ ⊗Qp
V )Gal(Qp/Qp). The space D∗(V ) is then an E-vector space of dimension

6 dimE(V ) and we say that V is crystalline or semistable or de Rham if we have equality

of dimensions with ∗ being cris, st or dR.

The E-vector space DdR(V ) is then endowed with an E-linear filtration, the space

Dst(V ) ⊂ DdR(V ) is a filtered (ϕ,N)-module and Dcris(V ) = Dst(V )N=0 is a filtered ϕ-

module. If D is a filtered (ϕ,N)-module, then we define tN(D) as the p-adic valuation

of ϕ on det(D) and tH(D) as the unique integer h such that Filh(det(D)) = det(D) and

Filh+1(det(D)) = {0}. We say that D is admissible if tH(D) = tN(D) and if tH(D
′) 6

tN(D
′) for every subobject D′ of D. The following theorem combines results of Fontaine

(§5.4 of [Fon94c]) and the Colmez-Fontaine theorem (theorem A of [CF00]).

Theorem 3.1.1. — If V is a semistable representation of Gal(Qp/Qp), then Dst(V ) is

an admissible filtered (ϕ,N)-module and the functor V 7→ Dst(V ) gives an equivalence of

categories: {semistable representations} → {admissible filtered (ϕ,N)-modules}.

All of these constructions also work for representations of Gal(Qp/K); in particular, we

say that a p-adic representation of Gal(Qp/Qp) is potentially semistable if its restriction to

Gal(Qp/K) is semistable for some finite extension K of Qp. Following §2.3 of [Fon94b],

we can attach to a potentially semistable representation V of Gal(Qp/Qp) a Weil-Deligne

representation WD(V ). Let WQp
= {g ∈ Gal(Qp/Qp) such that n(g) ∈ Z} be the

Weil group of Qp and suppose that the restriction of V to Gal(Qp/K) is semistable.

The space of the representation WD(V ) is D = Dst(V |Gal(Qp/K)) with NWD = N and

ρWD(w) = wϕ−n(w) if w ∈ WQp
where WQp

acts on D through Gal(K/Qp).

3.2. p-adic Hodge theory. — If X is a proper and smooth scheme over Qp, then

the étale cohomology groups Hi
ét(XQp

,Qp) are p-adic representations of Gal(Qp/Qp) and

we have the following theorem of Tsuji (theorem 0.2 of [Tsu99]), which is the former

conjecture Cst of Fontaine-Jannsen (see §6.2 of [Fon94c]).



TRIANGULINE REPRESENTATIONS 9

Theorem 3.2.1. — If X is a proper scheme over Zp with semistable reduction, then

Hi
ét(XQp

,Qp) is a semistable representation of Gal(Qp/Qp) and there is a natural iso-

morphism of filtered (ϕ,N)-modules: Dst(H
i
ét(XQp

,Qp)) = Hi
log- cris(X).

If f is a modular eigenform, then one can attach to it a p-adic representation Vpf as re-

called in theorem 1.1.2 as well as a smooth admissible representation Πpf of GL2(Qp) (see

[Del73]), and we then have the following result of Saito (the main theorem of [Sai97]),

which is the “missing part” of theorem 1.1.2.

Theorem 3.2.2. — If f is a cuspidal eigenform, then Vpf is potentially semistable at p

and WD(Vpf) is the Weil-Deligne representation attached to Πpf by the local Langlands

correspondence.

If in addition p ∤ N , then Vpf is crystalline and the above theorem completely deter-

mines Dcris(Vpf) because there is only one possible choice for the filtration (in this case,

theorem 3.2.2 was previously proved by Scholl, see theorem 1.2.4 of [Sch90]). We get

Dcris((Vpf)
∗) = Dk,ap where k = k(f) and ap = ap(f) and Dk,ap = Ee1 ⊕Ee2 with

Mat(ϕ) =

(
0 −1

ε(p)pk−1 ap

)
and Fili Dk,ap =





Dk,ap if i 6 0,

Ee1 if 1 6 i 6 k − 1,

{0} if i > k.

The converse of theorem 3.2.1 is known as the Fontaine-Mazur conjecture (conjecture

1 of [FM95]).

Conjecture 3.2.3. — If V is an irreducible p-adic representation of Gal(Q/Q) which

is unramified except at a finite number of primes and which is de Rham at p, then V is

a subquotient of the étale cohomology of some algebraic variety over Q.

If in addition dim(V ) = 2, then we actually expect V to be the representation attached

to a modular eigenform, and we have the following precise conjecture (conjecture 3c of

[FM95]).

Conjecture 3.2.4. — If V is an irreducible 2-dimensional p-adic representation of

Gal(Q/Q) which is unramified except at a finite number of primes and which is de Rham

at p with distinct Hodge-Tate weights, then V is a twist of the Galois representation

attached to a cuspidal eigenform with weight k > 2.

Let us write V for the reduction modulo mE of V .

Theorem 3.2.5. — The Fontaine-Mazur conjecture is true, if we suppose that V satis-

fies some technical hypotheses.
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This theorem has been proved independently by Kisin (this is the main theorem of

[Kis09]) and by Emerton (theorem 1.2.4 of [Eme10]). The “technical hypotheses” of

Kisin are the following (χcycl is now the reduction mod p of the cyclotomic character).

1. p 6= 2 and V is odd,

2. V |Gal(Q/Q(ζp))
is irreducible,

3. V |Gal(Qp/Qp)
is not of the form

( ηχcycl ∗

0 η

)
for any character η.

The “technical hypotheses” of Emerton are (1) and (2) and

3’. V |Gal(Qp/Qp)
is not of the form

( η ∗
0 ηχcycl

)
nor of the form

( η ∗
0 η

)
for any character η.

3.3. Crystalline and semistable (ϕ,Γ)-modules. — In §3.1, we recalled the defini-

tion of Dcris(V ) and Dst(V ) for a p-adic representation V . We now explain how to extend

this definition to (ϕ,Γ)-modules. Recall that we denote by t the element log(1+X) ∈ R.

Definition 3.3.1. — If D is a (ϕ,Γ)-module, let Dcris(D) = (R[1/t]⊗R D)Γ.

In order to define Dst(D), we add a variable to R. The power series log(ϕ(X)/Xp)

and log(γ(X)/X) (for γ ∈ Γ) both converge in R. Let log(X) be a variable which

we adjoin to R, with the Frobenius and the action of Γ extending to R[log(X)] by

ϕ(log(X)) = p log(X)+ log(ϕ(X)/Xp) and γ(log(X)) = log(X)+ log(γ(X)/X). We also

define a monodromy map N on R[log(X)] by N = −p/(p− 1) · d/d log(X).

Definition 3.3.2. — If D is a (ϕ,Γ)-module, let Dst(D) = (R[log(X), 1/t]⊗R D)Γ.

Definitions 3.3.1 and 3.3.2 make sense for any (ϕ,Γ)-module. We say that D is crys-

talline or semistable if Dcris(D) or Dst(D) is an E-vector space of dimension rk(D). The

space Dst(D) is then a (ϕ,N)-module and Dcris(D) = Dst(D)N=0. One can also define a

filtration on these two spaces by using the filtration of R given by “the order of vanishing

at ζpn − 1 for n ≫ 0” so that Dst(D) becomes a filtered (ϕ,N)-module (which in general

will not be admissible). The following result is theorem 0.2 of [Ber02].

Theorem 3.3.3. — If V is a p-adic representation of Gal(Qp/Qp) and if D(V ) is the

attached (ϕ,Γ)-module, then Dcris(V ) = Dcris(D(V )) and Dst(V ) = Dst(D(V )).

The proof of this requires a number of delicate computations in several of Fontaine’s

rings of periods. Recall that B̃
†
rig is the ring used in §2.2 in order to attach p-adic

representations to (ϕ,Γ)-modules. One can show that the ring Bcris of Fontaine admits

a subring B̃+
rig such that

1. for any p-adic representation V the inclusion (B̃+
rig[1/t]⊗Qp

V )Gal(Qp/Qp) ⊂ Dcris(V )

is an isomorphism;

2. there is a natural inclusion B̃+
rig ⊂ B̃

†
rig.
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These facts allow one to go from the usual p-adic periods to the theory of (ϕ,Γ)-modules

and then to prove theorem 3.3.3. The spaces Dst(V ) and Dst(D(V )) are then equal as

subspaces of B̃†
rig[1/t] ⊗Qp

V . It is also possible to define DdR(D) as well as de Rham

(ϕ,Γ)-modules in the same way and to prove an analogue of theorem 3.3.3 but this is

slightly more complicated and we do not give the recipe here.

If V is a semistable representation and if M is a sub-(ϕ,N)-module of Dst(V ), then it

is easy to see that (R[log(X), 1/t]⊗E M)N=0 ∩ D(V ) is a sub (ϕ,Γ)-module of D(V ) of

rank dim(M). Using this observation and theorem 3.3.3, we get the following result.

Theorem 3.3.4. — Semistable representations of Gal(Qp/Qp) are trianguline.

We see that the (ϕ,Γ)-module of a semistable representation may then admit several

different triangulations, corresponding to flags of Dst(V ) stable under ϕ and N . Another

consequence of theorem 3.3.3 which is proved in the same way is the following useful

result (proposition 4.3 of [Col08]).

Theorem 3.3.5. — If V is a p-adic representation of dimension 2, then V is trianguline

if and only if there exists a character η of Gal(Qp/Qp) such that Dcris(V (η)) 6= 0.

3.4. Weights of trianguline representations. — Recall that p-adic representations

of Gal(Qp/Qp) have weights: Sen’s theory (§2.2 of [Sen80]) allows us to attach to V a

polynomial P (X) ∈ E[X ] of degree dim(V ) whose roots are the generalized Hodge-Tate

weights of V (warning: in [BC09] as in other places, the opposite sign is chosen for the

weights). For example if V is de Rham, then these weights are the opposites of the jumps

of the filtration on DdR(V ) and are then the classical Hodge-Tate weights of V .

If V is a trianguline representation and if {0} = D0 ⊂ D1 ⊂ · · · ⊂ Dd = D(V ) is

a triangulation of V , then each Di/Di−1 is of rank 1 and hence of the form R(δi) by

theorem 2.1.2. We say that the ordered set of characters δ1, . . . , δd is attached to V . If

δ : Q×
p → E× is a character, then w(δ) = logp δ(u)/ logp u does not depend on the choice

of u ∈ 1 + pZp and is called the weight of δ.

Theorem 3.4.1. — If V is a trianguline representation and δ1, . . . , δd are the characters

attached to V , then w(δ1), . . . , w(δd) are the generalized Hodge-Tate weights of V .

The following theorem (proposition 2.3.4 of [BC09]) can be seen as a generalization

of Perrin-Riou’s theorem 1.5 of [PR94] that “ordinary representations are semistable”.

Theorem 3.4.2. — Let V be a trianguline representation and let δ1, . . . , δd be the

characters attached to V . If w(δ1), . . . , w(δd) are integers and if w(δ1) > · · · > w(δd),

then V is de Rham.
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3.5. Cohomology of (ϕ,Γ)-modules. — Since trianguline representations are suc-

cessive extensions of (ϕ,Γ)-modules of rank 1, an important part of the study of these

representations is the determination of the extension groups of (ϕ,Γ)-modules.

Let D be a (ϕ,Γ)-module and let γ be a topological generator of Γ (the group Z×
p is

topologically cyclic if p 6= 2; if p = 2, then the definitions have to be slightly modified).

Let C(ϕ, γ) be the complex

0 → D
z 7→((γ−1)z,(ϕ−1)z)
−−−−−−−−−−−→ D⊕ D

(x,y)7→(ϕ−1)x−(γ−1)y
−−−−−−−−−−−−−→ D → 0.

The E-vector spaces Hi(C(ϕ, γ)) do not depend on the choice of γ and we define the

cohomology groups of D to be Hi(D) = Hi(C(ϕ, γ)). Note that by construction Hi(D) = 0

if i > 3.

The following result (theorems 1.1 and 1.2 and §3.1 of [Liu08]) summarizes several

properties of the groups Hi(D).

Theorem 3.5.1. — If D is a (ϕ,Γ)-module, then:

1. the Hi(D) are finite dimensional E-vector spaces and h1(D)−h0(D)−h2(D) = rk(D);

2. H0(D) = DΓ=1,ϕ=1 and H1(D) = Ext1(R,D);

3. if V is a p-adic representation, then Hi(D(V )) = Hi(Gal(Qp/Qp), V );

In the special case when D is of rank 1, Colmez has computed explicitely H1(D). This

way we have the following result (theorem 0.2 of [Col08]) which we use in §3.6. Let

x : Q×
p → E× be the map z 7→ z and let | · |p : Q

×
p → E× be the map z 7→ p− valp(z).

Theorem 3.5.2. — If δ1 and δ2 : Q
×
p → E× are two characters, then Ext1(R(δ2),R(δ1))

is a 1-dimensional E-vector space, unless δ1δ
−1
2 is either of the form x−i with i > 0 or

|x|px
i with i > 1, in which case Ext1(R(δ2),R(δ1)) is of dimension 2.

In the first case, there is therefore one nonsplit extension 0 → R(δ1) → D → R(δ2) → 0

while in the second case, the set of such extensions is parameterized by P1(E). The pa-

rameter for such an extension is called the L-invariant and turns out to be a generalization

of the usual L-invariant (see [Col10a]).

3.6. Trianguline representations of dimension 2. — If δ : Q×
p → E× is a character,

then we set u(δ) = valp(δ(p)) so that u(δ) is the slope of R(δ). Recall that w(δ) is the

weight of δ defined in §3.4.

If V is a trianguline representation of dimension 2, then D(V ) is an extension of two

(ϕ,Γ)-modules of rank 1 so that we have an exact sequence 0 → R(δ1) → D(V ) →

R(δ2) → 0. The fact that D(V ) is étale implies that u(δ1) + u(δ2) = 0 and (because of
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theorem 2.4.1) u(δ1) > 0. If u(δ1) = u(δ2) = 0, then R(δ1) and R(δ2) are étale and V

itself is an extension of two representations.

We denote by S the space S = {(δ1, δ2,L)} where L = ∞ if δ1δ
−1
2 is neither of the form

x−i with i > 0, nor of the form |x|px
i with i > 1, and L ∈ P1(E) otherwise. Theorem

3.5.2 above allows us to construct for every s ∈ S a nontrivial extension D(s) of R(δ2)

by R(δ1) and vice versa.

If s ∈ S, then we set w(s) = w(δ1)−w(δ2). We define S∗ as the set of s ∈ S such that

u(δ1) + u(δ2) = 0 and u(δ1) > 0 and we then set u(s) = u(δ1) if s ∈ S∗. We define the

“crystalline”, “semistable” and “nongeometric” parameter spaces as follows.

1. Scris
∗ = {s ∈ S∗ such that w(s) > 1 and u(s) < w(s) and L = ∞};

2. Sst
∗ = {s ∈ S∗ such that w(s) > 1 and u(s) < w(s) and L 6= ∞};

3. Sng
∗ = {s ∈ S∗ such that w(s) is not an integer > 1}.

Let Sirr = Scris
∗ ⊔ Sst

∗ ⊔ Sng
∗ .

Theorem 3.6.1. — If s ∈ Sirr, then D(s) is étale and the attached representation V (s)

is trianguline and irreducible. Every 2-dimensional irreducible trianguline representation

is of the form V (s) (after possibly extending scalars) and we have V (s) = V (s′) if and

only if s ∈ Scris
∗ and s′ = (xw(s)δ2, x

−w(s)δ1,∞).

In particular, if s ∈ S \ Sirr then either D(s) is étale but V (s) is reducible or D(s) is

not even étale (this happens for example if w(s) > 1 and u(s) > w(s)).

The representation V (s) becomes crystalline (or semistable) on an abelian extension

of Qp after possibly twisting by a character if s ∈ Scris
∗ (or if s ∈ Sst

∗ ), while V (s) is not

a twist of a de Rham representation if s ∈ Sng
∗ . In the cases where V (s) is crystalline or

semistable, Colmez has explicitly determined in §4.5 and 4.6 of [Col08] the filtered ϕ-

and (ϕ,N)-modules Dcris(V (s)) and Dst(V (s)) in terms of s.

Let us give as an example the description of the parameter s corresponding to the

representation Vpf arising from a modular eigenform of level N prime to p, weight k,

character ε and coefficient ap ∈ mE . If y ∈ E×, let µy : Q×
p → E× be the character

defined by µy(z) = yvalp(z). Let x0 : Q
×
p → E× be the character defined by x0(z) = z|z|p

so that x0(p) = 1 and x0(z) = z if z ∈ Z×
p . The result below then follows from the

computations of §4.5 of [Col08].

Theorem 3.6.2. — We have (Vpf)
∗ = V (µy, µε(p)/yx

1−k
0 ,∞) where y ∈ mE is such that

ap = y + ε(p)pk−1/y.

The results of this § have been generalized to 2-dimensional trianguline representations

of Gal(Qp/K) by Nakamura in [Nak09].
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4. Arithmetic applications

In this chapter, we explain the role that trianguline representations play in the p-adic

local Langlands correspondence and then in the theory of overconvergent modular forms.

4.1. The p-adic local Langlands correspondence. — The p-adic local Langlands

correspondence for GL2(Qp) is a bijection between certain 2-dimensional p-adic represen-

tations of Gal(Qp/Qp) and certain representations of GL2(Qp). The first examples of this

correspondence were constructed by Breuil, for semistable and crystalline representations

of Gal(Qp/Qp). These examples inspired Colmez to use (ϕ,Γ)-modules in order to give

a “functorial” construction of these examples, and he realized that the natural condition

to impose on the p-adic representations which he was considering was that the attached

(ϕ,Γ)-module be an extension of two (ϕ,Γ)-modules of rank 1. This is what led him to

define trianguline representations. In the notations of §3.6, if s ∈ Sirr then the represen-

tation of GL2(Qp) corresponding to V (s) by the p-adic local Langlands correspondence

is a p-adic unitary Banach space representation Π(s) of GL2(Qp) constructed as follows.

Let logL be the logarithm normalised by logL(p) = L (if L = ∞, we set log∞ = valp)

and if s ∈ S, let δs be the character (x|x|p)
−1δ1δ

−1
2 . Note that if s ∈ Sirr then we can

have L 6= ∞ only if δs is of the form xi with i > 0. We can define the notion of a class

Cu function for u ∈ R>0 generalizing the usual case u ∈ Z>0. We denote by B(s) the

space of functions f : Qp → E which are of class Cu(s) and such that x 7→ δs(x)f(1/x)

extends at 0 to a function of class Cu(s). The space B(s) is then endowed with an action

of GL2(Qp) given by the formula:
[(

a b
c d

)
· f

]
(y) = (x|x|pδ

−1
1 )(ad− bc) · δs(cy + d) · f

(
ay + b

cy + d

)
.

The space M(s) is defined by

1. if δs is not of the form xi with i > 0, then M(s) is the space generated by 1 and by

the functions y 7→ δs(y − a) with a ∈ Qp;

2. if δs is of the form xi with i > 0, then M(s) is the intersection of B(s) with the

space generated by the functions y 7→ δs(y − a) and y 7→ δs(y − a) logL(y − a) with

a ∈ Qp.

We finally set Π(s) = B(s)/M̂(s) where M̂(s) is the closure of M(s) inside B(s).

Theorem 4.1.1. — The unitary Banach space representation Π(s) of GL2(Qp) is

nonzero, topologically irreducible and admissible in the sense of Schneider-Teitelbaum.

These representations Π(s) are called the “unitary principal series” and the above

theorem is theorem 0.4 of [Col10b]. Colmez then proceeds in [Col10c] to attach to
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any 2-dimensional p-adic representation of Gal(Qp/Qp) a representation of GL2(Qp) and

he proves that they have the required properties by using the fact that this is true

for trianguline representations, that his construction is suitably continuous, and that

trianguline representations are Zariski dense in the space of all 2-dimensional p-adic

representations. See [Ber10a] for a detailed survey.

4.2. Families of Galois representations. — A character 1 + pZp → 1 + mE is

determined by its value at 1 + p so that if η : Z×
p → O×

E is a character, then the natural

parameter space for characters η′ : Z×
p → O×

E which have the same reduction modulo

p as η is the rigid analytic space attached to Qp ⊗Zp
Zp[[X ]] (the rigid analytic space

attached to such a ring is the set of its maximal ideals). We call this space the universal

deformation space of η and denote it by Xη.

There is also a parameter space X u
δ

for characters δ : Q×
p → E× which have a fixed

slope u and such that δ(p)/pu and δ |Z×

p
are fixed, and this parameter space is the rigid

analytic space attached toQp⊗Zp
Zp[[X1, X2]]. Denote by δ(x) the character corresponding

to a point x ∈ X u
δ
. Colmez proves in §5.1 of [Col08] that the representations V (s) live

in analytic families of trianguline representations.

Theorem 4.2.1. — If (δ1, δ2,∞) ∈ Sirr and if δ1δ
−1
2 (p) /∈ pZ, then there exists a neigh-

borhood U of (δ1, δ2) ∈ X
u1

δ1
× X

u2

δ2
and a free OU -module V of rank 2 with an action

of Gal(Qp/Qp) such that V (u) = V (δ1(u), δ2(u),∞) if u ∈ U .

Recall that Mazur generalized the construction of Xη in [Maz89] and proved that

for certain groups G and representations ρ : G → GLd(Fp), there exists a universal

deformation space Xρ which is a parameter space for all representations ρ : G → GLd(Zp)

having reduction modulo mZp
isomorphic to ρ. This applies for example if End(ρ) = Fp

and if either G = Gal(QS/Q) is the Galois group of the maximal extension of Q which

is unramified outside of a finite set of places S or if G = Gal(Qp/Qp).

In the case when G = Gal(Qp/Qp) and d = 2, the corresponding space Xρ is usually the

rigid analytic space attached to Qp⊗Zp
Zp[[X1, X2, X3, X4, X5]]. Theorem 4.2.1 then shows

that inside the 5-dimensional space Xρ there is a countable number (one for each slope)

of 4-dimensional subspaces corresponding to trianguline representations. In particular,

the “trianguline locus” of Xρ is Zariski dense (it is however a “thin subset” of Xρ in the

terminology of §4 of [BC10]). This can be compared with the following result (theorems

B and C of [BC08]).



16 LAURENT BERGER

Theorem 4.2.2. — If b > a, then the locus of Xρ corresponding to crystalline (or

semistable or de Rham or Hodge-Tate) representations with Hodge-Tate weights in the

range [a, b] is a closed subspace of Xρ.

4.3. Overconvergent modular forms. — Overconvergent modular forms are ob-

jects defined by Coleman in [Col96] which are p-adic generalizations of classical modular

forms. We do not define them in this survey because we don’t really need to (for a survey

about overconvergent modular forms, see [Eme09]). Suffice to say that an overconver-

gent modular form has a q-expansion which is a p-adic limit of q-expansions of classical

modular forms and that one can attach Galois representations to them. In fact in this

§ we directly define some p-adic representations of Gal(Q/Q) by a p-adic interpolation

process and merely recall that these representations are the ones which are attached to

“overconvergent modular eigenforms of finite slope”.

Let N > 1 be an integer prime to p and let S be the set of primes dividing pN

and ∞. Fix some 2-dimensional Fp-representation ρ of Gal(Q/Q). Let X S
ρ be the

universal deformation space for representations ρ of Gal(Q/Q) whose reduction is ρ and

which are unramified outside of S so that every x ∈ X S
ρ (E) corresponds to an E-linear

representation Vx of Gal(Q/Q) which is unramified outside of S. Note that X S
ρ is usually

a 3-dimensional rigid analytic ball by results of Weston (see theorem 1 of [Wes04]).

Let Ccl be the set of points (x, λ) ∈ X
S
ρ × Gm such that Vx is the representation

attached to a modular eigenform f on Γ1(Npr) for some r > 1 with Up(f) = λf , and

let C be the Zariski closure of Ccl inside X S
ρ × Gm. By §1.5 of [CM98], we have the

following result.

Theorem 4.3.1. — The variety C is a rigid analytic curve.

Coleman and Mazur then show in [CM98] that the Galois representations Vx corre-

sponding to points (x, λ) ∈ C(E) are the ones which are attached to the “overconvergent

modular eigenforms of finite slope” defined by Coleman. The curve C is called the eigen-

curve. The projection of C on X S
ρ is then a complicated space (for instance, it has

infinitely many double points) which is the “infinite fern” of [Maz97] and [GM98], see

§2.5 of [Eme09]. The following result (a consequence of theorem 6.3 of [Kis03] com-

bined with theorem 3.3.5) describes the restriction to Gal(Qp/Qp) of the representations

of Gal(Q/Q) which are constructed in this way.

Theorem 4.3.2. — If f is an overconvergent modular eigenform of finite slope of level

N (i.e. if (Vpf, λ) ∈ C(E) by the above remark), then Vpf is a trianguline representation.
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The idea is that this theorem is true if f is a classical modular eigenform by using

theorem 3.2.2, and Kisin deduces theorem 4.3.2 from the classical case by a p-adic inter-

polation argument using theorem 3.3.5. We then have the following converse to theorem

4.3.2, Emerton’s generalization of the Fontaine-Mazur conjecture.

Theorem 4.3.3. — If V is an irreducible 2-dimensional p-adic representation of

Gal(Q/Q) such that

1. V is unramified at almost every prime,

2. V is trianguline at p,

3. V satisfies hypotheses (1), (2) and (3’) of §3.2,

then V is a twist of the Galois representation attached to an overconvergent cuspidal

eigenform of finite slope.

We now describe the parameter s ∈ S such that (Vpf)
∗ = V (s) just as we did for

classical modular forms at the end of §3.6. Let f be a finite slope overconvergent modular

eigenform of level N and character ε. Let k = w(det(Vpf)) + 1 (so that if f is classical,

then k is the weight of f) and let λ ∈ E be such that Up(f) = λf . The following result

is proposition 5.2 of [Che08], where µλ : Q×
p → E× is the character z 7→ λvalp(z).

Theorem 4.3.4. — If k > 1 and either valp(λ) = 0 or valp(λ) = k − 1, then Vpf is

reducible and otherwise Vpf is irreducible and (Vpf)
∗ = V (δ1, det(Vpf)

−1 · δ−1
1 ,L) where

1. if k > 1 and 0 < valp(λ) < k − 1, then δ1 = µλ;

2. if k > 1 and valp(λ) > k − 1, then δ1 = x1−kµλ;

3. if k is not an integer > 1, then δ1 = µλ.

Note that case (1) corresponds to Scris
∗ ⊔Sst

∗ while cases (2) and (3) correspond to Sng
∗ .

Coleman’s “small slope criterion” for the classicality of overconvergent modular eigen-

forms (§6 of [Col96]) can then be interpreted as follows in terms of Galois representations:

if k > 1 and 0 < valp(λ) < k − 1, then the representation Vpf is potentially semistable

at p and therefore the overconvergent modular form f is classical by the Fontaine-Mazur

conjecture (theorem 3.2.5).

We finish this § by discussing the weight of overconvergent cuspidal eigenforms of finite

slope. Let W be the weight space, that is the parameter space for characters of Z×
p . The

space W is the union of the p − 1 balls Xωi where 0 6 i 6 p − 2. If V is a p-adic

representation of Gal(Qp/Qp), then by class field theory det(V ) gives a character of Q×
p

whose restriction to Z×
p is the weight κV of V (this definition is more precise than the

one given in §3.4). This gives rise to a map κ : X S
ρ → W and by composition to a map

C → W which satisfies the following property by §1.5 of [CM98].
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Theorem 4.3.5. — The map C → W is locally finite and flat.

We now explain that ifN = 1 and p ∈ {2, 3, 5, 7}, then one can give a “local” realization

of the eigencurve. A point (κ, λ) ∈ W × Gm is said to be special if κ = xk for some

k > 2 and λ2 = pk−2. Let W ×̃Gm be the blow-up of W × Gm at the special points.

Consider the map C → W ×̃Gm given by (Vx, λ) 7→ (κx, λ,Lx) at the special points and

by (Vx, λ) 7→ (κx, λ) elsewhere. The following theorem is the main result of [Che08].

Theorem 4.3.6. — The map C → W ×̃Gm is a rigid analytic map and if N = 1 and

p ∈ {2, 3, 5, 7}, then it is a closed immersion.

The main ideas underlying this theorem are Colmez’ theorem 0.5 of [Col10a] expressing

the L-invariant as the derivative of the Up-eigenvalue and the fact that if p ∈ {2, 3, 5, 7}

and S = {p,∞}, then an odd 2-dimensional p-adic representation of Gal(QS/Q) is de-

termined by its restriction to Gal(Qp/Qp) (proposition 1.8 of [Che08]).

4.4. Trianguline representations and Selmer groups. — Since the (ϕ,Γ)-module

attached to a trianguline representation V has a particularly easy structure, one can use

this structure to study the cohomology groups attached to V , in particular the Selmer

group and its variants. Some of the techniques which are available in the ordinary case for

that study (such as [Gre89]) can be extended to the case of trianguline representations.

For example, it is possible to give a generalized definition of the usual L-invariant (see

Benois’ [Ben09]), and to study the Selmer groups corresponding to families of trianguline

representations such as those carried by the eigencurve or more general eigenvarieties (as

in the book [BC09] by Belläıche and Chenevier and in Pottharst’s [Pot08] and [Pot10]).

In this way, it is possible to prove some new cases of the Bloch-Kato conjectures by

establishing some “lower semicontinuity” results about the rank of the Selmer groups

(see [BC09] and Belläıche’s [Bel10]).

References

[BC08] L. Berger & P. Colmez – “Familles de représentations de de Rham et monodromie
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[Bel10] J. Belläıche – “Ranks of Selmer groups in an analytic family”, preprint, 2010.

[Ben09] D. Benois – “A generalization of Greenberg’s L-invariant”, preprint, 2009.

[Ber02] L. Berger – “Représentations p-adiques et équations différentielles”, Invent. Math.
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Bourbaki, Astérisque, to appear, 2010.

[Ber10b] , “A p-adic family of dihedral (ϕ,Γ)-modules”, preprint, 2010.

[CC98] F. Cherbonnier & P. Colmez – “Représentations p-adiques surconvergentes”, In-
vent. Math. 133 (1998), no. 3, p. 581–611.

[CF00] P. Colmez & J.-M. Fontaine – “Construction des représentations p-adiques semista-
bles”, Invent. Math. 140 (2000), no. 1, p. 1–43.

[Che08] G. Chenevier – “Quelques courbes de Hecke se plongent dans l’espace de Colmez”,
J. Number Theory 128 (2008), no. 8, p. 2430–2449.

[CM98] R. Coleman & B. Mazur – “The eigencurve”, Galois representations in arithmetic
algebraic geometry (Durham, 1996), London Math. Soc. Lecture Note Ser., vol. 254, Cambridge
Univ. Press, Cambridge, 1998, p. 1–113.

[Col96] R. Coleman – “Classical and overconvergent modular forms”, Invent. Math. 124

(1996), no. 1-3, p. 215–241.

[Col08] P. Colmez – “Représentations triangulines de dimension 2”, Astérisque (2008),
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to appear, 2009.

[Eme10] , “Local-global compatibility in the p-adic Langlands programme for GL2/Q”,
preprint, 2010.

[FM95] J.-M. Fontaine & B. Mazur – “Geometric Galois representations”, Elliptic curves,
modular forms, & Fermat’s last theorem (Hong Kong, 1993), Ser. Number Theory, I, Int.
Press, Cambridge, MA, 1995, p. 41–78.

[Fon90] J.-M. Fontaine – “Représentations p-adiques des corps locaux. I”, The Grothendieck
Festschrift, Vol. II, Progr. Math., vol. 87, Birkhäuser Boston, Boston, MA, 1990, p. 249–309.

[Fon94a] , “Le corps des périodes p-adiques”, Astérisque (1994), no. 223, p. 59–111,
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