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Abstract

We study the Cheeger constant and Cheeger set for domains obtained as strip-like neighbourhoods
of curves in the plane. If the reference curve is complete and finite (a “curved annulus”), then the
strip itself is a Cheeger set and the Cheeger constant equals the inverse of the half-width of the
strip. The latter holds true for unbounded strips as well, but there is no Cheeger set. Finally, for
strips about non-complete finite curves, we derive lower and upper bounds to the Cheeger set, which
become sharp for infinite curves. The paper is concluded by numerical results for circular sectors.

1 Introduction

Let Ω be an open connected set in the plane R2. The Cheeger constant of Ω is defined as

h(Ω) := inf
S⊆Ω

P (S)

|S|
, (1)

where the infimum is taken over all sets S ⊆ Ω of finite perimeter. Here and in the following, P (S)
and |S| denote the perimeter and the area of S, respectively. Any minimizer of (1), if it exists, is called
Cheeger set of Ω and denoted by CΩ.

The problems of existence, uniqueness and regularity of Cheeger sets have been widely studied in last
years, for instance one may look at [10, 9, 13, 4]. We briefly list and discuss here some of the general
known properties.

Theorem 1 (General known facts).

(i) While for a general Ω neither existence nor uniqueness are guaranteed, there is always some Cheeger
set if Ω is a bounded open set.

(ii) If Ω1 ⊆ Ω2, then h(Ω1) ≥ h(Ω2), but the strict inclusion does not imply the strict inequality.

(iii) The boundary of any Cheeger set CΩ intersects the boundary of the set Ω.

(iv) The part of ∂CΩ which is inside Ω is made by arcs of circle, all of radius 1/h(Ω), and each of which
starts and ends touching the boundary of Ω.

(v) A Cheeger set cannot have corners (i.e., discontinuities in the tangent vector to the boundary
giving rise to an angle smaller than π). In particular, the arcs of circle of ∂C ∩ Ω must intersect
the boundary of Ω tangentially or in “open corners” (i.e., angles bigger than π).

(vi) If there is some Cheeger set, then in particular there must be some connected one.
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Concerning property (i), examples of non-existence or non-uniqueness can be found for instance in [11],
while the existence is immediate by the compactness results for BV functions (see for instance [6, 2]).
Property (ii) is immediate by the definition (1), and examples for the non strict inequality can be found
again in [11]. Property (iii) comes from a standard variational argument (see for instance [10, Remark 9]).
Property (iv) comes immediately by a rescaling of C with a factor bigger than 1, since this lowers the
ratio in (1). Property (v) comes directly by noticing that “cutting a corner” of a small length ε decreases
|CΩ| of at most Cε2 and the perimeter of at least cε. Here, and in the sequel, by “corner” we mean
a point of the boundary where the tangent vector is discontinuous and makes an angle smaller than π
(with respect to the internal part of Ω, of course). In the case of angles bigger than π, we talk about
“open corners”, and they cannot be excluded from ∂C, since for instance, as pointed out in [11], there
are open corners (or “reentrant corners” in their terminology) in an L-shaped set. Finally, property (vi)
is immediate because if a Cheeger set has different connected components, each of them must be also a
Cheeger set thanks to the characterization (1).

Apart from the above-mentioned general properties, it is usually a difficult task to find the Cheeger
constant or the Cheeger set of a given domain Ω. The situation is simplified when Ω is a bounded convex
set, which is a well-studied particular situation. In fact, in this case it is known that there is a unique
open Cheeger set, which is again convex (see [1, 11, 4]). Moreover, it is also possible to give the following
characterization.

Theorem 2 ([11]). Let Ω be a bounded convex subset of R2. For r ≥ 0, define

Ωr := {x ∈ Ω | dist(x, ∂Ω) > r} .

There exists a unique value r = r∗ > 0 such that

|Ωr| = πr2 . (2)

Then h(Ω) = 1/r∗ and the Cheeger set of Ω is the Minkowski sum CΩ = Ωr∗ + Br∗, with Br∗ denoting
the disc of radius r∗.

This theorem can be used to find explicitly h(Ω) and CΩ in some cases, for example for discs, rectangles
and triangles – in particular, the Cheeger sets of rectangles and triangles are obtained by suitably “cutting
the corners”. Furthermore, it provides a constructive algorithm for the determination of the Cheeger
constant and Cheeger set for general convex domains, in particular for convex polygons.

Unfortunately, there is no such a constructive method for non-convex domains. Only one particular
case seems to be explicitly known in the literature, namely the annulus, for which it is known that
CΩ = Ω. In general, while a trivial strategy to find upper estimates for h(Ω) is to choose a suitable “test
domain” S in (1), it is less clear how to obtain lower estimates. One possibility is given by the following
result concerning “test vector fields”.

Theorem 3 ([8]). Let V : Ω → R2 be a smooth vector field on Ω, h ∈ R, and assume that the pointwise
inequalities |V | ≤ 1 and div V ≥ h hold in Ω. Then h(Ω) ≥ h.

An example of applicability of this criterion is the above-mentioned result for the annulus, which can
be obtained by employing the vector field of [3, Sec. 11, Ex. 4] (see also Remark 9 below, where the
corresponding vector field can be found explicitly). However, for a general set Ω it is not easy at all to
find a vector field producing non-trivial lower bounds by this criterion.

The purpose of the present paper is to introduce a class of non-convex planar domains for which the
Cheeger constant and the Cheeger set can be determined explicitly, namely, the curved strips. This class
of sets has been intensively studied in the last two decades as an effective configuration space for curved
quantum waveguides (see the survey papers [5, 12] and the references therein).

More precisely, we call “curved strip” a tubular neighbourhood of a curve without boundary in the
plane. There are then few possibilities: a “curved annulus”, a “finite curved strip”, an “infinite curved
strip” or a “semi-infinite curved strip” – see Figure 1 (we leave the formal definitions to Section 1.1). Our
main results, Theorems 10 and 11, describe the situation in all these cases. In particular, for a curved
annulus the situation is analogous to the standard annulus, that is, the strip itself is the unique Cheeger
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infinite curved strip semi-infinite curved strip

finite curved strip curved annulus

Figure 1: The four possible types of strips.

set and the Cheeger constant only depends on the width of the strip, irrespectively of the curvature of the
curve – more precisely, the Cheeger constant is the inverse of the half-width (Theorem 10, part (i)). For
an infinite or a semi-infinite curved strip, again the Cheeger constant equals the inverse of the half-width
of the strip, but there is no Cheeger set (Theorem 10, part (ii)). Finally, for a finite curved strip, the
situation is analogous to the standard rectangle, that is, there exists a Cheeger set, which is not the
whole strip because of the corners, and the Cheeger constant is strictly bigger than the inverse of the
half-width. Moreover, in this last case we can also give a (sharp) upper and a lower bound, which only
depend on the width and on the length of the strip (Theorem 11).

We conclude this introductory section with a couple of comments. First of all, it is to be mentioned
that, in the study of the Cheeger problem, an important role is played by those sets Ω which are Cheeger
sets of themselves. This is what happens in many situations, such as the discs and the annuli and, as
we show in the present paper, the “curved annuli”. Those sets are called calibrable and are intensively
studied in the image processing literature, see for instance [3].

A second remark has to be done on the connection between the Cheeger constant and the eigenvalue
problems. In fact, the Cheeger inequality tells that

λp(Ω) ≥

(
h(Ω)

p

)p

(3)

for any p ∈ (1,∞), where λp(Ω) is the first eigenvalue of the p-Laplacian. Moreover, as shown in [10],
h(Ω) = limpց1 λp(Ω). At this regards, it is interesting to notice one property of the curved strips. In
fact, it is well known that the first eigenvalue of the Dirichlet Laplacian (or, more in general, the infimum
of the Rayleigh quotient, in the case of unbounded strips for which there might be no eigenvalues) for
a curved strip strongly depends on its curvature (see for instance [5, 7, 12]). On the other hand, the
Cheeger constant is much less sensitive, since we will show, for instance, that for infinite and semi-infinite
curve strips, as well as for curved annuli, the Cheeger constant does not depend at all on the curvature
of the strip, but only on its width.

1.1 The geometrical setting

In this section we set the notations for the geometrical situation that we will consider throughout the
paper. Let Γ be a C2, connected curve in R2 (i.e., the homeomorphic image of (0, 1) or of S1 under a
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C2 function), and let us denote by |Γ| =
∫
Γ
dq its length, dq being the arclength element of Γ. Let also

N : Γ → R2 be a C1 vector field giving the normal vector in the points of Γ, and let κ : Γ → R be the
associated curvature (notice that the sign of κ depends on the choice of the orientation of N). We recall
that to define κ it is enough to take a unit-speed parametrization γ of Γ, and hence it is

κ(q) = γ̈
(
γ−1(q)

)
·N(q) , (4)

where the dot denotes the standard scalar product in R2. Now, we introduce a mapping  L from Γ × R

to R2 by
 L(q, t) := q + tN(q) ,

and for any positive a we introduce the set

ΩΓ,a :=  L
(
Γ × (−a, a)

)
.

We are interested in the sets ΩΓ,a which are non-self-intersecting tubular neighbourhoods of Γ. More
precisely, we will always make the assumption that

 L is injective in Γ × [−a, a] , (5)

hence the set is as in Figure 2. Using the expression for the bilinear form

d L2 =
(
1 − κ(q) t

)2
dq2 + dt2 (6)

that follows from (4), by the Inverse Function Theorem we can easily notice that the assumption (5)
forces a to be small compared to the curvature. More precisely, (5) implies that

∣∣κ(q)
∣∣ a ≤ 1 for any

q ∈ Γ, that the boundary of ΩΓ,a is C1,1, and that  L is in fact a C1 diffeomorphism between Γ × (−a, a)
and ΩΓ,a.

G

Figure 2: The geometry of a curved strip ΩΓ,a and the corresponding curve Γ; the parallel lines correspond
to the curves s 7→  L(s, t) with fixed t ∈ (−a, a).

Summing up, under the hypothesis (5) ΩΓ,a has the geometrical meaning of an open non-self-
intersecting strip, contained between the parallel curves q 7→ q ± aN(q), with q ∈ Γ, and it can be
identified with the Riemannian manifold Γ × (−a, a) equipped with the metric (6).

In this paper, we will call curved strip any set ΩΓ,a satisfying the assumption (5). Notice that when
Γ is contained in a line then Ω reduces to a rectangle, but the most interesting situation is when Γ
has a more complicated geometry, since then the associated set is not convex, hence not covered by the
preceding known results for the Cheeger problem. It is easy to characterize the four possible situations
occurring for a curved strip, to each of which we will associate a name to fix the ideas. The four kinds
of strips are shown in Figure 1. First of all, if the curve Γ is not finite, it may be either infinite or
semi-infinite (that is, not finite but complete, or not finite and not complete, respectively). We will call
infinite curved strip and semi-infinite curved strip the corresponding sets ΩΓ,a. On the other hand, if
the curve is finite, then it can be either compact or not compact (then homeomorphic to a circle or to
an open segment, respectively). In the first case, we will speak about a curved annulus, the annulus
corresponding to the case when Γ is exactly a circle, and in the other case about a finite curved strip.
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2 The main geometrical results

In this Section we will give some general technical properties, which will be used later to show our main
results. First of all, we can easily obtain an upper bound for the curved strips. In the next result, for
a curve Γ which is not finite we consider a unit-speed parametrization γ : (0,+∞) → R2 (respectively,
γ : (−∞,+∞) → R2) if the strip is semi-infinite (respectively, infinite). Moreover, we will denote by ΓL

the subset of Γ given by γ(0, L) or γ(−L,L) for the semi-infinite or infinite case, respectively.

Lemma 4 (Upper bound). Let Γ be infinite or compact ( i.e., ΩΓ,a is a semi-infinite or infinite curved
strip, or a curved annulus). Then

h(ΩΓ,a) ≤
1

a
.

In particular, if ΩΓ,a is a curved annulus, then

P (ΩΓ,a)

|ΩΓ,a|
=

1

a
,

while if ΩΓ,a is a semi-infinite or infinite curved strip, then

P
(
ΩΓL,a

)
∣∣ΩΓL,a

∣∣ −−−−→
L→∞

1

a
.

Proof. If ΩΓ,a is a curved annulus, then we take the whole S = ΩΓ,a as test domain in (1). Recalling (6),
we have then

P (S)

|S|
=

∫
Γ(1 + κ(q) a) dq +

∫
Γ(1 − κ(q) a) dq∫

Γ

∫ a

−a
(1 − κ(q) t) dt dq

=
2|Γ|

2a|Γ|
=

1

a
.

Notice that, by the symmetry of the set S, the curvature term cancels both in the numerator and in the
denominator.

On the other hand, if Γ is not finite, then the whole strip is not admissible because it has both infinite
area and perimeter. However, for any L > 0, we can consider the finite curved strip S = ΩΓL,a, which is
of course contained in ΩΓ,a. Therefore, one can easily evaluate

P (S)

|S|
=

4a +
∫
ΓL

(1 + κ(q) a) dq +
∫
ΓL

(1 − κ(q) a) dq
∫
ΓL

∫ a

−a
(1 − κ(q) t) dt dq

=
4a + 2|ΓL|

2a|ΓL|
−−−−→
L→∞

1

a
. (7)

In the formula for the perimeter, notice the term 4a corresponding to the two “vertical” parts of ∂S at
the start and at the end. Thanks to the definition (1), the two above estimates give the thesis.

The lower bound is much more complicated to obtain. To find it, we will introduce an operation
which, in a sense, fills in the “holes” and the “bays” in the test domains S. More precisely, let us take
an open set S ⊆ ΩΓ,a, and define first

ΓS :=
{
q ∈ Γ :  L

(
{q} × (−a, a)

)
∩ S 6= ∅

}
.

Notice that if S is connected, then of course so is ΓS . Now, we define f± : ΓS → [−a, a] as

f−(q) := inf
{
t ∈ (−a, a) : (q, t) ∈ S

}
, f+(q) := sup

{
t ∈ (−a, a) : (q, t) ∈ S

}
.

Therefore, S is contained between the two graphs of f+ and f−. Finally, we can give the following
definition.

Definition 5. Let S be an open subset of ΩΓ,a with finite perimeter, and let ΓS and f± be defined as
above. We define then

S∗ :=
{

 L(q, t) ∈ ΩΓ,a : q ∈ ΓS , f−(q) < t < f+(q)
}
.

We can now show the main property of the set S∗, which will be fundamental for our purposes.
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Lemma 6 (Area and perimeter of S∗). Let S be an open, bounded and connected subset of Ω of finite
perimeter. Then

|S∗| ≥ |S| , P (S∗) ≤ P (S) .

Moreover, f± ∈ BV
(
ΓS

)
, and the following formula

P (S∗) =

∫

ΓS

√(
1 − κ(q) f+(q)

)2
+ f ′

+(q)2 dq +

∫

ΓS

√(
1 − κ(q) f−(q)

)2
+ f ′

−(q)2 dq

+
∣∣Dsf+

∣∣(ΓS) +
∣∣Dsf−

∣∣(ΓS) +
(
f+(q0) − f−(q0)

)
+
(
f+(q1) − f−(q1)

) (8)

holds, being f ′
± dq the absolute continuous part of Df± and Dsf± its singular part.

Proof. First of all, the fact that |S∗| ≥ |S| is obvious, since by definition S∗ ⊇ S. Concerning the
inequality for the perimeter, we start noticing that, by standard arguments, it is admissible to assume
that S is smooth. In fact, by the Compactness Theorem for BV functions (see for instance [2]), we can
take a sequence Sj of smooth sets converging in the L1 sense to S in such a way that P (Sj) → P (S). By
definition, the corresponding sets S∗

j converge to S∗, and by the lower semicontinuity of the perimeter
this yields P (S∗) ≤ lim inf P (S∗

j ). As an immediate consequence, once we establish the validity of this
lemma for smooth sets, it will directly follow also in full generality.

The inequality P (S∗) ≤ P (S) for smooth sets is very easy to guess, but a bit boring to prove. For
simplicity, we will divide the proof in some steps.
Step I. Non-intersecting curves cannot pass “from above to below”.

In this first step, we underline the following very easy topological fact. Here, by π1 : R2 → R we denote
the first projection.

Let q0 ∈ R, let γ1,2 ⊆ R2 be two non-intersecting continuous curves in the plane such
that minπ1γ1 = min π1γ2 = q0. If t1 := max{t : (q0, t) ∈ γ1} > max{t : (q0, t) ∈ γ2} =: t2,

then for all q ∈ π1γ1 ∩ π1γ2 one has max{t : (q, t) ∈ γ1} > max{t : (q, t) ∈ γ2}.
(9)

The meaning of this claim is very simple: if one has two continuous and non-intersecting curves in the
plane, and the least abscissa of points in the two curves coincide (otherwise, it is obvious that the claim
is false), then the curve which starts above always remains above.

To show the validity of the claim, suppose it is not true, and let q̄ ∈ π1γ1 ∩ π1γ2 be a point for which

t̄1 := max{t : (q̄, t) ∈ γ1} < max{t : (q̄, t) ∈ γ2} =: t̄2

(notice that the equality can not hold true, since the curves do not intersect). Figure 3(a) shows the
situation.

(a) The situation of Step I. (b) A possible ∂S+ in Step III.

Figure 3: Figures clarifying some steps of the proof of Lemma 6.

The curve γ1, then, is contained by definition in

A :=
{

(q, t) ∈ R2 \ γ2 : q ≥ q0,
}
\
{

(q̄, t) ∈ R2 : t > t̄1

}
.
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This is a contradiction with the continuity of the curve γ1, since the points
(
q0, t1

)
and

(
q̄, t̄1

)
are in γ1

but belong to two distinct connected components of A. Therefore, the claim (9) is proved.
Step II. First consequences and some definitions.
We can immediately observe some easy consequences of Step I. First of all, since S is connected and
bounded, then so is ΓS , and we can define the left and right extrema l, r ∈ R, in the sense that
ΓS = L

(
(l, r) × {0}

)
. Moreover, ∂S is the union of four disjoint connected curves, namely the part

of ∂S connecting  L(l, f+(l)) and  L(r, f+(r)), the part connecting  L(r, f+(r)) and  L(r, f−(r)), the part
connecting  L(r, f−(r)) and  L(l, (f−(l)), and the last one connecting  L(l, f−(l)) and  L(l, f+(l)). We will
denote these four parts as ∂S+, ∂Sr, ∂S− and ∂Sl, respectively. We also underline that, since ∂S is
closed, then for any q ∈ ΓS one has

 L
(
q, f+(q)

)
∈ ∂S+ ,  L

(
q, f−(q)

)
∈ ∂S− .

More precisely, again the closedness of ∂S tells us that, for any q̄ ∈ (l, r) and any t ∈ [−a, a], one has
that  L(q̄, t) ∈ ∂S+ if and only if

lim inf
q→q̄

f+(q) ≤ t ≤ lim sup
q→q̄

f+(q) .

Step III. The “upper boundary” is well-ordered.
In this step we show that the curve ∂S+ reaches all the points  L(q, f+(q)) in the “correct order”. This
means that, if we parametrize ∂S+ as γ([0, 1]) with γ(0) =  L(l, f+(l)) and γ(1) =  L(r, f+(r)), then

If γ(σ1) =  L
(
q1, f+(q1)

)
and γ(σ2) =  L

(
q2, f+(q2)

)
, one has σ1 < σ2 ⇐⇒ q1 < q2. (10)

Notice that this fact is not trivial, since the curve ∂S+ does not have to be a graph on ΓS , hence
it can, sometimes, move towards left, as in Figure 3(b). However, the figure itself suggests that the
points (q, f+(q)) are in any case reached “from left to right”. Let us now show (10). To do so, suppose
by contradiction that it is not true. Hence, there exist σ1, σ2, q1 and q2 in such a way that γ(σi) =
 L(qi, f+(qi)) for i = 1, 2 but one has σ1 > σ2 and q1 < q2. We can then give the following definitions,
being π the projection from Ω to Γ.

σ3 = min
{
σ ∈ (σ1, 1) : π(γ(σ)) = q2

}
,

q∗ = min
{
π(γ(σ)) : σ ∈ (σ1, σ3)

}
,

σ0 = max
{
σ ∈ (0, σ2) : π(γ(σ)) = q∗

}
.

Notice that by construction one has 0 < σ0 < σ2 < σ1 < σ3 < 1, as well as q∗ ≤ q1 < q2. Now,
consider the two curves γ1 =  L−1

(
γ|[σ0,σ2]

)
and γ2 =  L−1

(
γ|[σ1,σ3]

)
, which are continuous and non-

intersecting. Moreover, minπ1γ1 = min π1γ2 = q∗, hence we can apply Step I to derive that γ1 is either
“always above” or “always below” γ2, in the sense of (9). By checking q = q1, one observes that γ1
is below γ2, since max{σ : (q1, σ) ∈ γ2} = f+(q1) is surely greater than max{σ : (q1, σ) ∈ γ1}, by
definition of f+. On the other hand, by checking q = q2, the very same reason shows that γ1 is above
γ2, being max{σ : (q2, σ) ∈ γ1} = f+(q2). The contradiction shows the validity of (10), hence this step
is concluded.
Step IV. The functions f± are in BV (ΓS).
Let us fix an arbitrary N ∈ N, and an arbitrary sequence l = q0 < q1 < · · · < qN < qN+1 = r in ΓS . We
claim that

N∑

i=0

∣∣f+(qi) − f+(qi+1)
∣∣ ≤ H

1(
∂S+

)
, (11)

being H
1

the Hausdorff measure of dimension 1, that is, the length. Notice that this inequality would
show that f+ ∈ BV (ΓS), since S is of finite perimeter.

To show the estimate, let us call γi the part of the curve ∂S+ which connects  L(qi, f+(qi)) with
 L(qi+1, f+(qi+1)). By the preceding steps, we know that ∂S+ consists of the disjoint union of the curves
γi, so that

H
1(
∂S+

)
=

N∑

i=0

H
1(
γi
)
.
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Hence, (11) will follow at once as soon as we observe that for any i = 0, . . . , N one has

H
1(
γi
)
≥

∣∣∣ L
(
qi, f+(qi)

)
−  L

(
qi+1, f+(qi+1)

)∣∣∣ >
∣∣f+(qi) − f+(qi+1)

∣∣ . (12)

The first inequality is trivial, since it just says that the length of the curve γi is greater than the distance
of its extreme points. Concerning the strict inequality, instead, let us denote for brevity

P :=  L
(
qi, f+(qi)

)
, Q :=  L

(
qi+1, f+(qi+1)

)
, Q′ :=  L

(
qi, f+(qi+1)

)
,

S′ :=  L
(
qi, 0

)
, S :=  L

(
qi+1, 0

)
.

Hence, assuming that f+(qi) ≥ f+(qi+1) ≥ 0 (it is then trivial to modify the argument to cover the other
cases), one has

PQ′ + Q′S′ = PS′ < PS < PQ + QS = PQ + Q′S′ ,

where the first inequality is due to the fact that, by definition, S′ is the closest point to P inside Γ. The
inequality above says that PQ′ < PQ, which is precisely the missing inequality in (12). As explained
above, this implies the validity of (11), hence the fact that f+ ∈ BV (ΓS).

Of course, the very same argument shows that also f− ∈ BV (ΓS).

Step V. One has H
1(
∂S+

)
≥ H

1(
∂S∗+

)
.

Let us define {qi, i ∈ N} ⊆ ΓS the jump points of f+, which are countably many since f+ ∈ BV (ΓS).
For any i, moreover, let us call

f l
+(qi) = lim

q↑qi
f+(q) , f r

+(qi) = lim
q↓qi

f+(q) :

being f+ ∈ BV (ΓS), these two limits exist and correspond to the lim inf and the lim sup of f+ for q → qi.
In particular, one has that

∂
(
S∗+

)
=

{
 L
(
q, f+(q)

)
: q ∈ ΓS

}
∪
⋃

i∈N

Ji ,

where Ji is the segment joining  L
(
qi, f

l
+(qi)

)
and  L

(
qi, f

r
+(qi)

)
. Let us fix now ε > 0, so that there exists

N ∈ N such that ∑

i>N

∣∣Ji
∣∣ < ε .

For simplicity, we can assume that the points qi are ordered so that l < q1 < · · · < qn < r. We can now
pick, for any 1 ≤ i ≤ N , two points qli < qi < qri in ΓS in such a way that

• the different intervals (qli, q
r
i ) are disjoint;

• for any i one has ∣∣f+(qli) − f l
+(qi)

∣∣ +
∣∣f+(qri ) − f r

+(qi)
∣∣ ≤ ε

N
;

• one has

H
1
((

∂S∗+
)
∩  L

(
(qli, q

r
i ) × (−a, a)

))
≤

∣∣Ji
∣∣ +

ε

N
=

∣∣f l
+(qi) − f r

+(qi)
∣∣ +

ε

N
.

Now, we can consider the “bad” intervals Bi = (qli, q
r
i ), where there are high jumps, and the “good”

intervals Gi = (qri , q
l
i+1), where there are not. Define also G0 = (l, ql1), while GN = (qrN , r). Therefore,

we have decomposed ΓS = ∪i≤NBi ∪Gi. For any good interval Gi, one has

∂S∗+ ∩  L
(
Gi × (−a, a)

)
=

{
 L
(
q, f+(q)

)
: q ∈ Gi

}
∪

⋃

j∈N

J̃i,j ,

where J̃i,j are the jumps of f+ contained in the interval Gi. Of course all the jumps J̃i,j , varying
0 ≤ i ≤ N and j ∈ N, correspond to different jumps Ji for i > N . For any bad interval Bi, moreover,
call γi the part of the curve ∂S+ from  L

(
qli, f+(qli)

)
to  L

(
qri , f+(qri )

)
. Thanks to Step III, all the curves

8



γi are disjoint, and in particular  L(q, f+(q)) belongs to γi if and only if q ∈ Bi. Since we know that
 L(q, f+(q)) ∈ ∂S+ for all q ∈ ΓS , this implies that

H
1(
∂S+

)
≥ H

1
({

 L(q, f+(q)) : q ∈
⋃N

i=0
Gi

})
+

N∑

i=1

H
1(
γi
)
.

Notice also that, as shown with (12) in Step IV, one has for each 1 ≤ i ≤ N that

H
1(
γi
)
>

∣∣f+(qli) − f+(qri )
∣∣ .

So, we can finally conclude, using all the properties listed above, that

H
1(
∂S∗+

)
=

N∑

i=0

H
1
(
∂S∗+ ∩  L

(
Gi × (−a, a)

))
+

N∑

i=1

H
1
(
∂S∗+ ∩  L

(
Bi × (−a, a)

))

≤
N∑

i=0

(
H

1
({

 L
(
q, f+(q)

)
: q ∈ Gi

})
+
∑

j∈N

∣∣J̃i,j
∣∣
)

+
N∑

i=1

(∣∣f l
+(qi) − f r

+(qi)
∣∣ +

ε

N

)

≤ H
1
({

 L
(
q, f+(q)

)
: q ∈

⋃N

i=0
Gi

})
+

∑

i>N

∣∣Ji
∣∣ +

N∑

i=1

(∣∣f+(qli) − f+(qri )
∣∣ + 2

ε

N

)

≤ H
1
({

 L
(
q, f+(q)

)
: q ∈

⋃N

i=0
Gi

})
+ ε +

N∑

i=1

(
H

1(
γi
)

+ 2
ε

N

)

≤ H
1(
∂S+

)
+ 3ε .

Since ε > 0 was arbitrary, this step is concluded.
Step VI. Conclusion.
By Step II, we know that

∂S = ∂S+ ∪ ∂S− ∪ ∂Sl ∪ ∂Sr ,

and the union is disjoint. Similarly, we have

∂S∗ = ∂S∗+ ∪ ∂S∗− ∪ ∂S∗l ∪ ∂S∗r .

By Step V we know that H
1(
∂S+

)
≥ H

1(
∂S∗+

)
, and in the very same way of course H

1(
∂S−

)
≥

H
1(
∂S∗−

)
. Let us then focus for a moment on ∂Sl and on ∂S∗l. While the first one is a curve between

 L(l, f−(l)) and  L(l, f+(l)), the second one is the segment joining the same points. Hence, of course

H
1(
∂Sl

)
≥ H

1(
∂S∗l

)
, and similarly H

1(
∂Sr

)
≥ H

1(
∂S∗r

)
. Adding up the four inequalities, we

finally get that H
1(
∂S

)
≥ H

1(
∂S∗

)
.

Concerning formula (8), it is immediate to obtain it for smooth functions f− and f+, while the
generalization for BV functions is standard.

With the above result at hand, it will be quite easy to obtain the lower bound.

Lemma 7 (Lower bound). For a curved strip ΩΓ,a of any kind, one has

h(ΩΓ,a) ≥
1

a
.

Moreover, if the inequality above is an equality and there is a Cheeger set, then this Cheeger set must be
ΩΓ,a itself.

Proof. Let S be any open connected set of finite perimeter in ΩΓ,a, and let S∗ be as in Definition 5.
Denoting by

t− := inf
{
f−(q) : q ∈ ΓS

}
, t+ := sup

{
f+(q) : q ∈ ΓS

}
,

9



we can easily estimate

|S∗| =

∫

Γ

∫ f+(q)

f−(q)

(
1 − κ(q) t

)
dt dq =

∫

Γ

(
f+(q) − f−(q)

) (
1 − κ(q)

f+(q) + f−(q)

2

)
dq

≤ (t+ − t−)

∫

Γ

(
1 − κ(q)

f+(q) + f−(q)

2

)
dq .

(13)

On the other hand, by (8) it is easy to estimate the perimeter of S∗ as

P (S∗) =

∫

ΓS

√(
1 − κ(q) f+(q)

)2
+ f ′

+(q)2 dq +

∫

ΓS

√(
1 − κ(q) f−(q)

)2
+ f ′

−(q)2 dq

+
∣∣Dsf+

∣∣(ΓS) +
∣∣Dsf−

∣∣(ΓS) +
(
f+(q0) − f−(q0)

)
+
(
f+(q1) − f−(q1)

)
,

≥ 2

∫

ΓS

(
1 − κ(q)

f+(q) + f−(q)

2

)
dq ,

simply by neglecting both the absolutely continuous and the singular part of Df . Hence, thanks to
Lemma 6 we can readily deduce that

P (S)

|S|
≥

P (S∗)

|S∗|
≥

2

t+ − t−
≥

1

a
,

where the last inequality is due to the trivial bounds −a ≤ t− < t+ ≤ a. Finally, if h(ΩΓ,a) = 1/a and
there is some Cheeger set C = CΩΓ,a

, then all the preceding inequalities must be equalities for S = C,
from which it immediately follows that f+ and f− are constant, and that t± = ±a, thus C = ΩΓ,a.

Remark 8. As a consequence of (3) for p = 2, from the above result we get the lower bound

λ2(ΩΓ,a) ≥
1

4a2
,

which is in fact weaker that the bound

λ2(ΩΓ,a) ≥
j20,1
4a2

known from [7]. Here j0,1 ≈ 2.4 denotes the first positive zero of the Bessel function J0. In fact, even a
better bound, reflecting the local geometry of Γ and valid in arbitrary dimensions, is established in [7].

Remark 9. It is possible to establish the lower bound of Lemma 7 directly from Theorem 3, without using
the “stripization” procedure S∗ of Definition 5 and its properties stated in Lemma 6. Indeed, inspired
by the formula of [3, Sec. 11, Ex. 4] for the annulus, let us introduce the function Vt : Γ × (−a, a) → R

by

Vt(q, t) :=






(1 − κ(q) a) (1 + κ(q) a) − (1 − κ(q) t)2

2 a κ(q) (1 − κ(q) t)
if κ(q) 6= 0 ,

t

a
if κ(q) = 0 .

Note that the value for vanishing curvature corresponds to taking the limit κ(q) → 0 in the formula for
positive curvatures. One easily checks that the vector field V (q, t) := (0, Vt(q, t)), where the components
are considered with respect to the coordinates (q, t), satisfies ‖V ‖L∞(Γ×(−a,a)) = 1 and

(div V )(q, t) =
1

1 − κ(q) t
∂t
[
(1 − κ(q) t)Vt(q, t)

]
=

1

a

for every (q, t) ∈ Γ× (−a, a). Hence, the searched lower bound is a consequence of Theorem 3. However,
Lemma 6 is needed to establish some finer properties of the Cheeger constant and Cheeger set.

3 The main results

This section is devoted to show our two main results, namely Theorem 10, which deal with the case of
curved annuli or not finite curved strips, and Theorem 11, which deals with finite curved strips.
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3.1 The case of a curved annulus and that of a not finite curved strip

Theorem 10. Let Γ be compact, infinite or semi-infinite. Then

h(ΩΓ,a) =
1

a
. (14)

In particular:

(i) If Γ is compact ( i.e. ΩΓ,a is a curved annulus), then the infimum of (1) is attained and the unique
Cheeger set is CΩΓ,a

= ΩΓ,a.

(ii) If Γ is infinite or semi-infinite ( i.e. ΩΓ,a is an infinite or semi-infinite curved strip), then the
infimum of (1) is not attained, but the sequence ΩΓL,a of Lemma 4 is an optimizing sequence for
L → ∞.

Proof. The equality 14 follows directly from the upper estimate of Lemma 4 and the lower estimate of
Lemma 7.

From the characterization of Lemma 7, moreover, we know that the unique possible Cheeger set is
the whole ΩΓ,a. Since this set has an infinite area and perimeter in the case of an infinite or semi-infinite
curved strip, we get the non-existence result of a minimizer for the case (ii), while the fact that ΩΓL,a

is a minimizing sequence for L → ∞ follows by Lemma 4. On the other hand, in case (i) we know by
compactness that some Cheeger set must exist, hence the existence and uniqueness of the whole ΩΓ,a as
a Cheeger set again come by Lemma 7.

3.2 The case of a finite curved strip

Theorem 11. Let Γ be non-complete and finite (hence, ΩΓ,a is a finite curved strip). Then there exists
a positive dimensionless constant c such that

1

a
+

c

|Γ|
≤ h(ΩΓ,a) ≤

1

a
+

2

|Γ|
. (15)

For instance, one may take c = 1/400. Moreover, the infimum in (1) is attained for some connected set
CΩΓ,a

( ΩΓ,a.

Proof. Concerning the existence of a Cheeger set C = CΩΓ,a
, and in particular of a connected one, this

follows by Theorem 1. From the same Theorem, we know also that ∂C ∩ΩΓ,a is made by arcs of circle of
radius h(ΩΓ,a)−1, and it cannot coincide with the whole set ΩΓ,a again by Theorem 1, since C may not
have corners. As a consequence, by the characterization of Lemma 7 we deduce that h(ΩΓ,a) > 1/a. To
conclude, we have then only to give a proof of the bounds (15), which will be done in some steps.
Step I. The upper bound.
Obtaining the upper bound is very easy: it is enough to remind that

P
(
ΩΓ,a

)
= 2|Γ| + 4a ,

∣∣ΩΓ,a

∣∣ = 2a
∣∣Γ
∣∣ ,

as already checked for instance in (7), and then

h(ΩΓ,a) ≤
P
(
ΩΓ,a

)
∣∣ΩΓ,a

∣∣ =
2|Γ| + 4a

2a
∣∣Γ
∣∣ =

1

a
+

2

|Γ|
.

Step II. The lower bound: behaviour of the arcs of ∂C ∩ ΩΓ,a.
Thanks to Theorem 1, we know that ∂C can not have corners. Hence, ∂C ∩ ΩΓ,a is not empty, and it is
done by some arcs of circle, all of radius 1/h(ΩΓ,a), hence strictly smaller than a as noticed above, such
that all the four corners of ΩΓ,a are ruled out from C. Denoting by q0 and q1 the extreme points of Γ,
let us call for simplicity “up”, “down”, “left” and “right” the four parts of ∂ΩΓ,a given by the points of
the form  L(q, a),  L(q,−a),  L(q0, t) and  L(q1, t) for q ∈ Γ and t ∈ (−a, a) respectively. We aim to show
the following claim:

All the arcs of circle of ∂C ∩ ΩΓ,a connect two points of ΩΓ,a,
at least one of which is either in the left or in the right part.

(16)
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To show this claim, we have to exclude the case of an arc of circle starting and ending in the upper part,
and the case of an arc connecting the up and the down (the case of an arc starting and ending in the
bottom part is exactly the same as the first one).

Suppose first that there is an arc of circle connecting the points P and Q, both in the upper part,
thus P =  L(q′, a) and Q =  L(q′′, a). By Theorem 1, we know that the circle is tangent to ∂ΩΓ,a at P
and Q, hence its centre O is the intersection between the two lines which are normal to ∂ΩΓ,a at P and
Q, which are t 7→  L(q′, t) and t 7→  L(q′′, t). Since the radius r of these circles is at most a, the two lines
must intersect in the point  L(q′, a− r) ≡  L(q′′, a− r), while this is impossible for any r ≤ 2a because  L
is one-to-one.

A very similar argument works assuming that an arc of circle connects the point P =  L(q′, a) in the
upper part with the point Q =  L(q′′,−a) in the lower part. Indeed, again the circle would be tangent to
∂ΩΓ,a at both P and Q, so that its centre would be in the intersection of the segments t 7→  L(q′, t) and
t 7→  L(q′′, t). This is impossible if the circle has radius smaller than 2a for q′ 6= q′′, but it is impossible
also for a radius strictly smaller than a in the case q′ = q′′. This completely shows (16).

Notice now that by definition the left and the right part of ∂ΩΓ,a are segments, so also the case of
a circle starting and ending in the left is impossible, as well as an arc starting and ending in the right.
As a conclusion, we now know that there can be either 2, or 3, or 4 arcs of circle in ∂C. The simplest
case is when there are four arcs, each of which making a “rounded corner”. This happens for instance
for a rectangle (i.e., if Γ is a segment), and more in general if a is sufficiently small with respect to

∣∣Γ
∣∣.

However, it is also possible that there are only three arcs, one of which connecting the left and the right
part of the boundary. This happens for instance whenever the upper or the lower part of the boundary
are very short due to a big (but still admissible) curvature of Γ. An example of this situation is a sector
of an annulus with very small inner radius, which then is very similar to a triangle: in this case the
boundary of C does not touch the inner circle (some examples of this kind are shown in the next section).
Concerning the last possibility, namely only two arcs of circle both connecting left and right, we have no
example in mind and it is maybe impossible, but we do not need to exclude this case within this proof.
Indeed, in Steps III and IV we will show the Theorem in the case of the four rounded corners, while in
the last Step V we will show how it is always possible to reduce to this case.
Step III. The lower bound: the case when C has four rounded corners, statement of the Claim (18).
To show the lower bound, we start from the case when C has four rounded corners. Let us recall that,
as shown by (8) in Lemma 6, one has

P (C) =

∫

Γ

√(
1 − κ(q) f+(q)

)2
+ f ′

+(q)2 dq +

∫

Γ

√(
1 − κ(q) f−(q)

)2
+ f ′

−(q)2 dq

+
∣∣Dsf+

∣∣(Γ) +
∣∣Dsf−

∣∣(Γ) +
(
f+(q0) − f−(q0)

)
+
(
f+(q1) − f−(q1)

)
,

(17)

where f ′
± dq is the absolute continuous part of Df± and Dsf± its singular part (notice that, in the

language of Definition 5, we have ΓC = Γ thanks to Step II). Hence, in particular

P (C) ≥

∫

Γ

(
2 − κ(q)

(
f+(q) + f−(q)

))
dq .

We claim that, at least in the case when C has the four corners,

P (C) ≥

∫

Γ

(
2 − κ(q)

(
f+(q) + f−(q)

))
dq +

1

50
a . (18)

We will prove this estimate in next step, now we show how this implies the thesis. In fact, we can easily
estimate, as in (13), the area of C as

∣∣C
∣∣ =

∫

Γ

∫ f+(q)

f−(q)

(
1 − κ(q) t

)
dt dq =

∫

Γ

(
f+(q) − f−(q)

)(
1 − κ(q)

f+(q) + f−(q)

2

)
dq

≤ a

∫

Γ

(
2 − κ(q)

(
f+(q) + f−(q)

))
dq .
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Hence, using (18) we get (15) because, recalling that a‖κ‖L∞(Γ) ≤ 1 (as pointed out in Section 1.1)

h(ΩΓ,a) =
P
(
C
)

∣∣C
∣∣ ≥

∫

Γ

(
2 − κ(q)

(
f+(q) + f−(q)

))
dq +

1

50
a

a

∫

Γ

(
2 − κ(q)

(
f+(q) + f−(q)

))
dq

=
1

a
+

1

50

∫

Γ

(
2 − κ(q)

(
f+(q) + f−(q)

))
dq

≥
1

a
+

1

50
∣∣Γ
∣∣(2 + 2a‖κ‖L∞(Γ)

) ≥
1

a
+

1

200 |Γ|
.

(19)

Step IV. The lower bound: the case when C has four rounded corners, proof of Claim (18).
Here we show that, assuming that ∂C ∩ΩΓ,a consists of four arcs of circle, the claim (18) holds. This will
be done by considering a single arc. To choose it, we start noticing that (17) already trivially implies (18)
if f+(q1) − f−(q1) ≥ a/50. As a consequence, we can assume that

f+(q1) ≤
1

100
a (20)

and we concentrate on the arc of circle corresponding to the “upper right corner”. Of course, if (20)
were not true, then one could assume f−(q1) ≥ −a/100 and then make the completely symmetric
considerations on the “lower right corner”. As shown in Figure 4, we call γ the arc of circle that we are
considering, and we can also look γ in the reference rectangle, where of course it is no more part of a
circle. We will call η as in the Figure.

Figure 4: The situation (both in Ω and in the reference configuration) of Step IV.

Calling Γγ the part of Γ related to the curve γ, hence the subset of Γ such that

γ =
{(

q, f+(q)
)

: q ∈ Γγ

}
,

we can subdivide Γγ in two parts, namely

Γ1 :=

{
q ∈ Γγ :

∣∣f ′
+(q)

∣∣ < 1

5

}
, Γ2 :=

{
q ∈ Γγ :

∣∣f ′
+(q)

∣∣ ≥ 1

5

}
.

Notice that the above subdivision makes sense because f+ has no singular part inside Γγ (since the image
of its graph under  L is an arc of circle). By definition,

∫

Γ1

∣∣f ′
+(q)

∣∣ dq ≤

∣∣Γ1

∣∣
5

≤
η

5
≤

2

5
a . (21)
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In the last inequality we used that η ≤ 2a, which in turn is true because γ is an arc of circle or radius
smaller than a (keep in mind that by Lemma 7 we already know that h(ΩΓ,a) ≥ 1/a) and the lengths
in the reference rectangle are at most the double of the true lengths (recall also that the arcs of circle
touch ∂ΩΓ,a tangentially, as we know by Theorem 1). But then, thanks to (20), one has

∫

Γγ

∣∣f ′
+(q)

∣∣ dq ≥
99

100
a ,

so that by (21) we get ∫

Γ2

∣∣f ′
+(q)

∣∣ dq ≥

(
99

100
−

2

5

)
a =

59

100
a . (22)

Recalling again that 0 < 1 − κ(q)f+(q) < 2, a trivial calculation ensures that for any q ∈ Γ2 it is

√(
1 − κ(q) f+(q)

)2
+ f ′

+(q)2 ≥
(
1 − κ(q) f+(q)

)
+

1

25

∣∣f ′
+(q)

∣∣ . (23)

Hence, thanks to (22) and (23) we can estimate the length of γ as

∣∣γ
∣∣ =

∫

Γγ

√(
1 − κ(q) f+(q)

)2
+ f ′

+(q)2 dq ≥

∫

Γγ

(
1 − κ(q) f+(q)

)
dq +

1

25

∫

Γ2

∣∣f ′
+(q)

∣∣ dq

≥

∫

Γγ

(
1 − κ(q) f+(q)

)
dq +

59

25 · 100
a .

Recalling now formula (17) for the perimeter of C, we finally conclude

P (C) ≥

∫

Γ

(
2 − κ(q)

(
f+(q) + f−(q)

))
dq +

59

25 · 100
a ,

thus finally getting (18).
Step V. The lower bound: general case.
In this last step we conclude the proof of the Theorem. Thanks to the above steps, we already know
that the result holds in the case of four rounded corners, hence we can now assume that ∂C has only two
or three arcs. In this case, there exist two maximal numbers a± ≤ a such that C ⊆  L

(
Γ × (−a−, a+)

)
.

Let us now introduce a new strip ΩΓ̃,ã by

t̄ :=
a+ − a−

2
, Γ̃ :=  L

(
Γ × {t̄}

)
, ã :=

a+ + a−

2
.

Notice that there is a bijective map ϕ : Γ → Γ̃ given by ϕ(q) =  L
(
q, t̄

)
, and that since Γ̃ is by construction

parallel to Γ, then the normal vector N(q) to Γ at q coincides with the normal vector Ñ
(
ϕ(q)

)
to Γ̃ at

ϕ(q). Thus, being ΩΓ̃,ã a subset of ΩΓ,a, the injectivity condition (5) trivially holds also for Γ̃ and ã,
and we can conclude that the strip ΩΓ̃,ã is admissible for our purposes.

By construction, we have C ⊆ ΩΓ̃,ã, hence C is also the Cheeger set of ΩΓ̃,ã. Moreover, by maximality

of a± we know that C touches all the four parts of the boundary of ΩΓ̃,ã, so the preceding steps, and in

particular (19), allow to deduce that

h
(
ΩΓ,a

)
=

P (C)

|C|
= h

(
ΩΓ̃,ã

)
≥

1

ã
+

1

200
∣∣Γ̃
∣∣ .

Finally, by definition ã ≤ a, while

∣∣Γ̃
∣∣ =

∫

Γ

(
1 − t̄κ(q)

)
dq ≤ 2

∣∣Γ
∣∣ .

Thus, we get (15) with the constant c = 1/400.
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4 Solvable models

In this section we discuss our results on the basis of several examples of curved strips about circles and
circular arcs. They are referred to as solvable models since the determination of the Cheeger constant
and the Cheeger set is reduced to solving an explicit algebraic equation. Where the exact solution is not
available, we have solved the problem with help of standard numerical tools.

4.1 Annuli

Probably the simplest example is given by annuli, i.e. strips built about (full) circles, see Figure 5. Then
the Cheeger set is the strip itself and the Cheeger constant equals the half of the distance between the
boundary curves. It follows from out Theorem 10 that exactly the same situation holds for general
curved annuli. Let us remark that also discs can be thought as examples of curved strips. Indeed, a disc
with its central point removed has the same Cheeger set (up to the point) and Cheeger constant as the
disc, and the former set can be considered as the limit case of the annulus built about the circle of radius
a + ε when ε → 0+.

Figure 5: The annulus and the disc considered as its limit case

4.2 Rectangles

The rectangle Ra,b := (−b, b) × (−a, a), with a, b > 0, can be considered as a strip built about the
segment Γ := (−b, b) × {0}. Using Theorem 2, it is easy to find its Cheeger constant explicitly:

h(Ra,b) =
a + b +

√
(a− b)2 + πab

2ab
.

Notice the scaling h(Ra,b) = h(R1,b/a). The procedure also determines the Cheeger set of Ra,b as the
rectangle with its corners rounded off by circular arcs of radius h(R)−1, see Figure 6.

Figure 6: The rectangle and its Cheeger set (light gray) for b/a = 3

The Cheeger constant can be written as

h(Ra,b) =
1

a
+

k(a, b)

|Γ|
, where k(a, b) :=

a− b +
√

(a− b)2 + πab

a

and |Γ| = 2b. Notice the scaling k(a, b) = k(1, b/a). It is straightforward to check that b/a 7→ k(a, b) is
a decreasing function with the limits k(a, b) → 2 as b/a → 0 and k(a, b) → π/2 as b/a → ∞. Hence the
upper bound of Theorem 11 becomes sharp in the limit of very narrow rectangles. The dependence of
the Cheeger constant h and of the quantity k on rectangle parameters is shown in Figure 7.

15



0 1 2 3 4 5

1.5

2.0

2.5

3.0

b

h

0 1 2 3 4 5

1.65

1.70

1.75

1.80

1.85

1.90

1.95

2.00

b

k

Figure 7: The Cheeger constant h and the quantity k for rectangles with a = 1

4.3 Sectors

Let Γa be the circle of curvature κ = a−1 and consider its part Γα
a of length |Γα

a | = αa, with any
α ∈ (0, 2π), see Figure 8. The corresponding strip Ωα

a := ΩΓα
a ,a does not satisfy the assumption (5).

However, since  L is in fact injective in Γa × (−a, a), it can be considered as a limit case of admissible
strips along corresponding parts of the circle of radius a + ε when ε → 0+.

Α

2 a

Ga

Figure 8: The sector of a a disc considered as a strip built about the ( α
2π )th-part of a circle

The Cheeger constant and the Cheeger set of Ωα
a can be found as follows. Firstly, we construct a

family of domains Sr, with r ∈ (0, a), defined by rounding off the corners in Ωα
a of angle smaller than π

by circular arcs of radius r. This can be done by a straightforward usage of elementary geometric rules.
Secondly, we minimize the quotient P (Sr)/|Sr| with respect to r, which is done with help of a numerical
optimization. The minimum of the quotient corresponds to the Cheeger constant and the minimizer is
the Cheeger set. The procedure is equivalent to using Theorem 2, which seems to remain valid also for
α > π, corresponding to non-convex sectors.

In view of the obvious scaling h(Ωα
a ) = h(Ωα

1 )/a, one can restrict to a = 1, without loss of generality.
The dependence of the Cheeger constant on α is shown in Figure 9. Table 1 contains numerical values
for some specific angles.

Writing the Cheeger constant as

h(Ωα
a ) =

1

a
+

k(α)

|Γα
a |

,

we also study the dependence of the constant k(α) on α, see Figure 9 and Table 1. The third value
of α in Table 1 corresponds to the maximal point of the curve α 7→ k(α) from Figure 9. In any case,
we see that the upper bound of Theorem 11 is quite good for all the sectors. Finally, Figure 10 shows a
numerical approximation of the Cheeger sets for some annuli.
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Figure 9: The Cheeger constant h and the constant k for sectors with a = 1

α π/10 π/2 0.656749 π 3π/4 π 3π/2 2π
h(Ωα

1 ) 5.92687 2.16358 1.89111 1.77915 1.57714 1.37582 1.27722
k(Ωα

1 ) 1.54782 1.82774 1.83856 1.83583 1.81315 1.77101 1.74184

Table 1: The Cheeger constant h and the constant k for sectors with a = 1

α = π/10 α = π/2 α = 3π/4

α = π α = 3π/2 α = 2π

Figure 10: The sectors and their Cheeger sets (light gray)
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