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0 CYCLIC STRUCTURES IN ALGEBRAIC (CO)HOMOLOGY THEORIES

NIELS KOWALZIG AND ULRICH KRÄHMER

ABSTRACT. This note discusses the cyclic cohomology of a left Hopf algebroid (×A-
Hopf algebra) with coefficients in a right module-left comodule, defined using a straight-
forward generalisation of the original operators given by Connes and Moscovici for Hopf
algebras. Lie-Rinehart homology is a special case of this theory. A generalisation of cyclic
duality that makes sense for arbitrary para-cyclic objectsyields a dual homology theory.
The twisted cyclic homology of an associative algebra provides an example of this dual
theory that uses coefficients that are not necessarily stable anti Yetter-Drinfel’d modules.

1. INTRODUCTION

1.1. Topic. A left Hopf algebroid (×A-Hopf algebra)U is roughly speaking a Hopf al-
gebra whose ground ring is not a fieldk but a possibly noncommutativek-algebraA
[B2, Sch2]. The concept provides in particular a natural framework for unifying and ex-
tending classical constructions in homological algebra. Group, Lie algebra, Hochschild,
and Poisson homology are all special cases of Hopf algebroidhomology

H•(U,M) := TorU
•
(M,A), M ∈ Uop-Mod,

since the ringsU over which these theories can be expressed as derived functors are all left
Hopf algebroids. This allows one for example to study cup andcap products as well as the
phenomenon of Poincaré duality in a uniform way [KoKr].

Similarly, we describe here how the additional structure ofa left U -comodule onM
induces a para-cyclic structure (cf. Section 2.7) on the canonical chain complexC•(U,M)
that computesH•(U,M) assumingU is flat overA. This defines in particular an analogue
of the Connes-Rinehart-Tsygan differential

B : H•(U,M) → H•−1(U,M).

Assuming a suitable compatibility between theU -action and theU -coaction (namely that
M is a stable anti Yetter-Drinfel’d module), the para-cyclick-moduleC•(U,M) is in fact
cyclic and hence turned byB into a mixed complex. However, we will also discuss con-
crete examples which demonstrate the necessity to go beyondthis setting.

1.2. Background. The operatorB has been defined by Rinehart on the Hochschild ho-
mology of a commutativek-algebraA (with M = A andU = Ae = A ⊗k A

op) in order
to define the De Rham cohomology of an arbitrary affine scheme overk [Ri]. Connes and
Tsygan independently rediscovered it around 1980 as a central ingredient in their definition
of cyclic homology which extends Rinehart’s theory to noncommutative algebras [C, FTs].

Connes and Moscovici, and Crainic initiated the study of thecase of a Hopf algebra
U overA = k with one-dimensional coefficientsM [CM2, Cr]. The class of admissible
coefficient modulesM was subsequently enlarged to stable anti Yetter-Drinfel’dmodules
[HKhRS], and Kaygun finally obtained the construction for Hopf algebras with arbitrary
modules-comodules as coefficients [Ka1, Ka2].
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Noncommutative base rings appeared for the first time in the particular example of the
“extended” Hopf algebra governing the transversal geometry of foliations [CM1]. The
general theory has then been further developed in [BŞ1, BŞ2, HasR, KhR, Ko, KoP, Ma].

1.3. Results. Our first aim here is to give explicit formulas for the most straightforward
generalisation of the original operators defined by Connes and Moscovici in [CM1] to-
wards Hopf algebroids and completely general coefficients.We copy the result here, see
the main text for the details and in particular for the notation used:

Theorem 1.1. Let U be a left Hopf algebroid over ak-algebraA, andM be a right
U -module and leftU -comodule with compatible induced leftA-module structures. Then
C•(U,M) := U⊗A• ⊗A M carries a canonical para-cocyclick-module structure with
codegeneracies and cofaces

δi(z ⊗A m) =







1⊗A u
1 ⊗A · · · ⊗A u

n ⊗A m
u1 ⊗A · · · ⊗A ∆(ui)⊗A · · · ⊗A u

n ⊗A m
u1 ⊗A · · · ⊗A u

n ⊗A m(−1) ⊗A m(0)

if i = 0,
if 1 ≤ i ≤ n,
if i = n+ 1,

δj(m) =

{

1⊗A m
m(−1) ⊗A m(0)

if j = 0,
if j = 1,

σi(z ⊗A m) = u1 ⊗A · · · ⊗A ǫ(u
i+1)⊗A · · · ⊗A u

n ⊗A m 0 ≤ i ≤ n− 1,

and cocyclic operator

τn(z ⊗A m) = u1
−(1)u

2 ⊗A · · · ⊗A u
1
−(n−1)u

n ⊗A u
1
−(n)m(−1) ⊗A m(0)u

1
+,

where we abbreviatez := u1 ⊗A · · · ⊗A u
n.

The proof follows closely the literature cited above, whichcontains similar construc-
tions of a large variety of para-cyclic and para-cocyclic modules assigned to Hopf al-
gebroids. Many of these are related by various dualities (k-linear duals,Tor vs. Ext
vs. Cotor, dual Hopf algebroids when applicable, and cyclic duality). However, there
seems no reference for the exact setting we consider here. Also, Kaygun’s pivotal obser-
vation mentioned above seems a little lost in the referencesworking over noncommutative
base algebras. Last but not least, the above answers also thequestion of how the Hopf-
cyclic (co)homologies in [Ko, KoP] can be extended to general coefficients.

Secondly, it has been pointed out by several authors that thestandard operation of
cyclic duality which canonically identifies cyclic and cocyclic objects does not lift to para-
(co)cyclic objects, see e.g. [BŞ1]. However, we show in Section 4 that a different choice
of anti-autoequivalence of the cyclic category leads to a form of cyclic duality that does
lift. This allows us to construct in full generality a cyclicdual(C•(U,M), d•, s•, t•) from
the para-cocyclic module from Theorem 1.1. We provide an isomorphism of this with the
para-cyclic moduleM ⊗A

op (◮U� )⊗A
op• whose structure maps are given by

di(m⊗A
op x) =







m⊗A
op u1 ⊗A

op · · · ⊗A
op ǫ(un) ◮un−1

m⊗A
op · · · ⊗A

op un−iun−i+1 ⊗A
op · · ·

mu1 ⊗A
op u2 ⊗A

op · · · ⊗A
op un

if i=0,
if 1≤ i≤n− 1,
if i=n,

si(m⊗A
op x) =







m⊗A
op u1 ⊗A

op · · · ⊗A
op un ⊗A

op 1
m⊗A

op · · · ⊗A
op un−i ⊗A

op 1⊗A
op un−i+1 ⊗A

op · · ·
m⊗A

op 1⊗A
op u1 ⊗A

op · · · ⊗A
op un

if i=0,
if 1≤ i≤n− 1,
if i=n,

tn(m⊗A
op x) =m(0)u

1
+ ⊗A

op u2+ ⊗A
op · · · ⊗A

op un+ ⊗A
op un− · · ·u1−m(−1),

where we abbreviatex := u1 ⊗A
op · · · ⊗A

op un.
It is precisely this variation of Hopf-cyclic theory that has the ordinary Hopf algebroid

homology as underlying simplicial homology, and in particular the one which reduces to
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the original cyclic homology of an associative algebra whenone applies it to the Hopf alge-
broidU = Ae. Now the freedom to consider arbitrary coefficients becomescrucial, since it
allows one for example to incorporate the twisted cyclic homology of Kustermans, Murphy
and Tuset [KuMuTu]. That paper has been the first one to generalise the Connes-Rinehart-
Tsygan operatorB on the Hochschild homology of an associative algebra to coefficients in
(A,A)-bimodules other thanA itself, namely those where one of the two actions ofA on
itself is twisted by an algebra automorphismσ. When viewed as a special case of the above
Hopf-cyclic homology, these coefficients are not stable anti Yetter-Drinfel’d, and one sees
that anAe-comodule structure is all one needs to defineB. We discuss this example in
the last section of the paper, and also the example of Lie-Rinehart homology which is an
important classical case of the cyclic cohomology theory from Theorem 1.1.

N.K. is supported by an I.H.É.S. visiting grant. U.K. is supported by the EPSRC fellow-
ship EP/E/043267/1 and partially by the Marie Curie PIRSES-GA-2008-230836 network.

2. PRELIMINARIES

2.1. Some conventions.Throughout this note, “ring” means “unital and associativering”,
and we fix a commutative ringk. All other algebras, modules etc. will have an under-
lying structure of ak-module. Secondly, we fix ak-algebraA, i.e. a ring with a ring
homomorphismηA : k → Z(A) to its centre. We denote byA-Mod the category of
left A-modules, byAop the opposite and byAe := A ⊗k A

op the enveloping algebra of
A. An A-ring is a monoid in the monoidal category(Ae-Mod,⊗A, A) of Ae-modules
(i.e. (A,A)-bimodules with symmetric action ofk), fulfilling associativity and unitality.
Likewise, anA-coring is a comonoid in(Ae-Mod,⊗A, A), fulfilling coassociativity and
counitality.

Our main object is anAe-ringU (a monoid in(Ae ⊗k A
e)-Mod). Explicitly, such an

Ae-ring is given by ak-algebra homomorphismη = ηU : Ae → U whose restrictions

s := η(− ⊗k 1) : A→ U and t := η(1 ⊗k −) : Aop → U

will be called thesourceandtargetmap. Left and right multiplication inU give rise to an
(Ae, Ae)-bimodule structure onU , that is, four commuting actions ofA that we denote by

a �u � b := s(a)t(b)u, a ◮u ◭ b := us(b)t(a), a, b ∈ A, u ∈ U. (2.1)

If not stated otherwise, we viewU as an(A,A)-bimodule using the actions� , � . In
particular, we define the tensor productU ⊗A U with respect to this bimodule structure.
On the other hand, using the actions◮ , ◭ permits to define theTakeuchi product

U×AU := {
∑

i ui⊗Avi ∈ U⊗AU |
∑

i a ◮ui⊗Avi =
∑

i u⊗Avi ◭ a, ∀a ∈ A}. (2.2)

This is anAe-ring via factorwise multiplication. Similarly,Endk(A) is anAe-ring with
ring structure given by composition and(A,A)-bimodule structure(aϕb)(c) := ϕ(bca),
ϕ ∈ Endk(A), a, b, c ∈ A.

2.2. Bialgebroids. [T] Bialgebroids are a generalisation of bialgebras. An important sub-
tlety is that the algebra and coalgebra structure are definedin different monoidal categories.

Definition 2.1. Let A be ak-algebra. Aleft bialgebroidoverA (or A-bialgebroid or
×A-bialgebra) is anAe-ringU together with two homomorphisms ofAe-rings

∆ : U → U ×A U, ǫ̂ : U → Endk(A)

which turnU into anA-coring with coproduct∆ (viewed as a mapU → U ⊗A U ) and
counitǫ : U → A, u 7→ (ǫ̂(u))(1).
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Note that this means for example thatǫ satisfies for allu, v ∈ U

ǫ(uv) = ǫ(u ◭ ǫ(v)) = ǫ(ǫ(v) ◮u).

Analogously one definesright bialgebroids where the roles of� , � and ◮ , ◭ are ex-
changed. We shall not write out the details, but rather referto [KSz, B2].

2.3. Left Hopf algebroids. [Sch2] Left Hopf algebroids have been introduced by
Schauenburg under the name×A-Hopf algebrasand generalise Hopf algebras towards
left bialgebroids. For a left bialgebroidU overA, one defines the(Hopf-)Galois map

β : ◮U ⊗A
op U� → U� ⊗A �U, u⊗A

op v 7→ u(1) ⊗A u(2)v, (2.3)

where

◮U ⊗A
op U� = U ⊗k U/span{a ◮u⊗k v − u⊗k v � a |u, v ∈ U, a ∈ A}. (2.4)

Definition 2.2. [Sch2] A leftA-bialgebroidU is called aleft Hopf algebroid(or×A-Hopf
algebra) if β is a bijection.

In a similar manner, one definesright Hopf algebroids(cf. [BSz, Prop. 4.2]).
Following [Sch2], we adopt a Sweedler-type notation

u+ ⊗A
op u− := β−1(u⊗A 1) (2.5)

for the so-calledtranslation mapβ−1(− ⊗A 1) : U → ◮U ⊗A
op U� . Useful for our

subsequent calculations, one has for allu, v ∈ U , a ∈ A [Sch2, Prop. 3.7]:

u+(1) ⊗A u+(2)u− = u⊗A 1 ∈ U� ⊗A �U, (2.6)

u(1)+ ⊗A
op u(1)−u(2) = u⊗A

op 1 ∈ ◮U ⊗A
op U� , (2.7)

u+ ⊗A
op u− ∈ U ×Aop U, (2.8)

u+(1) ⊗A u+(2) ⊗A
op u− = u(1) ⊗A u(2)+ ⊗A

op u(2)−, (2.9)

u+ ⊗A
op u−(1) ⊗A u−(2) = u++ ⊗Aop u− ⊗A u+−, (2.10)

(uv)+ ⊗A
op (uv)− = u+v+ ⊗A

op v−u−, (2.11)

u+u− = s(ǫ(u)), (2.12)

u+t(ǫ(u−)) = u, (2.13)

(s(a)t(b))+ ⊗A
op (s(a)t(b))− = s(a)⊗A

op s(b), (2.14)

where in (2.8) we mean the Takeuchi product

U×AopU := {
∑

i ui ⊗A
op vi ∈ ◮U ⊗A

op U� |
∑

i ui � a⊗A
op vi =

∑

i ui ⊗A
op a ◮ vi} ,

which is an algebra by factorwise multiplication, but with opposite multiplication on the
second factor. Note that in (2.10) the tensor product overAop links the first and third tensor
component. By (2.6) and (2.8) one can write

β−1(u⊗A v) = u+ ⊗A
op u−v, (2.15)

which is easily checked to be well-defined overA with (2.11) and (2.14).

Remark1. Observe that there is no notion of antipode for a left Hopf algebroid. Böhm and
Szlachányi have introduced the concept of a (full or two-sided) Hopf algebroid[B2], which
is, roughly speaking, an algebra equipped with a left and a right bialgebroid structure over
anti-isomorphic base algebrasA andB, together with an antipode mapping from the left
bialgebroid to the right. However, it is proved in [BSz, Prop. 4.2] that a full Hopf algebroid
with invertible antipode can be equivalently described as an algebra with both a left and
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a right Hopf algebroid structure subject to compatibility conditions, which motivates to
speak of left Hopf algebroids rather than×A-Hopf algebras.

2.4. U -modules. Let U be a left bialgebroid with structure maps as before. Left and
right U -modules are defined as modules over the ringU , with respective actions denoted
by juxtaposition or, at times, by a dot for the sake of clarity. We denote the respective
categories byU -Mod andUop-Mod; whileU -Mod is a monoidal category,Uop-Mod

is in general not [Sch1]. One has a forgetful functorU -Mod → Ae-Mod using which
we consider every leftU -moduleN also as an(A,A)-bimodule with actions

anb := a �n � b := s(a)t(b)n, a, b ∈ A, n ∈ N. (2.16)

Similarly, every rightU -moduleM is also an(A,A)-bimodule via

amb := a ◮m ◭ b := ms(b)t(a), a, b ∈ A,m ∈M, (2.17)

and in both cases we usually prefer to express these actions just by juxtaposition if no
ambiguity is to be expected.

2.5. U -comodules.Similarly as for coalgebras, one may define comodules over bialge-
broids, but the underlyingA-module structures need some extra attention. For the follow-
ing definition confer e.g. [Sch1, B1, BrzWi].

Definition 2.3. A leftU -comodulefor a left bialgebroidU overA is a left comodule of the
underlyingA-coring(U,∆, ǫ), i.e. a leftA-moduleM with actionLA : (a,m) 7→ am and
a leftA-module map

∆M : M → U� ⊗A M, m 7→ m(−1) ⊗A m(0)

satisfying the usual coassociativity and counitality axioms

(∆⊗ id) ◦∆M = (id⊗∆M) ◦∆M and LA ◦ (ǫ⊗ id) ◦∆M = id.

We denote the category of leftU -comodules byU -Comod.

Analogously one definesright U -comodules and comodules for right bialgebroids.
On any leftU -comodule one can additionally define a rightA-action

ma := ǫ
(

m(−1)s(a)
)

m(0). (2.18)

This is the unique action that turnsM into anAe-module in such a way that the coaction
is anAe-module morphism

∆M :M → U ×A M,

whereU ×A M is the Takeuchi product

U ×AM := {
∑

i ui ⊗Ami ∈ U ⊗AM |
∑

i uit(a)⊗Ami =
∑

i ui ⊗Amia, ∀a ∈ A}.

As a result,∆M satisfies the identities

∆M(amb) = s(a)m(−1)s(b)⊗A m(0), (2.19)

m(−1) ⊗A m(0)a = m(−1)t(a)⊗A m(0). (2.20)

This is compatible with (2.18) since one hasǫ(us(a)) = ǫ(ut(a)) for all u ∈ U, a ∈ A.
One can then prove (see [B2, Thm. 3.18] and [Sch1, Prop. 5.6])thatU -Comod has a

monoidal structure such that the forgetful functorU -Comod → Ae-Mod is monoidal:
for any two comodulesM,M ′ ∈ U -Comod, their tensor productM ⊗A M ′ is a left
U -comodule by means of the coaction

∆M⊗AM
′ :M ⊗A M

′ → U ⊗A (M ⊗A M
′),

m⊗A m
′ 7→ m(−1)m

′

(−1) ⊗A m(0) ⊗A m
′

(0).
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The map∆M⊗AM
′ is easily checked to be well-defined.

Remark2. If σ ∈ U is a grouplike element in a (left) bialgebroid, then

A
∆(a) := t(a)σ and ∆A(a) := s(a)σ, a ∈ A,

define right and leftU -comodule structures onA, which we shall refer to as induced by
σ. In particular, the base algebraA carries for any bialgebroid both a canonical right and
a canonical left coaction induced byσ = 1, contrasting the fact thatA carries in general
only a canonical leftU -module structure induced byǫ, but no right one.

Remark3. A special feature for bialgebroidsU over commutative base algebrasA with
s = t is that every leftA-moduleM can be made into a, say, leftU -comodule by means
of the trivial coactionm 7→ 1 ⊗A m (it follows from (2.19) that this is not possible in
general).

2.6. Stable anti Yetter-Drinfel’d modules. The following definition is the left bialge-
broid right module and left comodule version of the corresponding notion in [BŞ2]. For
Hopf algebras, the concept goes back to [HKhRS].

Definition 2.4. Let U be a left Hopf algebroid with structure maps as before, and let
M simultaneously be a leftU -comodule with coaction denoted as above and a rightU -
module with action denoted by(m,u) 7→ mu for u ∈ U , m ∈ M . We callM an anti
Yetter-Drinfel’d (aYD) moduleprovided the following holds:

(i ) TheAe-module structure onM originating from its nature asU -comodule coin-
cides with theAe-module structure induced by the rightU -action onM , i.e., for
all a, b ∈ A andm ∈M we have

amb = a ◮m ◭ b, (2.21)

where the rightA-module structure on the left hand side is given by (2.18).
(ii ) Foru ∈ U andm ∈M one has

∆M(mu) = u−m(−1)u+(1) ⊗A m(0)u+(2). (2.22)

The anti Yetter-Drinfel’d moduleM is said to bestable (SaYD)if for all m ∈M one has

m(0)m(−1) = m.

Remark4. Observe that it is not obvious that the expression on the right hand side of (2.22)
makes sense, but this follows from (2.2), (2.8), and (2.20).

2.7. Cyclic (co)homology. We will not recall the formalism of cyclic (co)homology in
full detail. However, since this notion is not contained in our standard reference [L] we
recall that para-(co)cyclick-modules generalise (co)cyclick-modules by dropping the con-
dition that the cyclic operator implements an action ofZ/(n + 1)Z on the degreen part.
Thus a para-cyclick-module is a simplicialk-module(C•, d•, s•) and a para-cocyclick-
module is a cosimplicialk-module(C•, δ•, σ•) together withk-linear mapstn : Cn → Cn

andτn : Cn → Cn satisfying, respectively

di ◦ tn=

{

tn−1 ◦ di−1 if 1 ≤ i ≤ n,
dn if i = 0,

si ◦ tn=

{

tn+1 ◦ si−1 if 1 ≤ i ≤ n,
t2n+1 ◦ sn if i = 0,

τn ◦ δi=

{

δi−1 ◦ τn−1

δn

if 1 ≤ i ≤ n,
if i = 0,

τn ◦ σi =

{

σi−1 ◦ τn+1

σn ◦ τ2n+1

if 1 ≤ i ≤ n,
if i = 0.

(2.23)

It follows from these relations thattn+1
n respectivelyτn+1

n commutes with all the (co)faces
and (co)degeneracies. Hence any para-(co)cyclick-module defines a (co)cyclic one formed
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by the cokernels ofidCn
− tn+1

n respectively the kernels ofidCn − τn+1
n . The cyclic

(co)homology of a para-(co)cyclick-module is defined as the cyclic (co)homology of this
associated (co)cyclick-module.

Just like (co)cyclick-modules, para-(co)cyclic ones can be viewed more conceptually as
functorsΛop → k-Mod respectivelyΛ → k-Mod, whereΛ is the appropriate covering
of Connes’ cyclic categoryΛ1. Hence as Connes’ category,Λ has objects{[n]}n∈N and
the set of morphisms has generators obeying the same relations except forτn+1

n = id[n].
The localisation of this category at the set of allτn has been studied already by Feı̆gin and
Tsygan in [FTs] where it is denoted byΛ∞. However, we stress that in the present article
τn is not assumed to be an isomorphism. We will callΛ the para-cyclic category.

3. HOPF-CYCLIC COHOMOLOGY WITH COEFFICIENTS

3.1. Para-cocylic structures on corings.Following [Cr, BŞ2] we first define in this sec-
tion an auxiliary para-cocyclick-module that is relatively easy to construct. For this,U
just needs to be a left bialgebroid andM needs to be a leftU -comodule. Define then

B•(U,M) := U⊗A•+1 ⊗A
e M,

whereU is considered with the usual(A,A)-bimodule structure given by� , � . So
B•(U,M) is �U�

⊗A•+1 ⊗k M modulo the span of elements

{u0 ⊗A · · · ⊗A u
n ⊗A

e amb− b �u0 ⊗A · · · ⊗A u
n

�a⊗A
e m | a, b ∈ A}.

Now define the following operators, where we abbreviatew := u0 ⊗A · · · ⊗A u
n:

δ′i(w ⊗A
e m)=

{

u0 ⊗A · · · ⊗A ∆(ui)⊗A · · · ⊗A u
n ⊗A

e m
u0(2) ⊗A u

1 ⊗A · · · ⊗A m(−1)u
0
(1) ⊗A

e m(0)

if 0 ≤ i ≤ n,
if i = n+ 1,

σ′
i(w ⊗A

e m)=u0 ⊗A · · · ⊗A t(ǫ(u
i+1))ui ⊗A · · · ⊗A u

n ⊗A
e m 0 ≤ i ≤ n− 1,

τ ′n(w ⊗A
e m)=u1 ⊗A · · · ⊗A u

n ⊗A m(−1)u
0 ⊗A

e m(0),

(3.1)

which are shown to be well-defined using the Takeuchi condition for∆M . The following
is checked in a straightforward manner:

Lemma 3.1. The operators(δ′
•
, σ′

•
, τ ′

•
) turnB•(U,M) into a para-cocyclick-module.

3.2. The quotient B•(U,M) → C•(U,M). The para-cocyclick-module that defines
Hopf-cyclic cohomology is the canonical quotient

U⊗A•+1 ⊗Uop M

of B•(U,M) = U⊗A•+1 ⊗Ae M defined above. This quotient makes sense whenever
M also carries a rightU -module structure that induces the sameAe-module structure as
the leftU -coaction, see (2.21). In the next section we will discuss that the para-cocyclic
structure ofB•(U,M) descends to this quotient. However, for the applications innoncom-
mutative geometry one rewrites the resulting para-cocyclick-module so that the object (but
not the cocyclic operator) takes an easier form, and in the present section we construct the
involved isomorphism.

Recall (e.g. from [KoKr, Lem. 3]) that ifU is a left Hopf algebroid, then the tensor
productN⊗AM ofM ∈ Uop-Mod,N ∈ U -Mod (considered with the(A,A)-bimodule
structures (2.16) and (2.17)) carries a rightU -module structure with action

(n⊗A m)u := u−n⊗A mu+,

and hence using (2.16) and (2.17) becomes an(A,A)-bimodule by

a ◮ (n⊗A m) ◭ b :=
(

n⊗m
)

t(a)s(b) = s(a)n⊗A ms(b) = a �n⊗A m ◭ b,
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where in the second equation (2.14) was used.
Now observe that on a rightU -module of this form, the coinvariant functor

−⊗U A : Uop-Mod → k-Mod

takes a particularly simple form:

Lemma 3.2. If U is a left Hopf algebroid, then for allM ∈ Uop-Mod, N ∈ U -Mod

there is a natural isomorphism(N ⊗A M)⊗U A ≃ N ⊗Uop M .

Proof. Write firstA ⊗Uop (N ⊗A M) rather than(N ⊗A M) ⊗U A, and then apply the
naturalk-module isomorphism

P ⊗Uop (N ⊗A M) ≃ (P ⊗A N)⊗Uop M

from [KoKr, Lem. 3] withP = A. �

Note that [KoKr, Lem. 3] applied withP = A,M = Aop yields the coinvariants in the
form used in [KoP] where they were considered as a functorU -Mod → k-Mod.

Applying Lemma 3.2 withN = U⊗A•+1 will lead to the simpler form of the para-
cocyclick-module we are going to consider. To get there, we first remark:

Lemma 3.3. LetM ∈ Uop-Mod andN,P ∈ U -Mod. Then one has

(un⊗A p)⊗Uop m = (n⊗A u−p)⊗Uop mu+

for all m ∈M , n ∈ N , andp ∈ P .

Proof. One has

(un⊗A p)⊗Uop m
= (u+(1)n⊗A u+(2)u−p)⊗Uop m by (2.6),
= u+(n⊗A u−p)⊗Uop m by the monoidal structure inU -Mod,
= (n⊗A u−p)⊗Uop mu+.

The well-definedness of the first operation follows from (2.14) using (2.16) and (2.17).�

Using this we now obtain:

Proposition 3.4. For M ∈ Uop-Mod andN ∈ U -Mod, there is a canonical isomor-
phism ofk-modules

φ : (U ⊗A N)⊗Uop M
≃
−→ N ⊗A M, (3.2)

given by

(u⊗A n)⊗Uop m 7→ u−n⊗A mu+. (3.3)

Proof. The mapn⊗Am 7→ (1⊗A n)⊗Uop m is obviously a right inverse to (3.3), and by
the preceding lemma it is also a left inverse. �

In particular, this yields an isomorphism

φ : U⊗A•+1 ⊗Uop M → U⊗A• ⊗A M =: C•(U,M), (3.4)

and the latter will be the ultimate object of study.
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3.3. Cyclic cohomology with coefficients for left Hopf algebroids. Now we ask whether
the para-cocyclic structure ofB•(U,M) descends toC•(U,M). This is answered by a
left Hopf algebroid left comodule and right module version of [BŞ2, Prop. 2.19], which
generalises Proposition 5.2.1 in [Ko]:

Proposition 3.5. If M is an anti Yetter-Drinfel’d module as in Definition 2.4, the operators
(δ′

•
, σ′

•
, τ ′

•
) onB•(U,M) from(3.1) descend to well-defined operators onU⊗A•+1⊗UopM .

Proof. One needs to prove that the operators(δ′
•
, σ′

•
, τ ′

•
) areUop-balanced, i.e., that one

has for example

τ ′n(u
0 ⊗A · · · ⊗A u

n ⊗Uop mv) = τ ′n(v(1)u
0 ⊗A · · · ⊗A v(n+1)u

n ⊗Uop m)

for anyv ∈ U . This is shown by expressing the right hand side as

v(2)u
1 ⊗A · · · ⊗A v(n+1)u

n ⊗A m(−1)v(1)u
0 ⊗Uop m(0)

= v(2)u
1 ⊗A · · · ⊗A v(n+1)u

n ⊗A sǫ(v(n+2))m(−1)v(1)u
0 ⊗Uop m(0)

= v(2)u
1 ⊗A · · · ⊗A v(n+1)u

n ⊗A v(n+2)+v(n+2)−m(−1)v(1)u
0 ⊗Uop m(0)

= v+(2)u
1 ⊗A · · · ⊗A v+(n+1)u

n ⊗A v+(n+2)v−m(−1)v+(1)u
0 ⊗Uop m(0)

= u1 ⊗A · · · ⊗A u
n ⊗A v−m(−1)v+(1)u

0 ⊗Uop m(0)v+(2)

= u1 ⊗A · · · ⊗A u
n ⊗A (mv)(−1)u

0 ⊗Uop (mv)(0),

which is the left hand side. Here we used the counital identities of the left coproduct in
the second line, (2.12) in the third line, (2.9) combined with (higher) coassociativity in the
fourth line, and finally the anti Yetter-Drinfel’d condition (2.22). Similar calculations can
be made for the cofaces and codegeneracies. �

We denote the resulting para-cocyclic structure onC•(U,M) by

δi := φ ◦ δ̄′i ◦ φ
−1,

σi := φ ◦ σ̄′
i ◦ φ

−1,
τi := φ ◦ τ̄ ′i ◦ φ

−1,
(3.5)

where φ is the map from (3.4) and̄δ′i, σ̄
′
j , τ̄

′
n are the para-cocyclic operators on

U⊗A•+1 ⊗Uop M that descend fromB•(U,M).
A short computation yields the explicit expressions given in Theorem 1.1 in the intro-

duction:

δi(z ⊗A m) =







1⊗A u
1 ⊗A · · · ⊗A u

n ⊗A m
u1 ⊗A · · · ⊗A ∆(ui)⊗A · · · ⊗A u

n ⊗A m
u1 ⊗A · · · ⊗A u

n ⊗A m(−1) ⊗A m(0)

if i = 0,
if 1 ≤ i ≤ n,
if i = n+ 1,

δj(m) =

{

1⊗A m
m(−1) ⊗A m(0)

if j = 0,
if j = 1,

σi(z ⊗A m) = u1 ⊗A · · · ⊗A ǫ(u
i+1)⊗A · · · ⊗A u

n ⊗A m 0 ≤ i ≤ n− 1,
τn(z ⊗A m) = u1

−(1)u
2 ⊗A · · · ⊗A u

1
−(n−1)u

n ⊗A u
1
−(n)m(−1) ⊗A m(0)u

1
+,

(3.6)

where we abbreviatez := u1 ⊗A · · · ⊗A u
n.

In this form, the well-definedness and the well-definedness over the Sweedler presen-
tations of these operators can be seen directly (using (2.14) as well as the Takeuchi prop-
erties of∆ and∆M ). Observe, however, that the conditionma = ms(a) from (2.21) is
not needed to make the operators (3.6) well-defined and well-defined over the Sweedler
presentation but only to give a sense to the above quotienting process.
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It is less obvious that the stability condition onM implies cyclicity. This is, however,
immediate from the presentation ofC•(U,M) as a quotient ofB•(U,M):

Theorem 3.6. If U is a left Hopf algebroid andM is a stable anti Yetter-Drinfel’d module,
then(C•(U,M), δ•, σ•, τ•) is a cocyclick-module.

Proof. By its construction,(C•(U,M), δ•, σ•, τ•) is a para-cocyclic object and as such
isomorphic to(U⊗A•+1 ⊗Uop M, δ̄′

•
, σ̄′

•
, τ̄ ′

•
) obtained in Proposition 3.5. It remains to

show that this quotient ofB•(U,M) is cocyclic ifM is stable:

(τ̄ ′n)
n+1(u0 ⊗A · · · ⊗A u

n ⊗Uop m) = m(−n−1)u
0 ⊗A · · · ⊗A m(−1)u

n ⊗Uop m(0)

= m(−1) ·
(

u0 ⊗A · · · ⊗A u
n
)

⊗Uop m(0)

= u0 ⊗A · · · ⊗A u
n ⊗Uop m(0)m(−1),

where· denotes the diagonal leftU -action via the left coproduct. �

By the last line in the proof of the preceding theorem one may be tempted to think
that an aYD module defines a para-cocyclic module which is cocyclic if M is stable. The
observation we add here is that for defining a para-cocyclic module the aYD property
(2.22), i.e. compatibility betweenU -action andU -coaction, isnot required:

Theorem 3.7. Let U be a left Hopf algebroid andM a right U -module and leftU -
comodule, and let the respective leftA-actions be compatible in the following sense:

am = a ◮m, m ∈M, a ∈ A. (3.7)

Then(C•(U,M), δ•, σ•, τ•) is a para-cocyclick-module.

Proof. We need to check the relations in the right column in (2.23). Since we do not as-
sume thatM is aYD here, i.e. compatibility between action and coaction, the only relations
that need to be checked are those that have theU -action onM followed by an operation
involving theU -coaction onM . Here, this is onlyτn ◦ σ0 = σn ◦ τ2n+1, which is proven
as follows: first compute

σn
(

τn+1(u
1 ⊗A · · · ⊗A u

n+1 ⊗A m)
)

= σn
(

u1
−(1)u

2 ⊗A · · · ⊗A u
1
−(n)u

n+1 ⊗A u
1
−(n+1)m(−1) ⊗A m(0)u

1
+

)

= u1
−(1)u

2 ⊗A · · · ⊗A t
(

ǫ(u1
−(n+1)m(−1))

)

u1
−(n)u

n+1 ⊗A m(0)u
1
+

= u1
−(1)u

2 ⊗A · · · ⊗A u
1
−(n)u

n+1 ⊗A m(0)t(ǫ(m(−1)))u
1
+

= u1
−(1)u

2 ⊗A · · · ⊗A u
1
−(n)u

n+1 ⊗A mu
1
+,

where we used the Takeuchi property (2.8) in the fourth line and (3.7) together with the
comodule properties in the fifth, so that terms involving thecoaction disappear. Hence

σnτ
2
n+1(u

1 ⊗A · · · ⊗A u
n+1 ⊗A m)

= σnτn+1

(

u1
−(1)u

2 ⊗A · · · ⊗A u
1
−(n)u

n+1 ⊗A u
1
−(n+1)m(−1) ⊗A m(0)u

1
+

)

= (u1
−(1)u

2)−(1)u
1
−(2)u

3 ⊗A · · · ⊗A (u1
−(1)u

2)−(n)u
1
−(n+1)m(−1) ⊗A m(0)u

1
+(u

1
−(1)u

2)+

= u2
−(1)

(

(u1−)(1)−(u
1
−)(2)

)

(1)
u3 ⊗A · · ·

⊗A u
2
−(n)

(

(u1−)(1)−(u
1
−)(2)

)

(n)
m(−1) ⊗A m(0)u

1
+(u

1
−)(1)+u

2
+

= u2
−(1)u

3 ⊗A · · · ⊗A u
2
(n−1)u

n+1 ⊗A u
2
−(n)m(−1) ⊗A m(0)s(ǫ(u

1))u2+,

where in the fifth line (2.7) was used and (2.12) in the sixth. By (2.14) this is now easily
seen to be equal toτnσ0(u1 ⊗A · · · ⊗A u

n+1 ⊗A m). �
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Definition 3.8. For a rightU -module leftU -comoduleM with compatible induced left
A-actions over a left Hopf algebroidU , we denote byH•(U,M) andHC•(U,M) the
simplicial and cyclic cohomology groups ofC•(U,M). We refer toHC•(U,M) as to the
Hopf-cyclic cohomology ofU with coefficients inM .

Note that the simplicial cohomology is the ordinaryCotor overU :

Proposition 3.9. [Ko, KoP] If U� is flat as rightA-module, then one has

H•(U,M) ≃ Cotor•U (A,M).

Remark5. If U is a (full) Hopf algebroid over base algebrasA andB ≃ Aop, it is easy to
check thatB fulfills the properties of an anti Yetter-Drinfel’d module with respect to the
rightU -action given by the right counit of the underlying right bialgebroid. This module is
stable if the antipode of the Hopf algebroid is an involution. The operators (3.6) reduce here
to the well-known Hopf-cyclic operators for Hopf algebroids, cf. [CM1, KhR, Ko, KoP].
For example, the cyclic operator reduces in such a case to

τn(h
1 ⊗A · · · ⊗A h

n) = (S(h1))(1)h
2 ⊗A · · · ⊗A (S(h1))(n−1)h

n ⊗A (S(h1))(n).

4. HOPF-CYCLIC HOMOLOGY WITH COEFFICIENTS

4.1. Cyclic homology with coefficients for left Hopf algebroids. Let U be a left Hopf
algebroid overA with structure maps as before, and letM be a leftU -comodule with left
coaction denoted∆M : m 7→ m(−1)⊗Am(0) with underlying leftA-action(a,m) 7→ am,
and simultaneously a rightU -module with right action denoted(m,u) 7→ mu, subject to
the compatibility condition (2.21) with respect the two inducedAe-module structures.

Now define
C•(U,M) :=M ⊗A

op (◮U� )⊗A
op•,

where the tensor product is formed as in (2.4). OnC•(U,M), define the following opera-
tors, abbreviatingx := u1 ⊗A

op · · · ⊗A
op un:

di(m⊗A
op x) =







m⊗A
op u1 ⊗A

op · · · ⊗A
op ǫ(un) ◮un−1

m⊗A
op · · · ⊗A

op un−iun−i+1 ⊗A
op · · ·

mu1 ⊗A
op u2 ⊗A

op · · · ⊗A
op un

if i=0,
if 1≤ i≤n− 1,
if i=n,

si(m⊗A
op x) =







m⊗A
op u1 ⊗A

op · · · ⊗A
op un ⊗A

op 1
m⊗A

op · · · ⊗A
op un−i ⊗A

op 1⊗A
op un−i+1 ⊗A

op · · ·
m⊗A

op 1⊗A
op u1 ⊗A

op · · · ⊗A
op un

if i=0,
if 1≤ i≤n− 1,
if i=n,

tn(m⊗A
op x) =m(0)u

1
+ ⊗A

op u2+ ⊗A
op · · · ⊗A

op un+ ⊗A
op un− · · ·u1−m(−1).

(4.1)
Elements of degree zero (i.e. ofM ) are mapped to zero by the face maps,d0(m) = 0 for all
m ∈ M . Well-definedness and well-definedness over the various Sweedler presentations
follows from (2.8), (2.14), (2.20), and (2.19). Similarly as in the cohomology case, these
operators still make sense if one drops the conditionma = ms(a) from the axiom (2.21)
as well as the aYD condition (2.22).

As one might expect, we will obtain dually to Theorems 3.7 & 3.6:

Theorem 4.1. LetU be a left Hopf algebroid.

(i ) If M is a right U -module and leftU -comodule with respective leftA-actions
compatible as in(3.7), then(C•(U,M), d•, s•, t•) is a para-cyclick-module.

(ii ) If M is even a stable anti Yetter-Drinfel’d module, then(C•(U,M), d•, s•, t•) is
a cyclick-module.

We will prove this below by presentingC•(U,M) as a cyclic dual ofC•(U,M).
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Definition 4.2. For a rightU -module leftU -comoduleM with compatible induced left
A-actions over a left Hopf algebroidU , we denote byH•(U,M) andHC•(U,M) the
simplicial and cyclic homology groups ofC•(U,M). We refer toHC•(U,M) as to the
Hopf-cyclic homology ofU with coefficients inM .

Dually to Proposition 3.9, one has:

Proposition 4.3. [Ko, KoP] If ◮U is projective as leftA-module, then one has

H•(U,M) ≃ TorU
•
(M,A).

Remark6. As in Remark 5, in a full Hopf algebroidH the base algebraB of the underlying
right bialgebroid is an anti Yetter-Drinfel’d module whichis stable if the antipode is an
involution. The cyclic operator assumes the form

tn(u1 ⊗A
op · · · ⊗A

op un) = u
(1)
2 ⊗A

op · · · ⊗A
op u(1)n ⊗A

op S(u1u
(2)
2 · · ·u(2)n ),

where the Sweedler superscripts refer to theright coproduct. This is the same expression
as theinverseof the cyclic operator given in [Ko, KoP], see our explanations below.

4.2. Cyclic duality. [C, E, FTs, L] Recall that the cyclic category is self-dual, that is, we
haveΛ1 ≃ Λop

1 , and therefore cocyclick-modules and cyclick-modules can be canonically
identified. However, there are even infinitely many such canonical identifications since the
cyclic category has many autoequivalences (see e.g. [L, 6.1.14 & E.6.1.5], but note that the
very last line of [L, 6.1.14] should readτn 7→ τ−1

n ).
Feı̆gin and Tsygan have generalised the duality to their categoryΛ∞, that is, to para-

(co)cyclick-modules whose cyclic operators are isomorphisms (see [FTs], Section A7).
Unfortunately, they use the most common choice of equivalenceΛ∞ ≃ Λop

∞ which does
not extend to general para-(co)cyclic objects.

However, a different equivalenceΛ∞ ≃ Λop
∞ doeslift to a functorΛop → Λ, so that

one can assign a para-cyclic module to any para-cocyclic module even with not necessarily
invertible τn, one only has to bear in mind that this process is in general not invertible.
Still, it can be applied in full generality to the para-cocyclic objectC•(U,M), even when
M is not SaYD, and hence Theorem 4.1 follows from the results ofthe previous section.

Explicitly, we use the following convention for this functor. We decided to stick to the
term “cyclic dual” although it is no longer a true duality in general:

Definition 4.4. Thecyclic dualof a para-cocyclick-moduleC• = (C•, δ•, σ•, τ•) is the
cyclic k-moduleC• := (C•, d•, s•, t•), whereCn := Cn, and

di := σn−(i+1) : Cn → Cn−1, 0 ≤ i < n,
dn := σn−1 ◦ τn : Cn → Cn−1,
si := δn−(i+1) : Cn−1 → Cn, 0 ≤ i < n,
tn := τn : Cn → Cn.

(4.2)

For the convenience of the reader we verify at least some of the relations:

Lemma 4.5. The cyclic dual of any para-cocyclick-module is a para-cyclick-module.

Proof. We need to check the para-cyclic relations by using the para-cocyclic ones, which
is straightforward. For example, leti < j andj < n; thenn− (i+ 2) ≥ n− (j + 1), and

di ◦ dj = σ(n−1)−(i+1) ◦ σn−(j+1) = σ(n−1)−j ◦ σn−(i+1) = dj−1 ◦ di.
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Forj = n (in which casei ≤ n− 2),

di ◦ dn = σ(n−1)−(i+1) ◦ σn−1 ◦ τn

= σn−2 ◦ σ(n−1)−(i+1) ◦ τn

= σn−2 ◦ τn−1 ◦ σn−(i+1) = dn−1 ◦ di.

Likewise,

di ◦ si = σn−(i+1) ◦ δn−(i+1) = id = σn−j−2 ◦ δn−j−1 = dj+1 ◦ sj .

Also

di ◦ tn = σn−(i+1) ◦ τn = σn−i−1 ◦ τn = τn−1 ◦ σn−i = tn−1 ◦ di−1

for 1 ≤ i ≤ n− 1, and fori = n the identityd0 ◦ tn = dn is trivially fulfilled. Finally,

s0 ◦ tn = δn−1 ◦ τn = τn+1 ◦ δn = τn+1 ◦ τn+1δ0 = t2n+1 ◦ sn.

The rest of the simplicial and cyclic identities are left to the reader. �

Remark7. Note that the last coface mapδn : Cn−1 → Cn is not used in the construction
of the cyclic dual: there is one less degeneracysi : Cn−1 → Cn than there are cofaces
δi : C

n−1 → Cn. Conversely, there are not enough codegeneracies to deriveall the face
maps: the last face mapdn uses the extra codegeneracyσn−1 ◦ τn that arises from the
(para-)cocyclic operator.

Remark8. Observe that the cyclic homology of the cyclic dual of a givencocyclic k-
module is independent of the choice of the self-duality of the cyclic categoryΛ1. This
follows from the description of cyclic homology asTorΛ

op

1
•

(k, C) (cf. [L], Theorem 6.2.8)
in combination with the fact that all autoequivalences ofΛ1 leave the trivial cyclick-
modulek invariant.

Remark9. Two relatively straightforward cases in which the cyclic operator is not invert-
ible are that of a Hopf algebraU (overA = k) whose antipode is not bijective, taking the
coefficients to beM = k with trivial action1·u = ǫ(u) and trivial coaction∆M(1) = 1⊗1;
or that ofU = Ae,M = Aσ, discussed in Section 5.2 below, whenσ is not bijective.

However, it seems worthwhile to remark thatτ is invertible ifU is a full Hopf algebroid
with invertible antipodeS andM has yet some additional structure: recall first [B1] that
the two constituting bialgebroids (i.e. left and right) in afull Hopf algebroid have different
underlying corings (over anti-isomorphic base algebras) that have a priori different cate-
gories of comodules. AHopf algebroid (say, left) comoduleis then, roughly speaking, both
a left and right bialgebroid (left) comodule, the two structures being compatible with each
other. IfM is a left comodule over the full Hopf algebroidU and aYD in the sense of
Definition 2.4 with respect to the underlying left bialgebroid, one checks by a tedious but
straightforward induction onn that

w⊗Am 7→
(

S−2(un−)m
(−1)

(1)

)

·
(

1⊗Au
1⊗A· · ·⊗Au

n−1
)

⊗Am
(0)S−1(m(−1)

(2))S
−2(un+)

yields an inverse for the cocyclic operatorτn from (3.6), where we abbreviatedw :=
u1 ⊗A · · · ⊗A u

n. Here· denotes the diagonal action via the left coproduct and Sweedler
superscripts the left coaction with respect to the underlying right bialgebroid inU . In case
M = B ≃ Aop, this reduces to the well-known expression

u1 ⊗A · · · ⊗A u
n 7→ (S−1(un)) ·

(

1⊗A u
1 ⊗A · · · ⊗A u

n−1
)
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from [Ko, KoP]. If M is an SaYD so thatC•(U,M) is cocyclic, then the inverse ofτn is
simply given for any left Hopf algebroidU by

τ−1
n (u1 ⊗A · · · ⊗A u

n ⊗A m) = un−m(−1) ·
(

1⊗A u
1 ⊗A · · · ⊗A u

n−1
)

⊗A m(0)u
n
+.

4.3. The Hopf-Galois map and cyclic duality. The explicit map implementing the iso-
morphismC•(U,M) ≃ C•(U,M) is given by generalising the Hopf-Galois map (2.3):

Lemma 4.6. For eachn ≥ 0, thek-modulesCn(U,M) andCn(U,M) are isomorphic
by means of the Hopf-Galois mapϕn : Cn(U,M) → Cn(U,M) in degreen, defined by
ϕ0 := idM , ϕ1 : m⊗A

op u 7→ u⊗A m, and forn ≥ 2

ϕn : m⊗A
opu1⊗A

op · · ·⊗A
opun 7→ u1(1)⊗Au

1
(2)u

2
(1)⊗A· · ·⊗Au

1
(n)u

2
(n−1) · · ·u

n−1
(2) u

n⊗Am,

(4.3)
with inverse

ψn : u1⊗A · · ·⊗Au
n⊗Am 7→ m⊗A

op u1+⊗A
op u1−u

2
+⊗A

op u2−u
3
+⊗A

op · · ·⊗A
op un−1

− un.

Proof. Well-definedness and well-definedness over the respective Sweedler presentations
follows from the Takeuchi conditions (2.2) and (2.8). The fact thatϕ andψ are mutually
inverse is directly checked by induction onn using the properties (2.6) and (2.7). �

Lemma 4.7. Let U be a left Hopf algebroid with structure maps as before. The Hopf-
Galois map identifiesC•(U,M) as the cyclic dual of the cocyclic moduleC•(U,M) of
Theorem 3.6.

Proof. We need to show e.g. for the cyclic operators (3.6) and (4.1)

τn ◦ ϕn = ϕn ◦ tn

with respect to the map (4.3). This is a straightforward verification: one has

τnϕn(m⊗A
op u1 ⊗A

op · · · ⊗A
op un)

= τn(u
1
(1) ⊗A u

1
(2)u

2
(1) ⊗A · · · ⊗A u

1
(n)u

2
(n−1) · · ·u

n−1
(2) u

n ⊗A m)

= u1(1)−(1)u
1
(2)u

2
(1) ⊗A · · · ⊗A u

1
(1)−(n−1)u

1
(n)u

2
(n−1) · · ·u

n−1
(2) u

n

⊗A u
1
(1)−(n)m(−1) ⊗A m(0)u

1
(1)+

= u1(1)−(1)u
1
(2)u

2
(1) ⊗A · · · ⊗A u

1
(1)−(n−1)u

1
(n)u

2
(n−1) · · ·u

n−1
(2) u

n

⊗A u
1
(1)+−

m(−1) ⊗A m(0)u
1
(1)++

= u2(1) ⊗A u
2
(2)u

3
(1) ⊗A · · · ⊗A u

2
(n−1) · · ·u

n−1
(2) u

n ⊗A u
1
−m(−1) ⊗A m(0)u

1
+

using (2.10) and (2.7); whereas

ϕntn(m⊗A
op u1 ⊗A

op · · · ⊗A
op un)

= ϕn(m(0)u
1
+ ⊗A

op u2+ ⊗A
op · · · ⊗A

op un+ ⊗A
op un− · · ·u1−m(−1))

= u2+(1) ⊗A u
2
+(2)u

3
+(1) ⊗A · · · ⊗A u

2
+(n)u

3
+(n−1) · · ·u

n
+(2)u

n
− · · ·u1−m(−1) ⊗A m(0)u

1
+

= u2(1) ⊗A u
2
(2)u

3
(1) ⊗A · · · ⊗A u

2
(n−1) · · ·u

n−1
(2) u

n ⊗A u
1
−m(−1) ⊗A m(0)u

1
+

by (2.9) and (2.6), and the claim follows. The correspondingidentities relating (co)faces
to (co)degeneracies are left to the reader. �

Proof (of Theorem 4.1). This now follows from Theorem 3.6 and Theorem 3.7.
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5. EXAMPLES

5.1. Lie-Rinehart homology with coefficients. Let (A,L) be a Lie-Rinehart algebra over
a commutativek-algebraA andV L be its universal enveloping algebra (see [Ri]).

The left Hopf algebroid structureof V L has been described in [KoKr]; as therein, we
denote by the same symbols elementsa ∈ A andX ∈ L and the corresponding generators
in V L. The mapss = t are equal to the canonical injectionA → V L. The coproduct and
the counit are given by

∆(X) := X ⊗A 1 + 1⊗A X, ǫ(X) := 0,
∆(a) := a⊗A 1, ǫ(a) := a,

whereas the inverse of the Hopf-Galois map is

X+ ⊗Aop X− := X ⊗Aop 1− 1⊗Aop X, a+ ⊗Aop a− := a⊗A 1.

By universality, these maps can be extended toV L.
Recall from [Hue] that aright (A,L)-moduleM is simultaneously a leftA-module

with action(a,m) 7→ am and a rightL-module with action(m,X) 7→ mX , subject to the
compatibility conditions

(am)X = a(mX)−X(a)m,
m(aX) = a(mX)−X(a)m,

m ∈M, a ∈ A, X ∈ L.

Right (A,L)-module structures correspond to rightV L-module structures and vice versa.
For a right(A,L)-moduleM we defineLie-Rinehart homology with coefficients inM as

H•(L,M) := TorV L
•

(M,A). (5.1)

Interestingly enough, every right(A,L)-module is an SaYD module with respect to the
trivial coaction (cf. Remark 3):

Lemma 5.1. LetM be any right(A,L)-module and define onM a left V L-coaction by
∆M :M → V L⊗A M, m 7→ 1⊗A m. ThenM is a stable anti Yetter-Drinfel’d module.

Proof. Equipped with this coaction,M is obviously stable, and also (2.21) is immediate
(observe that left and rightA-action onM coincide). Hence it remains to show (2.22).
With the left Hopf algebroid structure maps mentioned above, it is easy to see that on
generators

∆M(mX) = 1⊗A mX = X−X+(1) ⊗A mX+(2) = X−m(−1)X+(1) ⊗A m(0)X+(2)

holds forX ∈ L, and trivially on generatorsa ∈ A. For an elementu = aX1 · · ·Xp,
wherea ∈ A,Xi ∈ L, one immediately obtains

∆(mu) = 1⊗A mu
′Xp

= (Xp)−(Xp)+(1) ⊗A mu
′(Xp)+(2)

= (Xp)−(mu
′)(−1)(Xp)+(1) ⊗A (mu′)(0)(Xp)+(2)

for u′ = aX1 · · ·Xp−1. By induction onp and (2.11) one concludes∆(mu) =
u−m(−1)u+(1) ⊗A m(0)u+(2), as desired. �

Recall that there is a canonical complex that computesH•(L,M) wheneverL is A-
projective. This is given by the exterior algebra

∧

•

A L tensored overA with M , with



16 NIELS KOWALZIG AND ULRICH KRÄHMER

differential∂ = ∂n :M ⊗A

∧n

A
L→M ⊗A

∧n−1
A

L defined by

∂(m⊗A X1 ∧ · · · ∧Xn)

:=

n
∑

i=1

(−1)i+1mXi ⊗A X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn

+
∑

i<j

(−1)i+jm⊗A [Xi, Xj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn.

The following theorem generalises [KoP, Thm. 3.13] to more general coefficients.

Theorem 5.2. Let (A,L) be a Lie-Rinehart algebra, whereL is A-projective, andM a
right (A,L)-module which isA-flat, seen also as a leftV L-comodule as in Lemma 5.1.
The map

Ξ : m⊗A X1 ∧ · · · ∧Xn 7→
1

n!

∑

σ∈Sn

(−1)σXσ(1) ⊗A · · · ⊗A Xσ(n) ⊗A m

defines a morphism of mixed complexes

(M ⊗A

∧

•

A
L, 0, ∂) → (C•(V L,M), b, B)

which induces natural isomorphisms

H•(V L,M) ≃M ⊗A

∧

•

A
L,

HC•(V L,M) ≃ ker ∂• ⊕H•−2(L,M)⊕H•−4(L,M)⊕ · · · .

Proof. The first part of the theorem and the first isomorphism follow immediately by the
form of the cosimplicial operators in (3.6) for a trivial coaction, combined with the analo-
gous result forM = A from [KoP] and the flatness assumption onM .

To prove the second isomorphism, we need to show thatΞ intertwines the horizontal
differentialB with ∂. This will be done by explicitly applying the coinvariants functor
and the results in Section 3. Let̃B : B•(V L,M) → B•−1(V L,M) denote the horizontal
differentials of the mixed complex associated to the cocyclic module from Lemma 3.1.
HenceB̃ = Nσ−1(1 − λ), whereλ := (−1)nτn, N :=

∑n
i=0 λ

i, andσ−1 := σn−1τn.
Explicitly, we obtain

B̃(u0 ⊗A · · · ⊗A un ⊗A m)

=
n
∑

i=0

(

(−1)niǫ(u0)ui+1 ⊗A · · · ⊗A un ⊗A u1 ⊗A · · · ⊗A ui−1 ⊗A m

− (−1)n(i−1)ǫ(un)ui+1 ⊗A · · · ⊗A un−1 ⊗A u0 ⊗A · · · ⊗A ui−1 ⊗A m
)

.

Note thatBn(V L,M) ∼= Cn+1(V L,M) as(A,A)-bimodules in this example. From our
general considerations in Section 3, we haveB◦φ◦π = φ◦π◦B̃, whereπ is the canonical
projectionB•(U,M) → U⊗A•+1 ⊗Uop M andφ : U⊗A•+1 ⊗Uop M → Cn(V L,M) is
the isomorphism (3.2). Using its right inverse mentioned inthe proof of Proposition 3.4, it
is seen that

Ξ(m⊗A X1 ∧ · · · ∧Xn) = φ
(

π
(

1
n!

∑

σ∈Sn
(−1)σ1⊗A Xσ(1) ⊗A · · · ⊗A Xσ(n) ⊗A m

)

)

.
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Hence, becauseL ⊂ ker ǫ we can compute

B
(

Ξ(m⊗A X1 ∧ · · · ∧Xn)
)

=

= φ
(

π
(

B̃( 1
n!

∑

σ∈Sn
(−1)σ1⊗A Xσ(1) ⊗A · · · ⊗A Xσ(n) ⊗A m)

)

)

= φ
(

π( 1
(n−1)!

∑

σ∈Sn
(−1)σXσ(1) ⊗A · · · ⊗A Xσ(n) ⊗A m)

)

= 1
(n−1)!

∑

σ∈Sn
(−1)σXσ(1)−

·
(

Xσ(2) ⊗A · · · ⊗A Xσ(n)

)

⊗A mXσ(1)+
,

= 1
(n−1)!

∑

σ∈Sn
(−1)σXσ(2) ⊗A · · · ⊗A Xσ(n) ⊗A mXσ(1)

− 1
(n−1)!

∑n

i=1

∑

σ∈Sn
(−1)σXσ(2) ⊗A · · · ⊗A Xσ(1)Xσ(i) ⊗A · · · ⊗A Xσ(n) ⊗A m

= Ξ
(
∑n

i=1(−1)i+1mXi ⊗A X1 ∧ · · · ∧ X̂i ∧ · · · ∧Xn

+
∑

i<j(−1)i+jm⊗A [Xi, Xj ] ∧X1 ∧ · · · ∧ X̂i ∧ · · · ∧ X̂j ∧ · · · ∧Xn

)

= Ξ
(

∂(m⊗A X1 ∧ · · · ∧Xn)
)

,

where· denotes the diagonal action via the coproduct. This completes the proof. �

Remark10. Note that combining the preceding theorem with Proposition4.3 as well as
(5.1) relates the Hopf-cyclic cohomology ofV L with the Hopf algebroid homology, that
is, the simplicial theory of the dual Hopf-cyclic homology:

HC•(V L,M) ≃ ker∂• ⊕H•−2(L,M)⊕H•−4(L,M)⊕ · · ·

≃ ker∂• ⊕ TorV L
•−2(M,A)⊕ TorV L

•−4(L,M)⊕ · · ·

≃ ker∂• ⊕H•−2(V L,M)⊕H•−4(V L,M)⊕ · · · .

5.2. Twisted cyclic homology. Recall from [Sch2] thatU = Ae is for anyk-algebraA a
left Hopf algebroid overA with structure maps

s(a) := a⊗k 1, t(b) := 1⊗k b, ∆(a⊗k b) := (a⊗k 1)⊗A (1⊗k b), ǫ(a⊗k b) := ab.

The inverse of the Hopf-Galois map is given by

(a⊗k b)+ ⊗Aop (a⊗k b)− := (a⊗k 1)⊗Aop (b⊗k 1).

Any algebra endomorphismσ : A → A defines a rightAe-moduleAσ which isA as
k-module with the right action

x(a⊗k b) := bxσ(a), a, x ∈ A, b ∈ Aop.

Define furthermore a leftAe-comodule structure onAσ by

Aσ → Ae ⊗A Aσ, x 7→ (x⊗k 1)⊗A 1,

which reduces to the mapAσ → Ae, x 7→ x ⊗k 1. With thisAe-action andAe-coaction
onAσ we havebx = xt(b), but xa is different fromxs(a) unlessσ = idA. Under the
isomorphismC•(A

e, Aσ) = Aσ ⊗A
op Ae⊗A

opn ≃ Aσ ⊗k A
⊗kn given by

x⊗A
op (a1 ⊗k b1)⊗A

op · · · ⊗A
op (an ⊗k bn) 7→ bn · · · b1x⊗k a1 ⊗k · · · ⊗k an,
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the para-cyclic operators (4.1) become

di(x⊗k y)=







anx⊗k a1 ⊗k · · · ⊗k an−1

x⊗k · · · ⊗k an−ian−i+1 ⊗k · · ·
xσ(a1)⊗k a2 ⊗k · · · ⊗k an

if i=0,
if 1≤ i≤n− 1,
if i=n,

si(x⊗k y)=







x⊗k a1 ⊗k · · · ⊗k an ⊗k 1
x⊗k · · · ⊗k an−i ⊗k 1⊗k an−i+1 ⊗k · · ·
x⊗k 1⊗k a1 ⊗k · · · ⊗k an

if i=0,
if 1≤ i≤n− 1,
if i=n,

tn(x⊗k y)=σ(a1)⊗k a2 ⊗k · · · ⊗k an ⊗k x,

where we abbreviatey := a1 ⊗k · · · ⊗k an. In particular, one has

tn+1
n = σ ⊗k · · · ⊗k σ,

soC•(A
e, Aσ) is cyclic if and only ifσ = id (in which caseAσ is an SaYD module).

However, there are many situations in which the canonical projection fromC•(A
e, Aσ)

onto its associated cyclick-moduleC•(A
e, Aσ)/im(id− t•+1

•
) is a quasi-isomorphism of

the underlying simplicialk-modules, see e.g. [HaKr, Prop. 2.1], which implies:

Theorem 5.3. If k is a field andσ is a diagonalisable automorphism ofA, then we have

H•(A
e, Aσ) ≃ H•(A,Aσ).

Here the right hand side denotes the Hochschild homology ofA with coefficients in the
(A,A)-bimoduleAσ. The resulting cyclic homologyHCσ

•
(A) := HC•(A

e, Aσ) has been
first considered in [KuMuTu] under the nameσ-twisted cyclic homology and has served
as yet another guiding example of generalised cyclic homology theories. It can be also ex-
pressed as the Hopf-cyclic homology of thekZ-module algebraA (wherekZ acts viaσ),
but the above presentation seems more natural and stresses the way it originates as a defor-
mation ofHC•(A). We therefore consider it an important example that motivates both the
generalisation of Hopf-cyclic (co)homology from Hopf algebras to Hopf algebroids, and
also the necessity to consider coefficients beyond SaYD modules, and the above shows
how to extend the construction of [KuMuTu] to arbitrary(A,A)-bimodules assuming the
existence of anAe-coaction on the coefficients.
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[BŞ2] , (Co)cyclic (co)homology of bialgebroids: an approach via (co)monads, Comm. Math. Phys.282

(2008), no. 1, 239–286.
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N.K.: INSTITUT DES HAUTES ÉTUDES SCIENTIFIQUES, LE BOIS-MARIE, 35, ROUTE DE CHARTRES,
91440 BURES-SUR-YVETTE, FRANCE

E-mail address: kowalzig@ihes.fr

U.K.: UNIVERSITY OF GLASGOW, SCHOOL OF MATHEMATICS & STATISTICS, UNIVERSITY GARDENS,
GLASGOW G12 8QW, SCOTLAND

E-mail address: Ulrich.Kraehmer@glasgow.ac.uk


	1. Introduction
	1.1. Topic
	1.2. Background
	1.3. Results

	2. Preliminaries
	2.1. Some conventions
	2.2. Bialgebroids
	2.3. Left Hopf algebroids
	2.4. U-modules
	2.5. U-comodules
	2.6. Stable anti Yetter-Drinfel'd modules
	2.7. Cyclic (co)homology

	3. Hopf-Cyclic Cohomology with Coefficients
	3.1. Para-cocylic structures on corings
	3.2. The quotient B(U,M) C(U,M)
	3.3. Cyclic cohomology with coefficients for left Hopf algebroids

	4. Hopf-Cyclic Homology with Coefficients
	4.1. Cyclic homology with coefficients for left Hopf algebroids
	4.2. Cyclic duality
	4.3. The Hopf-Galois map and cyclic duality

	5. Examples
	5.1. Lie-Rinehart homology with coefficients
	5.2. Twisted cyclic homology

	References

