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Abstract—To reduce computational complexity and delay in
randomized network coded content distribution, and for sone
other practical reasons, coding is not performed simultaneusly
over all content blocks, but over much smaller, possibly owap-
ping subsets of these blocks, known as generations. A penalbf
this strategy is throughput reduction. To analyze the throwghput
loss, we model coding over generations with random generain
scheduling as a coupon collector's brotherhood problem. Tis

model enables us to derive the expected number of coded patke
needed for successful decoding of the entire content as well

as the probability of decoding failure (the latter only when
generations do not overlap) and further, to quantify the tradeoff
between computational complexity and throughput. Interesingly,

The introduction of network coding in P2P content distri-
bution systems brings about the issue of computational com-
plexity. Consider distributing a file consisting &f fragments,
each made up offl symbols from a Galois field7F'(q) of
sizeq. It takesO(Nd) operations inGF'(¢q) to form a linear
combination per coded packet, a®i N3 + N2d) operations,
or, equivalently, O(N? + Nd) operations per information
packet, to decode the information packets by solving linear
equations. According to the implementers of UUSEE [3], a
peer-to-peer video streaming application using randodnize
linear coding, even with the most optimized implementation

with a moderate increase in the generation size, throughput going beyond512 fragments in each generation risks taxing

quickly approaches link capacity. Overlaps between genetins
can further improve throughput substantially for relative ly small
generation sizes.

Index Terms—network coding, rateless codes, coupon collec-

tor's problem

I. INTRODUCTION

a low-end CPU, typically used in power-efficient notebook
computers.

In an effort to reduce computational complexity, inforroati
packets are partitioned into disjoint subsets referred 40 a
generationsand coding is done only within generations. This
approach scales down the encoding and decoding problem
from the whole file sizeN to the generation size times the

A. Motivation: Coding over Disjoint and Overlapping Genernumber of generations. The concept of generation in network

ations

coding was first proposed by Chou et al. [d [4] to handle

Random linear network coding was proposed [ih [1] fdhe issue of network synchronization. Coding over randomly
“robust, distributed transmission and compression of rinfoscheduled generations was first theoretically analyzed ay-M
mation in networks”. Subsequently, the idea found a plaeounkov et al. in [[5]. Random scheduling of generations
in a peer-to-peer(P2P) file distribution system Avalan@je [Provides the “rateless” property which reduces the need for
from Microsoft. In P2P systems such as BitTorrent, contefféceiver feedback and offers resilience to various erasure
distribution involves fragmenting the content at its seyrcpPatterns over the communication link. In addition, in therpe
and using swarming techniques to disseminate the fragmei@tgPeer content distribution setting, random schedulsdoi
among peers. Systems such as Avalanche, instead, circu@@e degree a good approximation when global co-ordination
linear combinations of content fragments, which can be gedmong peers is impractical.
erated by any peer. The motivation behind such a scheme i§Vith random scheduling of generations, coded packets ac-
that, it is hard for peers to make optimal decisions on tkaimulate faster in some generations than in others, evéh if a
scheduling of fragments based on their limited local visio@enerations are scheduled equally probably. While waiting
whereas when fragments are linearly combined at each no#¢ last generation to become decodable, redundant pakets
topology diversity is implanted inherently in the data flow@ccumulated in other generations. The situation is agtgeva

and can be exploited without further co-ordination.
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as the generation size decreases. One way to recover some
of the throughput loss due to random scheduling without
losing the benefits of reduced generation sizes is to allow
generations to help each other in decoding. If the generstio
are allowed to overlap, after some of the “faster” generatio
are decoded, the number of unknown variables can be reduced
in those generations sharing information packets with the
decoded ones, which in turn reduces the number of coded
packets needed to decode those generations, and enhaaces th
throughput as a result. Our goal is to characterize the tsffec
generation size and overlaps on the throughput and contplexi
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in randomized linear network coding. in itself of independent interest for general readers ésted
in coupon collecting problems.
In Section$V anfl VI, results from the previous two sections
B. Related Work are combined to enable the analysis of the effects of gdoerat
The performance of codes with random scheduling &fze and overlaps on the decoding latency/throughput dhgod
disjoint generations was first theoretically analyzed ihf$ over disjoint or overlapping generations.
Maymounkov et al., who referred to them elsunked codes  Sectior[ Y studies the effects of generation size on the code
Chunked codes allow convenient encoding at intermediat@oughput over a BEC channel for coding over disjoint gen-
nodes, and are readily suitable for peer-to-peer file dissesrations. Section VIA characterizes the mean and variahce o
ination. In [B], the authors used an adversarial schedule tag decoding latency (the number of coded packets trareinitt
the network model and characterized the code performangsil successful decoding) fdinite information lengthsand
under certain restrictions on the chunk(generation) sizerw Section[V-B provides a lower bound for the probability of
the length of the information to be encoded tends to infinitylecoding failure. A large gain in throughput is observed mvhe
Coding with overlapping generations was first studied ithe generation size increases frdnto a few tens.
[6] and [7] with the goal to improve throughput. Reference In Section[V]), therandom annex codés proposed as
[7] studied a “head-to-toe” overlapping scheme in whichn effort to improve code throughput by allowing random
only contiguous generations overlap for a given number oferlaps among generations. Secfion VI-C lists an algorith
information packets, and analyzed its asymptotic perfoiwea providing precise estimation of the expected decodingitate
over a line network when the length of information goes tof the random annex code. The algorithm is based on the
infinity. Another overlapping scheme with a grid structurasw analysis of the overlapping structure in Secfion VI-B ané th
proposed in[[6], analyzed for short lengths (edggenerations) results from the extended collector's brotherhood in $ecti
and simulated for practical lengths. When properly designgV] Section[VI-D demonstrates the effects of overlap sizes
these codes show improved performance over codes with code throughput is shown through both numerical com-
disjoint generations. In our work, we offer an analysis gfutation and simulations. One of our interesting obseowati
coding over disjoint and overlapping generations for filit® is that overlaps between generations can provide a tradeoff
practically long information lengths. between computational complexity and decoding latency. In
addition, without increasing the generation size (and benc
computational complexity), it is still possible to improve
code throughput significantly by allowing overlaps between
In this work, coding with both disjoint and overlappinggenerations.
generations together withandom generation schedulinig
studied from a coupon collectionl[8] perspective. PreMpus || coping OVER GENERATIONS THE GENERAL MODEL

existing results from the classical coupon collectorsipean, In this section, we describe a general random coding scheme
along with our extensions, enable us to characterize the cod ' 9 9

performance with finite information lengths, from which th&Ver generatlons. Generations do_not have to bg disjoint or 0
asymptotic code performance can further be deduced. equal size, and random scheduling of generations does not

Section[) introduces the general model for coding Ové}ave to be uniform. We describe the coding scheme over a

generations, disjoint or overlapping, over a unicast (m.naumcast link.
erasure) link, and characterizes the computational cast fo
encoding and decoding. A. Forming Generations
Section[Tll derives several results concerning linear inde The file being distributedF is represented as a set df
pendence among coded packets from the same generaigfdrmation packetsp:, ps,...,pn. Each information packet
Such results serve to link coupon collection to the decodifg a d-dimensional column vector of information symbols in
of content that has been encoded into multiple generatiogslois FieldGF(¢). Generations are non-empty subsetsFof
Included (Claim[l) is a very good upper bound on the Suppose that generations(z;, G, . . ., G,,, are formed s.t.
distribution of the number of coded packets needed for a— U"_,G;. A coding scheme is said to be non-overlapping
specific generation for successful decoding. if the generations are disjoint, i.evi # j, G; N Gj = 0;
Section[1V introduces the coupon collector’s brotherhoastherwise, the scheme is said to be overlapping. The size
problem and its variations that can be used to model codipf) each generatiorty; is denoted byg,, and its elements

C. Organization and Main Contribution

over generations. Probability generating functions (Tees (/) péj) pf,j) For convenience, we will occasionally also
' 5 sy Pgj - L] 5 X .
and4) and moments (Corollarigls 3 @dd 5) of the number@ieGj to denote the matrix with columryé”,pgj), o ’pgz_)_

samplings needed to collect multiple copies of distinctomms

are derived for the random sampling ofimite set of coupons ]

in Section[TV-A. Relevant asymptotic results on expectdg: Encoding
values and probability distributions in existing litereguare In each transmission, the source first selects one of:the
recapitulated in Sectidn TVIB for performance charactgion generations at random. The probability of choosing geitarat

of coding over generations in the later part of the work. Th@; is p;, >, pi = 1. Let p = (p1,p2,...,pn). Once
section is presented in the coupon collection language sindyenerationG; is chosen, the source chooses a coding vector



e =[e1,e2,...,¢e4]7, with each of they; components chosentake up [log, n] + g;[log, ¢] bits. Meanwhile, the data in

independently and equally probably fro@F'(q). A new each coded packet comprigglog, ¢q] bits. The generation

packetp is then formed by linearly combining packets fronsize makes a more significant contribution to packet ovethea

Gibye:p=3% ep?) =e-G; (G, here denotes a matrix). and such contribution is non-negligible due to the limitézes
The coded packep is then sent over the communicatior(~ a few KB) of transmission packets in practical networks.

link to the receiver along with the coding vecter and This gives another reason to keep generations small, Iseside

the generation indey. Figure[1 shows a diagram of thereducing computational complexity.

communication between the source and the receiver. The

generations shown in this example are chosen to be disjoiat, computational Complexity

but this is not necessary. The computational complexity for encoding is
File at Server O(dmax{g;}) per coded packet for linearly combining
G, G, G, G, the g; information packets in each generation (recall had
ol ol ol ol ol ok ol ol oL @l @l @ the nu_mber ofGF_(q) symbols in each information packet,
A e I A e N A e I e as defined in SectidnI[3A). For decoding, the largest number

of unknowns in the systems of linear equations to be solved
/e, BEC(e) is not more thammax{g,}, and therefore the computational
eG; complexity is upper bounded 9 ((max{g;})*+d max{g,})

per information packet.

;} F. Decoding Latency

In this paper, we focus on the tradeoff between the computa-

(D4p,(D : H H
Py P tional complexity and thelecoding latencyf these codes over
P P2 +py? Py unicast links with erasures. Decoding latency here is define
pV4p, ) P, 1D +paD +p s D ps as the number of coded packets transmitted until successful

decoding of all the information packets, anderheadis the

difference between the number of information packets and

Fig. 1. A file divided into N = 12 fragments andn = 4 (disjoint) the decoding latency. We assume a memoryless BEC with a

generations containing = 3 fragments each is available for distributionconstant erasure rate Since our coding scheme is rateless,

iggguf;;vgegng;teigﬁger collects random linear combinatiof randomly 50 coded packet is statistically of the same importamze, a
so the average decoding latency is inversely proportiomal t
the achievable capacityl — ) of the link. The throughput of

C. Decoding the code is inversely proportional to the decoding laterury f

Decoding starts with any generatiafi; for which the given information length.

receiver has collected; coded packets with linearly inde-

pendent coding vectors. The information packets making up Ill. COLLECTING CODED PACKETS AND DECODING

this generation are decoded by solving a systemp;dfinear A generationG; is not decodable until the number of

equations inI'(g) formed by the coded packets on one sidgnearly independent equations collected 16§ reaches the

and the linear combinations of the information packets ley thhumber of its information packets not yet resolved by detgdi

coding vectors on the other. Since generations are allowedsther generations. The connection between the number of

overlap, a decoded information packet may also participatecoded packets collected and the linear independence among

other generations, from the equations of which the infoilomat these coded packets has to be established before we can

packet is then removed as an unknown variable. Consequergpedict the decoding latency of codes over generationgyusin

in all the generations overlapping with the decoded gengke collector’s brotherhood model that will be discussethin

ations, the number of unknown packets is reduced. Asnpaxt section.

result, some generations may become decodable even if N@et M (g, x) be the number of coded packets from a gener-

new coded packets are received from the source. Again, fon of sizeg adequate for collecting linearly independent

newly decoded generations resolve some unknowns of tguations. Thed (g, z) has expected valugl[9]
generations they overlap with, which in turn may become

Receiver Buffer

decodable and so on. We declare successful decoding when ! 1
all NV information packets have been decoded. E[M(g,2)] =) _ 1_go @
The coding scheme described here is inherently rateless J=0
and easily extendable to more general network topologis tpproximating summation by integration, froml (1) we get
allow coding at intermediate network nodes. o1 1 1
Bl (g.0) 5 | dy
D. Packet Overhead o l—gv9 L—go 19
Contained in each coded packet are the index of a generation — ¢~ +log l—q77 @)
G, and a linear combining vector fof!; which together 1—go 19 “1—q7 179



Let A. Generating Functions, Expected Values and Variances

gt 19 1—q9 For anym € N, we defineS,, (x) as follows:
’I]q(fﬂ) =x+ o + 1qu T a—i—a° (3) -
L—go9 L—gv9 x| a? am!
Sm(z) =1+ =+ 5+ +— m=1) (5)
We can usey,(z) to estimate the number of coded packets 2 (m —1)!
needed from a certain generation to gathdinearly indepen- Sm(x) =0 (m <0) and Sy (z) = e”. (6)

dent equ_a_tions. ) ) ) Let the total number of samplings needed to ensure that
In addition, we have the following Claifl 1 which Uppery leastm;(> 0) copies of coupor(y; are collected for all
bounds the tail probability ofi/(g, g), the number of coded ; _ | 5 " pe T(p,m), wherem = (my,ma, ..., m).

packets needed for a certain generation to gather enouﬁgme following Theorenfl2 givesr(,.m)(z), the generating

linearly in<.jependent_equati_o_ns for decoding. function of the tail probabilities ofl’(p,m). This result
Claim 1: There exist positive constantg , andasz » such g generalized from[[10] and [11], and its proof uses the

that, fors > g, Newman-Shepp symbolic method in_[10]. Boneh et fall [12]
g—1 gave the same generalization, but we restate it here fomuse i

ProbM (g,g) > s] =1 — H(l —¢") our analysis of coding over disjoint generations. If for leac
k=0 j = 1,2,...,n, the number of coded packets needed from

generationG; for its decoding is known to ben; (which

<1 —exp(—ay, qf(s’g)) <1-— eXp(—ozzyooq*(S’g)).
9 can be strictly larger than the generation siz¢, 7'(p, m)

Also, sincel — exp(—z) < z for > 0, then gives the total number of coded packets needed to ensure
successful decoding of the entire content when the gepasati
ProiM (g, g) > 5] < aggq "7 (4)  are scheduled according to the probability vegtor
) Theorem 2:(Non-Uniform Sampling) Let
Proof: Please refer to Appendix]A. [ |
We will use Clainl in Theorefl 8 in Sectifd V to derive an OT(p,m)(2) = Z Prob[T'(p, m) > i]z°. )
upper bound to the expected overhead of coding over disjoint i>0
generations. Then,
IV. COUPONCOLLECTOR' S BROTHERHOOD AND Prioam(2) = . ®)
COLLECTING CODED PACKETS FROM GENERATIONS /OO e—r(1=2) _ H [efpim(lfz) — Som, (piwz)efpiz] }d:v.
The coupon collector's brotherhood problem 1[10],1[11] *° i=1
studies quantities related to the completionmfsets ofn Proof: Please refer to AppendiX]B, where we give a

distinct coupons by sampling a set af distinct coupons full proof of the theorem to demonstrate the Newman-Shepp
uniformly at random with replacement. In analogy, codesymbolic method[[10], which is also used in the proof of our
packets belonging to generatigrcan be viewed as copies ofother generalization in Theorenh 4. |
couponj, and hence the process of collecting coded packetsThe expected value and the variance ofp, m) follow
when generations are scheduled uniformly at random can fbem the tail probability generating function derived in &dt
modeled as collecting multiple copies of distinct coupons. rem[2.

Because of possible linear dependence among coded packe€sorollary 3:
and the overlaps between generations, the numbers of codedE[T( m)] = (1)
packets needed for each of thegenerations to ensure suc- P PT(pm) N

. . o0

cessful decodmg_, however, anerandom va,rlables. Therefore, _ / 1— H [1= Sy, (piz)e "] b da,
we must generalize the coupon collector’s brotherhood mode 0 bl
from collecting a uniform number of copies for all coupons to , 9
collecting diﬁgrent numbers of copiesri‘or different C(E)DBO Var{T(p,m)] = 207 (p,m) (1) + @1pm) (1) = &7 p,m) (1):
before it can be applied to the analysis of the throughput Proof: Please refer to Appendix]B. ]
performance of coding over generations. In this sectioa, th Note that in Theorerl2 and Corolldy @;-s are allowed
original collector’s brotherhood model is generalizedwot to be0, thus including the case where only a specific subset
ways. And later in this paper, the analysis of the throughpaof the coupons is of interest. Theoréin 2 and Corolldry 3 are
performance of coding over disjoint generations in Sedibn also useful for the analysis of coding over generations when
rests on the first generalization, whereas that of coding ovbere is a difference in priority among the generations. For
overlapping generations in Sectign]VI rests on the secoimstance, in layered coded multimedia content, the geioesat
generalization. As our results are of more general intéhest containing the packets of the basic layer could be given
the coding-over-generations problem, we will express tirema higher priority than those containing enhancement layers
the coupon collection language. For example, the proltgbilbecause of a hierarchical reconstruction at the receiver.
p; of scheduling generatiot’; (defined in Sectioll) here In the following, we present another generalization of the
refers to the probability of sampling a copy of coup@n for collector’s brotherhood model. Sometimes we are simply
1=1,2,...,n. interested in collecting a coupon subset of a certain size,



regardless of the specific content of the subset. This can dming scheme in which generations share randomly chosen
further extended to the following more complicated case: finformation packets. The effect of the overlap size on the
eachi =1,2,..., A(A > 1), ensure that there exists a subsehroughput can be investigated henceforth.

of {G1,Gs,...,G,} such that each of it&; elements has at

leastm; copies in the collected samples. Such a generalizatign Limiting Mean Value and Distribution

is intended for treatment of coding over equally important
generations, for example, when each generation is a sam;trehu
of multiple-description coded data. In this generalizatio
the generation scheduling (coupon sampling) probatsildie

In the previous subsection, we considered collecting afinit
mber of copies of a coupon set of a finite size. In this part,
we present some results from existing literature on theilmi

. : behavior ofT'(p,m) asn — co Or my = mg = -+ =m,, =
assumed to be uniform, i.en; =pp=-=p= 1/_n. m — 0o, assUmings, = py = -+ = p, = L. By slight abuse
Suppose that for some p0§|t|ve integdr < n, integers in notation, we denotd@(p, m) here asr,,(m).
ki,...,ka andmgq,...,my satisfyl <k <---<ky <n By Corollary(3
andoo = mg > my > -+ > ma > mar1 = 0. We are '

interested in the total numbéf(m, k) of coupons that needs BT, (m)] = n/oo [ (1 Sp(@)e™)"] da. (11)
to be collected, to ensure that the number of distinct cospon 0

for which at leastm; copies have been collected is at least The asymptotics of2[T}, (m)] for largen has been discussed
ki forall i = 1,2,..., A, wherem = (my,mz,...,ma) in literature [10], [14] and[[15], and is summarized in the
andk = (ki, ks, ..., ka). The following Theoreril4 gives the following Theorent®,[13), and Theordm 7.

generating functionoy m k) (z) of U(m, k). Theorem 6:([14]) Whenn — oo,
Theorem 4:(Uniform Sampling)
E[T,(m)] = nlogn+(m—1)nloglogn+Cyn+o(n), (12)

PUmx) (2) = "/O e_m{emz_ ©) where C,,, = v — log(m — 1)!, ~ is Euler’s constant, and
A . P m € N,
> 11 <Z;“> {Sm]. (22) = S,y (sz):| e }d:z:. Form > 1, on the other hand, we have [10]
%?;it[’,;;;ﬁi?‘j:o ’ E[T,,(m)] — nm. (13)
'L]‘E kj,ij
N What is worth mentioning is that, as the number of coupons
Proof: Please refer to Appendix]B. m n — oo, for the first complete set of coupons, the number
Same as for Corollary]13, we can finf[U(m,k)] = of samplings needed i©(nlogn), whereas the additional

Yu@mx) (1). A computationally wieldy representation ofnumber of samplings needed for each additional set is only
E[U(m, k)| is offered in the following Corollary(]5 in a O(nloglogn).

recursive form. In addition to the expected value @f,(m), the concen-
Corollary 5: Fork = ki, k1 +1,...,n, let tration of 7;,(m) around its mean is also of great interest to
- us. This concentration leads to an estimate of the prolabili
0,k(2) = [(Smo (2) = Smy (#))e™*]% of successful decoding for a given number of collected coded
Forj=1,2,..., A, let packets. We can specialize Coroll&dy 3 to derive the vadanc
of T,,(m), as a measure of probability concentration.
j.k(2) Further, since the tail probability generating functiores d

ok _ rived in the last subsection are power series of non-negativ
_p1k—w o
=> w [(Sim,; (@) = Smyir (@))€ " dj—1.0(2),  coefficients and are convergent at they are absolutely
w=k; convergent on and inside the circlel = 1 in the complex
for k =kji1, ki1 +1,...,n. z-plane. Thus, it is possible to compute the tail probabditi
using Cauchy’s contour integration formula. However, &xtr
Then, . : . S .
oo care is required for numerical stability in such computatio
ElU(m, k)] = n/ (1= ¢an(z))de. (10)  Here we instead look at the asymptotic case where the
i i 0 i number of coupons — oo. Erdds and Rényi have proven
Itis not hard to find an algorithm that calculates g4 »(z) [16] the limit law of T,,(m) asn — oo. Here we restate
in + S ERCD DD Bk k—k;)) basic arith- P ich i iti
' (C_lml 02_(" €32 =1 k:kj+1( Kj Lemma B from [14] by Flatto, which in addition expresses
metic operations, wgerzq, ¢z ande; are positive constants. ASthe rate of convergence to the limit law. We will later usesthi
long asm; = O(An?), we can estimate the amount of workiesylt to derive a lower bound for the probability of decaglin

for a single evaluation of — ¢ ,(z) to be O(An?). The fajlyre in TheoreniB in Section ViB.
integral [I0) can be computed through the use of an efficientthegrem 7:([14)) Let

quadrature method, for example, Gauss-Laguerre quadratur

S o . 1
For reference, some numerical integration issues for teeiap Y,.(m) = — (T,,(m) — nlogn — (m — 1)nloglogn).
case whered = 1 have been addressed in Part 7[of|[13] and "
in [IE] Then,

In Section[V], we will apply Corollanf5 to find out the B v loglogn
expected throughput of threandom annex coden overlapping PiYy(m) < y] = exp { - (m —1)! logn )




Remark 1:(Remarks 2&3,[[I4]) The estimation in Theorem
[7 is understood to hold uniformly on any finite intervah <
y < a. i.e., for anya > 0, EW(p,g)]

ot <ol —oo (220 < coizizn - [ (1]
i

= 1 —_
(m—1)! logn
n > 2and —a < y < a. C(m,a) is a positive constant </ (1—
0 1

n

(1 - eipizEMi [SMz (plx)])> dx (16)

1
(1= e (S (i) (17)
depending onn anda, but independent of. Form = 1, the i=1
. . . loglogn oz ;
convergence rate to limit law is much faster: tﬁe(—logn ) + g, % €T — g . q% S, (pﬂ:/q))))dx,

term become®) (‘"ﬂ)

n

E[W*(p, )] (18)
V. CODING OVER DISJOINT GENERATIONS :2 /oo x<1 - zn:pil — Ey, [SMiil(pix)]e_—éiz'
In this section, we study the performance of coding over 0 ~  1-Eum [Sm; (piz)] ePi
disjoint generations. We derive both an upper bound and a n
lower bound for the expected decoding latency (as defined H (1= B, [Sar, (pjz)] e7P7%) )dw
in SectionTI-F). We also derive the variance of the decoding Jj=1

lat . - i
atency + /0 <1 ~T] (e "B, [Su, (Pm)])) dz

i=1

A. Expected Decoding Latency and Its Variance whereag g, = — ii;ol n (1 B qk,gi) =12, ..m.

Let M; ( = 1,2,...,n) be the number of collected Proof: Please refer to Appendix] C. [ |
coded packets from generatighi; when G; first becomes In the case where generations are of equal size and sched-
decodable. The; is at leasty;, has the same distribution asuled uniformly at random, we can estimate the asymptotic
M (g:, gi), the number of coded packets needed for a certdswer bound for E[W (p, g)] by the asymptotics off},(m)
generation to gather enough linearly independent equatiaiven in [12) and[{13).
for decoding, as defined and studied in Secfioh MW;'s are Figure[R(@) shows several estimateFdfV (p, g)], and Fig-
independent random variables. Let the decoding latencyaveure[Z(b) shows the standard deviation¥éf(p, g) calculated

perfect channel b&V (p, g), whereg = (g1, 92, .-, 9,). Use from TheorenB and simulation results, when= 1 and
We(p, g) to denote the decoding latency on a BEC( gi = g fori =1,2,...,n. The estimates are plotted versus
Let X; (k=1,2,...) be i.i.d. geometric random variableshe uniform generation sizg for fixed N = ng = 1000.
with success rate—e. Therefore F[X;] = 11 and E[X}] = For coding over disjoint generations and a fixed total num-
(1{;:)2. Then ber of information packets, both the expected value and the
W(p.g) standard devia}tion _of the decoding Iqtency drop signiflgant
W.(p,g) = Z X, as the generation sizegrows to a relatively small value from
’ pt ’ the case where no coding is used=£ 1). Hence, throughput
is improved by a moderate increase in the computational cost
and therefore, that scales quadratically with the generation size (se@id®ec
[I=E). On the other hand, we also observe that past a moderate
EW(p,g)| = 1 EE[W(p,g)], (14) generation size~ 50 — 100 coded packets forv = 1000),

the decrease in decoding latency becomes slower by further
(Var[W(p,g)] + eE[W?(p,g)]) . increasing the encoding/decoding complexity. We theeefor
(15) argue for a “sweet spot” generation size which characterize
the tradeoff between throughput and complexity.

Var[We(p,g)] =

1
1— )2

By definition, E[W (p, g)] is lower bounded by [T'(p, g)],
Fhe expected number of coded packets necessary for CO”%:.t'ProbabiIity of Decoding Failure
ing at leastg; coded packets for each generati6h, and ] ] _ ) _
E[T(p,g)] is as given in Corollar{l3 In this subsection we assume uniform generation size and

' ' i ility i _1 _ -

The following Theorerfi8 gives the exact expression for ttgeheduling probability, i.ep; = 7, g; = gfori =1,2,...,n.
first and second moments o (p, g), along with an upper OF short, we denotéV (p,g) as W,.(g). From Theorentl7,
bound for E[W (p, g)] considering the effect of finite finite W& optam t_he following I.ower bound to the probability of
field size g. Then, the expected value and the variance §fcoding failure as — oo:

W.(p,g) can be derived froni{14) anf{L5). Theorem 9:Whenn — oo, the probability of decoding
Theorem 8:The expected number of coded packets needf@ilure whent coded packets have been collected is greater
for successful decoding of alV information packets than1 —exp {—ﬁ"(log n)?~" exp (_%)} +0 ('loi:i;ni



Proof: The probability of decoding failure after acquiring
t coded packets equals Pfoly,(g) > t]. Since W, (g) >

Tn(9),
N=1000, q=4 Profi,,(g) > t] > ProlT,,(g) > t]

2500

O“NEI' OUI"I t
T~ upper boond =1—-Prob|Y,(g) < — —logn — (g — 1)loglogn
+  simulation mean n
Nn->c0 asymptotic

=T g masympotie The result in Theoreml 9 follows directly from Theor&in l.
[ Corollary 10: When ¢ is fixed andn — oo, in order
to make the probability of decoding failure smaller than
the number of coded packets collected has to be at least
E[T.(g)] — nloglog t&. If § = - for some constant,
then the number of coded packets necessary for successful
decoding has to be at lea&{T;,(g)] + cnlog(ng).
i Theorem 4.2 in[[b] also gives the number of coded packets
0000 4 e 8 100 120 140 180 180 needed to have the probability of decoding failure befow

Generation Size & ~-, but under the assumption tHat N/§) = o(N/n) = o(g).

Nf‘goo " In comparison, Corollary 10 treats the case wheisconstant.
s00F : T : . Figure[E(c) shows the estimate of the probability of decod-
p— ing failure versusl’, the number of coded packets collected.
+ _ simulationstd | | As pointed out in Remarkl1, fom > 2, the deviation of
the CDF ofT,,(m) from the limit law for n — oo depends
onm and is on the order oD(*%%") for m > 2, which
is quite slow, partly explaining the deviation of the limaw
curves from the simulation curves for = 5 andm = 10 in

Figure[2(c).

2000 -

W(p,g)] Estimates

E[
&
8

std[W(p,g)] Estimates
£
8

VI. CoDING OVER OVERLAPPING GENERATIONS

Even when generations are scheduled uniformly at random,

i i i i
0 20 40 60 80 100

Generation Size g there will be more coded packets accumulated in some of
(b) the generations than in others. The “slowest” generation is
1 N=1000, g=256 the bottleneck for file decoding. It is then advisable to gesi
- - - g=1 simulation a mechanism that allows “faster” generations to help those
0.9 = = = g=5 simulation . . . .
= = = =10 simulation lagging behind. In this section, we propose tamdom an-
oer S e b nex code a new coding scheme in which generations share
o7 == g=10 n->» lower bound randomly chosen packets, as opposed to previously proposed

o
2
T

“head-to-toe” overlapping scheme of [7].

We provide a heuristic analysis of the code throughput
based on our results for the coupon collection model and an
examination of the overlapping structure. Previous work on
coding over overlapping generations, [6] ahd [7], lacksuacc
] rate performance analysis for information blocks of motiera
: finite lengths. On the other hand, the computational effort

#of Coded Packets Collegted needed to carry out our analysis scales well with the length
(©) of information, and the performance predictions coincidiaw
- Esi Y o g ber of coded pack simulation data. In addition, we find that our random annex
relgﬁiréd(%)r stsjgtir:aasts,efil de[coéilr)lbgv)v]ﬁénetr?;?;genu%ut)n;ﬁirfﬂ(r)\aggnepagsgtset%()de OUtp_erformS the “head-to-toe” overlapping schemgpf [
is N = 1000, and bothg and p are uniform. Estimates shown: lower boundOVEr @ unicast link.
E[T(p,)]; upper bound[(17); mean diV (p, g) in simulation;n — oo In this section we conveniently assume that the coded

asymptotic [(IR);m > 1 asymptotics [(113); (b) Estimates of the standar .
deviation of W (p, g); (c) Estimates of probability of decoding failure versus(baCkets are sent over a perfect channel, since here we are

the number of coded packets collected: Theofdm 9 along viithulation  interested in comparing the performance of different es®!
results. coding schemes.

o
IS

4
w
T

Probability of Decoding Failure
o
(5

o
N
T

o

0
0

A. Forming Overlapping Generations

We form n overlapping generations out of a file with
information packets in two steps as follows:



1) Partition the file setF of N packets into subsets The following Theoreni 15 quantifies the expected amount
By, B, ..., B,, each containing consecutive packets. of help a generation may receive from previously decoded
Thesen = N/h subsets are referred to &sse gener- generations in terms of common information packets. In the
ations Thus, B; = {p(;—1)h+1,P(i—1)h+2-- -+ Pin} fOr next subsection, we use Corolldry 5 and Theofein 15 for a
1=1,2,...,n. N is assumed to be a multiple affor heuristic analysis of the expected throughput performanice
convenience. In practice, i¥ is not a multiple ofh, set the random annex code.

n = [N/h] and assign the lagtV — (n — 1)h] packets = Theorem 15:For any! C {1,2,...,n} with |I| = s, and
to the last (smaller) base generation. anyj €{1,2,...,n}\I,

2) To each base generatids;, add a randonannex R;, - ) ) o _s _s
consisting ofl packets chosen uniformly at random s) = Bl (VierGi) N Gyl =g+ [L = 7]+ sh-mr” (19)
(without replacement) from theV — h = (n — 1)h where|B| denotes the cardinality of sé8. Whenn — oo,
packets inF\ B;. The base generation together with it§f + — @ and £ — 3, and letw(8) = Q(s), thenw(B) —
annex constitutes thextended generatiofi; = B;UR;, h[(1+ @) (1 —e ") + afe 7).
the size of which isg = h + I. Throughout this Proof: Please refer to AppendixD. u
paper, unless otherwise stated, the term “generation” will ) _
refer to “extended generation” whenever used alone for EXxPected Throughput Analysis: The Algorithm
overlapping generations. Given the overlapping structure, we next describe an analy-

The generation scheduling probabilities are chosen to 8§ of the expected number of coded packets a receiver needs
uniform, p; = ps = --- = p, = 1/n. The encoding and to collect in order to decode alV information packets of*

decoding procedures run the same as described in the gen&fgn they are encoded by the random annex code. We base

model in Sectiof]!. our analysis on Theorem 115 above, Corollary 5 in Sedfidn IV,

and also[(B) in Sectio]ll, and use the mean value for every

. . uantity involved.

B. Analyzing the Overlapping Structure ’ By tﬁ/e time whens (s =0,1,...,n — 1) generations have
The following Claim<_Ill through 14 present combinatorigdeen decoded, for any one of the remaining s) generations,

derivations of quantities concerning the frequency at Whign the averagél(s) of its participating information packets

an arbitrary information packet is represented in differepaye been decoded, or equivalently,— Q(s)) of them are

generations. not yet resolved. If for any one of these remaining genenatio
Claim 11: For any packet in a base generatiéh, the the receiver has collected enough coded packets to decode

probability that it belongs to annext,. for somer € its unresolved packets, that generation becomegshel)th

{1,2,...,n}\{k} is decoded; otherwise, if no such generation exists, decoding
N—h—1\,/N—h l l fails. _ o _ _ _
= ( 1—1 )/( I > “TN-h m-1Ln The quantityy, (z) defined in[(B) in Sect|_0E|]II es_tlmates the
N ) o number of coded packets from a generation of gizglequate
whereas the probability that it does not belongRpis 7 = tor collectingz linearly independent equations. By extending
1-—m the domain ofn,(x) from integers to real numbers, we can

Claim 12: Let X' be the random variable representing thggimate that the number of coded packets needed fdsthe
number of generations an information packet participates h)th decoded generation should excee(= Mg (g —Q(s))].

Then, X =1+, whereY" is Binom(n — 1, 7). Since in the random annex code, all generations are randomly
l scheduled with equal probability, for successful decoging
EX]=1+(r-Dr=1+ n would like to have at least, coded packets belonging to one
and of the generations, at least| belonging to another, and so
Var[X] = (n— 1)r7. on. Then Corollaryb in Sectidn ]V can be applied to estimate

the total number of coded packets needed to achieve these
Claim 13: In each generation of size= -+, the expected mjinimum requirements for the numbers of coded packets.
number of information packets not participating in any othe The algorithm for our heuristic analysis is listed as follow
generation ish" 1) ~ he~!/" for n > 1; the expected 1y ComputeQ(s — 1) for s = 1,...,n using Theoreri5:
number of information packets participating in at least two 2y computem’, = [n,(g — (s — 1))] for s = 1,2,....,n
generations is using [3); ‘

/ — 1 . S
I+ h[1 =7 D]~ 1+ [1_64/;1} < min{g, 21} 3) Mapm) (s = 1,2,...,n) into A valuesm; (j =

1,2,...,A) sothatm; = m;cj,lﬂ = m;cj71+2 — =
forn > 1 andl > 0. m;Cj, forj=1,2,...,A, kg =0andky = n;
Claim 14: The probability that two generations overlap is 4) Evaluate[(I0) in Corollarff]5 with the, k;s, andm;s
1—(,, ]]ijf,’llz,l)/(Nl‘h)z. The number of generations over- obtained in Stepl3), as an estimate for the expected num-
lapping with any one generatiaf; is then ber of coded packets needed for successful decoding.

Remark 2: The above Stef]3) is viable becauQg¢s) is

: N —2h N —\? - S - :
Binom [ n —1. 11— / _ nondecreasing is, n,(x) is hon-decreasing i for fixed g,
’ LN —2h =21 ! and thusm/, is non-increasing ir.



Although our analysis is heuristic, we will see in the next
section that the estimate closely follows the simulatedaye
performance curve of the random annex coding scheme.

D. Numerical Evaluation and Simulation Results

1) Throughput vs. Complexity in Fixed Number of Genera-
tions SchemesOur goal here is to find out how the annex size
| affects the decoding latency of the scheme with fixed base
generation sizé and the total number of information packets
N (and consequently, the number of generatiens Note
that the generation size = h + [ affects the computational
complexity of the scheme, and hence we are actually looking 1600 ‘ ‘ ‘
at the tradeoff between throughput and complexity. T Smnesdzon

Figure[3 shows both the analytical and simulation results —+= theoretical random annex]|

when the total numbelN of information packets i2000 and

the base generation sizeis 25. Figure[$(d) shows + [ —

Q(s) for s = 0,1,...,n with different annex sizes. Recall

that )(s) is the expected size of the overlap of the union of

s generations with any one of the leftover— s generations.

After the decoding of generations, for any generation not yet

decoded, the expected number of information packets tiflat st 1000}

need to be resolved is thént [ — Q)(s). We observe that the 0 . 10 " 2

h 41— Q(s) curves start fromh + [ for s = 0 and gradually amnex size

descends, ending somewhere abbvel, for s =n — 1. (b)
Recall that we measure throughput by decoding latency TR —‘,an:oman‘nex,::éz

(Section[=F). Figurd]3(B) shows the expected performance zz no R |

of the random annex code, along with the performance of the ' o """ non-overiapping, -0

head-to-toe overlapping code and the non-overlapping code

(I = 0). Figure[B(c) shows the probability of decoding failure

of these codes versus the number of coded packets collected.

o Our analysis for the expected decoding latency closely
matches the simulation results.

« Figure[$(b) shows that by fixing the file siZé and the
base generation sizk, the expected decoding latency o e
decreases roughly linearly with increasing annex $jze # of coded packets received
up tol = 12 for the random annex scheme and up to 8 (c)

for the h.ead-to-t(.)e SCheme'. MeanWh!le'_ the deCOd"&%. 3. N = 1000, h = 25, ¢ = 256: [(@) Difference between the generation
cost per information packet is quadratic gn= h + I.  size and the expected size of overlap with previously detagnerations

Beyond the optimal annex size, throughput cannot tﬁ@+l_—Q(s));Expect_ed number of_goded pack(—_}ts negded for successful
further increased by raising computational cost. decoding versus annex sizg[c) Probability of decoding failure

o The random annex code outperforms head-to-toe over-
lapping at their respective optimal points. Both codes
outperform the non-overlapping scheme. other generations, the remaining information packets is th

« As more coded packets are collected, the probability generation can be solved in a system of linear equations of
decoding failure of the random annex code convergesfmwver thang unknowns, and as a result increasihgnight
0 faster than that of the head-to-toe and that of the nodecrease the decoding complexity.

o
o
S

1400

1300

1200

1100

# coded packets required for decoding

0.7r :
06f
05f
0.4f
03f ‘\ :
0.2F iI
0.

probability of decoding failure

)
-
\)
J
\J

overlapping scheme. Figurel4 shows both the analytical and simulation results fo
Over|aps pro\/ide a tradeoff between Computationa| Corﬂle code performance when the total numbeof information
plexity and decoding latency. packets is fixed at000 and sizey of extended generation fixed

2) Enhancing Throughput in Fixed Complexity Schemesat 25.
Our goal here is to see if we can choose the annex sizes Again our analytical results agree with simulation results
to optimize the throughput with negligible sacrifice in com-  very well;
plexity. To this end, we fix the extended generation size « It is interesting to observe that, without raising computa-
g = h + 1 and vary only the annex siZe Consequently, the tional complexity, increasing annex size properly carn stil
computational complexity for coding does not increase when give non-negligible improvement to throughput;
I increases. Actually, since some of the information packets « Figure [¥{@) shows a roughly linear improvement of
a generation of size could already be solved while decoding  throughput with increasing up tol = 10 for the random
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Fig. 5. Optimal expected decoding latency and the optimaltlap size with
random annex codesy = 1000, ¢ = 16

probability of decoding failure

o ; h AT
1000 1200 1400 1600 1800 2000

# of coded packets received . . . . . .

b complexity is considerable. Capturing the optimal ovediae

®) in terms of other parameters of the code is our object of éster
Fig. 4. N = 1000, g = h+1 = 25, ¢ = 256:[[@)] Expected number of coded in the future.
packets needed for successful decoding versus annex;${} Probability
of decoding failure

APPENDIXA
PROOF OFCLAIM [T]

annex scheme and up te= 6 for the head-to-toe scheme
Increasingl beyond affects throughput adversely;

+ The random annex code again outperforms head-to-toe Prob{M 9,9) < S}
overlapping at their optimal points. Both codes outper-

Fori=1,2,...,n and anys > g, we have

. g—1
form the non-overlapping scheme; k—s k—s
; - . . =1 1- = In(1 —
« \We again observe that the probability of decoding failure " H 7 P (=g
of the random annex code converges faster than those of g 1 o L g—1
the head-to-toe and the non-overlapping schemes. _ Z Z L ohsyy _ Z 1 §(k—s)
. . . - q
When the overlap size increases, we either have larger k= o] 17 j=1 J k=0
generations with unchanged number of generations, or arlarg qjg 1
number of generations with unchanged generation size.tim bo =- Z o -1

cases the decoding latency would increase if we neglected th
effect of overlaps during the decoding process. If we make us ;) Gty sy L — a7 ~ig
of the overlap in decoding, on the other hand, the larger the Z —q g -1
overlap size, the more help the generations can lend to each

other in decoding and, hence, reducing the decoding latency —(s—g) 11—q79
Two canceling effects result in a non-monotonic relatigmsh —~j 1-q¢
between throughput and overlap size. (o) =
The effect of generation size on the throughput of random InProb{M (g, g) < g}
annex codes is further illustrated in Figlite 5. Fidure 59tbe >¢ 79 lim In Prob{M(g,9) < g}

optimal expected decoding latency achievable by random an- hro0.a=2

nex codes and the corresponding optimal annex size versusthe claim is obtained by setting

generation size folV = 1000 andq = 16. The plotted values

are calculated using the algorithm listed in Secfion VI-G W g,y = —InProb{M(g,g) < g},

can see from Figurg 5 that with the random annex code and a

generation size o020, the expected throughput is better thaand

what can be achieved with coding over disjoint generations 00 =— lim In Prob{M(g,g) < g}.
and a generation size &f. The reduction in computational ' g—+00,q=2 B
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APPENDIXB Proof of Corollary[3
PROOFS OFGENERALIZED RESULTS OFCOLLECTOR'S Note that

BROTHERHOODPROBLEM o
Proof of Theorenf]2 P1(p.m)(2) = Z Prob[T(p, m) > t2'
t=0

Our proof generalizes the symbolic method [of|[10]. oo 00

Let ¢ be the event that the number of copies of couphn =Y Y Prob[T(p,m) = jl2*
is at leastm,; for every: = 1,2,...,n. For integert > 0, t=0 j=t+1
let £(¢) be the event that has occurred after a total af o g1
samplings, and le€(t) be the complementary event. Then, = Prob[T(p,m) =j]» 2
the tail probabilityProb[T(p, m) > t] = Prob[£(t)] = v;. j=1 t=0

To derive v, we introduce an operatoy acting on
an n-variable polynomial g. f removes all monomials Ry R
Pt wy? L xlnoin g satisfyingw, > ma, ..., w, > my,. E[T(p,m)] = leProb[T(p, m) = j] = ¢1(pm) (1)-
Note thatf is a linear operator, i.e., if; andg, are two =
polynomials in the same variables, and, andb two scalars, Similarly,
we haveaf(g1) +bf(g92) = f(agr + bg2). o0 o

Each monomial ir{z; +- - -+,)* corresponds to one of the Pr(pom) (2) = Y tPrOb[T(p,m) > t]2'~
n! possible outcomes afsamplings, with the exponent of t=0
being the number of copies of coup6fy. Since the samplings i . i1 B
are independent, the probability of an outcarifézy> . .. 2%~ = Prob[T(p,m) = j]> tz'""
is ppy? ... p%n. Hence, the probability of (t) is f((z1 + i=1 =0
.-+ x,)"), when evaluated at; = p; fori =1,2,...n, i.e., 1 ,

") Pripam(1) = 3 3G — 1)Prob{T (p, m) = .
vp=f((xr +---+ xn)t) Ti=ps,i=1,...,n- (20) g=1
Hence,

Hence, [2D) and{7) lead to
Crpamy(2) = Y _f (@1 ++2n)) 2"

E[T(p,m)*) = j*Prob{T (p. m) = j

x;=pi,i=1,....,n-

t>0
- =2¢; (1) + @7(p,m) (1),
The identity T(p,m) (p,m)
0 and consequently,
| gt =1 , )
o t Var[T (p, m)] = 297 ) (1) + 07(p,m) (1) = @7 (p,xm) (1)-
and the linearity of the operatgtimply that We have
o0 . t / _
P1(p,m)(2) :/ > Hins # o) )Ztyte_ydy o) (2) =
0 >0 ) © o L emriz(lez) S, —1(pizz)ePit
oo (Tr2y+ -+ T02y)" (et Z)_Zpi —piz(l=2) Sl( Je—pir
_ 1 n —y 0 P e ir(l—z) ' PiTz e pPiT
_/0 f(g; i )e dy . 1
t
. " (709 - Sy
:/ fexp(xizy + -+ xpzy)) e Ydy (21) j=1
0 and from there, we can gei’T( m)(l) and VafT'(p, m)].
evaluated atr; = p;,i = 1,...,n. o

We next find the sum of the monomials in the polynomi
expansion oexp(z; +- - -+x,,) that should be removed unde"rﬂrom Of_ Theorerll}4 . o
f. Clearly, this sum should b["_, (¢ — Sy, (x;)), where We again apply the Newman-Shepp symbolic method. Similar

S is defined in[(5) and{6)). Therefore, to the proof of Theorerml2, we introduce an operataicting
on ann-variable polynomial. For a monomiake}™ ... z%",
flexp(zizy + -+ 2n2Y)) loi=psi=1,..n let i; be the number of exponents, amongws,...,w,
n satisfying w,, > k;, for j = 1,...,A. f removes all
=Y — H (%Y — S, (pizy)) . monomialsz{™* ...z%" in g satisfyingii; > ki,...,ia > ka
i=1 andi; < --- <iyu. f is again a linear operator. One can see
that
O7(p,m)(2) :/ lezy — H (ePi?Y — S, (pzzy))l e Ydy PU(mk)(2) = (23)
0 i=1

N LG T ) AR
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We choose integer8 = ig < iy < -+ <ig <iagy1 =n, Expression[(18) foE[W?2(p, g)] can be derived in the same
such thati; > k; for j =1,..., A, and then partition indices manner, and then the expression for [ VE(p, g)] immediately
{1,...,n} into (A+ 1) subsetsly, ..., Za11, whereZ;(j = follows.

.,A+1) hasi; —i;_ elements. Then

A+1 APPENDIXD
IT 11 Sy (@i) = S, (22)) (24) PROOF OFTHEOREM[IH
J=1 1€y Without loss of generality, lef = {1,2,...,s} andj =

equals the sum of all monomials ixp(z; + - - + z,,) with & T 1, and defineR, = Ui_, R;, Bs = Ui_; Bi, and g, =
(i; —ij—1) of the n exponents smaller thamj . but greater Ui—1Gifors=0,1,....n—1.Then, E| (UiesG:) NG| =
than or equal ton;, for j = 1,..., A+1. (HereS is as defined £ [[9s N Gsial]- For any two sets¥’ andY’, we useX + Y

by (5f8).) The number ogsuch partmons{J]f .,n}isequal fodenoteX UY whenX Ny =J.
to(, o “) =TI (Zﬁl) Finally, we need to sum ¢ A Gy =(Bs + R\Bs) N (Bss1 + Rosi)

the terms of the fornﬂ24) over all partitions of all choicds o _
i1, ... ia satisfyingk; <i; <ijpq forj=1,... A =Ba N Rog1 + Ra 0 Basa + (Ra\Bs) N Rop,

and therefore
F(exp(erzy + -+ + 202y)) |y g2 = exp(zy)—

) . EllGs NG, =F|[|Bs N Ry 27
) [ 25y, OGO Bl @)
> II [ S = Sy (5) : E[|Rs N Bosr|] + E[|(R\Bs) N Rosr]]-
(60,81 5-ees iay1): §=0
‘0 6?;“?]" ”~ Using Claim[I1, we have
3 IJ+1
(25) E[|Bs N Rs41]] = shm, (28)
Bringing (2B) into [2B) gives our result in Theordr 4. E[Rs N Bss1]] = h[L — (1 —m)7], (29)
E[[(Rs\Bs) N Rsa|] = (n —s — )hw[l — (1 —m)°], (30)
APPENDIXC : . : . — :
PROOF OFTHEOREME \&gir?/vz |§b?asinc|ize];g1)ed in Claini_11. Bringind_(28)-(30) into
Furthermore, whemn — oo, if [/h — o ands/n — (3, then
EW(p,g)] E[|Gs N Goyr|] =g - [1 — 7°] + sh - 77°
n (6% np
:Z<Hpr _ml>E[T(p,m)] —>h(1+a)[1—(1—n_1) }+
m i=1
a \"P
00 n hOLﬂ 1-—
B A (-2
0 i=1 m; —>h[(1+o¢)(1 —670‘6)4—0[[3670(5}
(26)
o0 i Zh{l—i-a— (1+a—a6)e*°‘5}
= / <1 - H (1—e ?"En, [Su, (pﬂ)])) dx
0 i=1 ACKNOWLEDGEMENT
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