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Abstract—To reduce computational complexity and delay in
randomized network coded content distribution, and for some
other practical reasons, coding is not performed simultaneously
over all content blocks, but over much smaller, possibly overlap-
ping subsets of these blocks, known as generations. A penalty of
this strategy is throughput reduction. To analyze the throughput
loss, we model coding over generations with random generation
scheduling as a coupon collector’s brotherhood problem. This
model enables us to derive the expected number of coded packets
needed for successful decoding of the entire content as well
as the probability of decoding failure (the latter only when
generations do not overlap) and further, to quantify the tradeoff
between computational complexity and throughput. Interestingly,
with a moderate increase in the generation size, throughput
quickly approaches link capacity. Overlaps between generations
can further improve throughput substantially for relative ly small
generation sizes.

Index Terms—network coding, rateless codes, coupon collec-
tor’s problem

I. I NTRODUCTION

A. Motivation: Coding over Disjoint and Overlapping Gener-
ations

Random linear network coding was proposed in [1] for
“robust, distributed transmission and compression of infor-
mation in networks”. Subsequently, the idea found a place
in a peer-to-peer(P2P) file distribution system Avalanche [2]
from Microsoft. In P2P systems such as BitTorrent, content
distribution involves fragmenting the content at its source,
and using swarming techniques to disseminate the fragments
among peers. Systems such as Avalanche, instead, circulate
linear combinations of content fragments, which can be gen-
erated by any peer. The motivation behind such a scheme is
that, it is hard for peers to make optimal decisions on the
scheduling of fragments based on their limited local vision,
whereas when fragments are linearly combined at each node,
topology diversity is implanted inherently in the data flows
and can be exploited without further co-ordination.
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The introduction of network coding in P2P content distri-
bution systems brings about the issue of computational com-
plexity. Consider distributing a file consisting ofN fragments,
each made up ofd symbols from a Galois fieldGF (q) of
size q. It takesO(Nd) operations inGF (q) to form a linear
combination per coded packet, andO(N3 +N2d) operations,
or, equivalently,O(N2 + Nd) operations per information
packet, to decode the information packets by solving linear
equations. According to the implementers of UUSee [3], a
peer-to-peer video streaming application using randomized
linear coding, even with the most optimized implementation,
going beyond512 fragments in each generation risks taxing
a low-end CPU, typically used in power-efficient notebook
computers.

In an effort to reduce computational complexity, information
packets are partitioned into disjoint subsets referred to as
generations, and coding is done only within generations. This
approach scales down the encoding and decoding problem
from the whole file sizeN to the generation size times the
number of generations. The concept of generation in network
coding was first proposed by Chou et al. in [4] to handle
the issue of network synchronization. Coding over randomly
scheduled generations was first theoretically analyzed by May-
mounkov et al. in [5]. Random scheduling of generations
provides the “rateless” property which reduces the need for
receiver feedback and offers resilience to various erasure
patterns over the communication link. In addition, in the peer-
to-peer content distribution setting, random scheduling is to
some degree a good approximation when global co-ordination
among peers is impractical.

With random scheduling of generations, coded packets ac-
cumulate faster in some generations than in others, even if all
generations are scheduled equally probably. While waitingfor
the last generation to become decodable, redundant packetsare
accumulated in other generations. The situation is aggravated
as the generation size decreases. One way to recover some
of the throughput loss due to random scheduling without
losing the benefits of reduced generation sizes is to allow
generations to help each other in decoding. If the generations
are allowed to overlap, after some of the “faster” generations
are decoded, the number of unknown variables can be reduced
in those generations sharing information packets with the
decoded ones, which in turn reduces the number of coded
packets needed to decode those generations, and enhances the
throughput as a result. Our goal is to characterize the effects of
generation size and overlaps on the throughput and complexity
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in randomized linear network coding.

B. Related Work

The performance of codes with random scheduling of
disjoint generations was first theoretically analyzed in [5] by
Maymounkov et al., who referred to them aschunked codes.
Chunked codes allow convenient encoding at intermediate
nodes, and are readily suitable for peer-to-peer file dissem-
ination. In [5], the authors used an adversarial schedule as
the network model and characterized the code performance
under certain restrictions on the chunk(generation) size when
the length of the information to be encoded tends to infinity.

Coding with overlapping generations was first studied in
[6] and [7] with the goal to improve throughput. Reference
[7] studied a “head-to-toe” overlapping scheme in which
only contiguous generations overlap for a given number of
information packets, and analyzed its asymptotic performance
over a line network when the length of information goes to
infinity. Another overlapping scheme with a grid structure was
proposed in [6], analyzed for short lengths (e.g.,4 generations)
and simulated for practical lengths. When properly designed,
these codes show improved performance over codes with
disjoint generations. In our work, we offer an analysis of
coding over disjoint and overlapping generations for finitebut
practically long information lengths.

C. Organization and Main Contribution

In this work, coding with both disjoint and overlapping
generations together withrandom generation schedulingis
studied from a coupon collection [8] perspective. Previously
existing results from the classical coupon collector’s problem,
along with our extensions, enable us to characterize the code
performance with finite information lengths, from which the
asymptotic code performance can further be deduced.

Section II introduces the general model for coding over
generations, disjoint or overlapping, over a unicast (binary
erasure) link, and characterizes the computational cost for
encoding and decoding.

Section III derives several results concerning linear inde-
pendence among coded packets from the same generation.
Such results serve to link coupon collection to the decoding
of content that has been encoded into multiple generations.
Included (Claim 1) is a very good upper bound on the
distribution of the number of coded packets needed for a
specific generation for successful decoding.

Section IV introduces the coupon collector’s brotherhood
problem and its variations that can be used to model coding
over generations. Probability generating functions (Theorems
2 and 4) and moments (Corollaries 3 and 5) of the number of
samplings needed to collect multiple copies of distinct coupons
are derived for the random sampling of afinite set of coupons
in Section IV-A. Relevant asymptotic results on expected
values and probability distributions in existing literature are
recapitulated in Section IV-B for performance characterization
of coding over generations in the later part of the work. The
section is presented in the coupon collection language and is

in itself of independent interest for general readers interested
in coupon collecting problems.

In Sections V and VI, results from the previous two sections
are combined to enable the analysis of the effects of generation
size and overlaps on the decoding latency/throughput of coding
over disjoint or overlapping generations.

Section V studies the effects of generation size on the code
throughput over a BEC channel for coding over disjoint gen-
erations. Section V-A characterizes the mean and variance of
the decoding latency (the number of coded packets transmitted
until successful decoding) forfinite information lengths, and
Section V-B provides a lower bound for the probability of
decoding failure. A large gain in throughput is observed when
the generation size increases from1 to a few tens.

In Section VI, the random annex codeis proposed as
an effort to improve code throughput by allowing random
overlaps among generations. Section VI-C lists an algorithm
providing precise estimation of the expected decoding latency
of the random annex code. The algorithm is based on the
analysis of the overlapping structure in Section VI-B and the
results from the extended collector’s brotherhood in Section
IV. Section VI-D demonstrates the effects of overlap sizes
on code throughput is shown through both numerical com-
putation and simulations. One of our interesting observations
is that overlaps between generations can provide a tradeoff
between computational complexity and decoding latency. In
addition, without increasing the generation size (and hence
computational complexity), it is still possible to improve
code throughput significantly by allowing overlaps between
generations.

II. CODING OVER GENERATIONS: THE GENERAL MODEL

In this section, we describe a general random coding scheme
over generations. Generations do not have to be disjoint or of
equal size, and random scheduling of generations does not
have to be uniform. We describe the coding scheme over a
unicast link.

A. Forming Generations

The file being distributedF is represented as a set ofN
information packets,p1, p2, . . . , pN . Each information packet
is a d-dimensional column vector of information symbols in
Galois FieldGF (q). Generations are non-empty subsets ofF .

Suppose thatn generations,G1, G2, . . . , Gn, are formed s.t.
F = ∪n

j=1Gj . A coding scheme is said to be non-overlapping
if the generations are disjoint, i.e.,∀i 6= j, Gi ∩ Gj = ∅;
otherwise, the scheme is said to be overlapping. The size
of each generationGj is denoted bygj , and its elements
p
(j)
1 , p

(j)
2 , . . . , p

(j)
gj . For convenience, we will occasionally also

useGj to denote the matrix with columnsp(j)1 , p
(j)
2 , . . . , p

(j)
gj .

B. Encoding

In each transmission, the source first selects one of then
generations at random. The probability of choosing generation
Gi is ρi,

∑n
i=1 ρi = 1. Let ρ = (ρ1, ρ2, . . . , ρn). Once

generationGj is chosen, the source chooses a coding vector
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e = [e1, e2, . . . , egj ]
T , with each of thegj components chosen

independently and equally probably fromGF (q). A new
packetp̄ is then formed by linearly combining packets from
Gj by e: p̄ =

∑gj
i=1 eip

(j)
i = e·Gj (Gj here denotes a matrix).

The coded packet̄p is then sent over the communication
link to the receiver along with the coding vectore and
the generation indexj. Figure 1 shows a diagram of the
communication between the source and the receiver. The
generations shown in this example are chosen to be disjoint,
but this is not necessary.

Fig. 1. A file divided into N = 12 fragments andn = 4 (disjoint)
generations containingh = 3 fragments each is available for distribution
at the server. A receiver collects random linear combinations of randomly
scheduled generations.

C. Decoding

Decoding starts with any generationGj for which the
receiver has collectedgj coded packets with linearly inde-
pendent coding vectors. The information packets making up
this generation are decoded by solving a system ofgj linear
equations inGF (q) formed by the coded packets on one side
and the linear combinations of the information packets by the
coding vectors on the other. Since generations are allowed to
overlap, a decoded information packet may also participatein
other generations, from the equations of which the information
packet is then removed as an unknown variable. Consequently,
in all the generations overlapping with the decoded gener-
ations, the number of unknown packets is reduced. As a
result, some generations may become decodable even if no
new coded packets are received from the source. Again, the
newly decoded generations resolve some unknowns of the
generations they overlap with, which in turn may become
decodable and so on. We declare successful decoding when
all N information packets have been decoded.

The coding scheme described here is inherently rateless
and easily extendable to more general network topologies that
allow coding at intermediate network nodes.

D. Packet Overhead

Contained in each coded packet are the index of a generation
Gj and a linear combining vector forGj which together

take up ⌈log2 n⌉ + gj⌈log2 q⌉ bits. Meanwhile, the data in
each coded packet comprised⌈log2 q⌉ bits. The generation
size makes a more significant contribution to packet overhead
and such contribution is non-negligible due to the limited size
(∼ a few KB) of transmission packets in practical networks.
This gives another reason to keep generations small, besides
reducing computational complexity.

E. Computational Complexity

The computational complexity for encoding is
O(dmax{gj}) per coded packet for linearly combining
the gj information packets in each generation (recall thatd is
the number ofGF (q) symbols in each information packet,
as defined in Section II-A). For decoding, the largest number
of unknowns in the systems of linear equations to be solved
is not more thanmax{gj}, and therefore the computational
complexity is upper bounded byO((max{gj})2+dmax{gj})
per information packet.

F. Decoding Latency

In this paper, we focus on the tradeoff between the computa-
tional complexity and thedecoding latencyof these codes over
unicast links with erasures. Decoding latency here is defined
as the number of coded packets transmitted until successful
decoding of all the information packets, andoverheadis the
difference between the number of information packets and
the decoding latency. We assume a memoryless BEC with a
constant erasure rateǫ. Since our coding scheme is rateless,
each coded packet is statistically of the same importance, and
so the average decoding latency is inversely proportional to
the achievable capacity(1− ǫ) of the link. The throughput of
the code is inversely proportional to the decoding latency for
given information length.

III. C OLLECTING CODED PACKETS AND DECODING

A generationGi is not decodable until the number of
linearly independent equations collected forGi reaches the
number of its information packets not yet resolved by decoding
other generations. The connection between the number of
coded packets collected and the linear independence among
these coded packets has to be established before we can
predict the decoding latency of codes over generations using
the collector’s brotherhood model that will be discussed inthe
next section.

Let M(g, x) be the number of coded packets from a gener-
ation of sizeg adequate for collectingx linearly independent
equations. ThenM(g, x) has expected value [9]

E[M(g, x)] =

x−1
∑

j=0

1

1− qj−g
. (1)

Approximating summation by integration, from (1) we get

E[M(g, x)] /

∫ x−1

0

1

1− qy−g
dy +

1

1− qx−1−g

=x+
qx−1−g

1− qx−1−g
+ logq

1− q−g

1− qx−1−g
. (2)
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Let

ηg(x) = x+
qx−1−g

1− qx−1−g
+ logq

1− q−g

1− qx−1−g
. (3)

We can useηg(x) to estimate the number of coded packets
needed from a certain generation to gatherx linearly indepen-
dent equations.

In addition, we have the following Claim 1 which upper
bounds the tail probability ofM(g, g), the number of coded
packets needed for a certain generation to gather enough
linearly independent equations for decoding.

Claim 1: There exist positive constantsαq,g andα2,∞ such
that, for s ≥ g,

Prob[M(g, g) > s] = 1−

g−1
∏

k=0

(1 − qk−s)

< 1− exp(−αq,gq
−(s−g)) < 1− exp(−α2,∞q−(s−g)).

Also, since1− exp(−x) < x for x > 0,

Prob[M(g, g) > s] < αq,gq
−(s−g). (4)

Proof: Please refer to Appendix A.
We will use Claim 1 in Theorem 8 in Section V to derive an

upper bound to the expected overhead of coding over disjoint
generations.

IV. COUPONCOLLECTOR’ S BROTHERHOOD AND

COLLECTING CODED PACKETS FROM GENERATIONS

The coupon collector’s brotherhood problem [10], [11]
studies quantities related to the completion ofm sets ofn
distinct coupons by sampling a set ofn distinct coupons
uniformly at random with replacement. In analogy, coded
packets belonging to generationj can be viewed as copies of
couponj, and hence the process of collecting coded packets
when generations are scheduled uniformly at random can be
modeled as collecting multiple copies of distinct coupons.

Because of possible linear dependence among coded packets
and the overlaps between generations, the numbers of coded
packets needed for each of then generations to ensure suc-
cessful decoding, however, aren random variables. Therefore,
we must generalize the coupon collector’s brotherhood model
from collecting a uniform number of copies for all coupons to
collecting different numbers of copies for different coupons,
before it can be applied to the analysis of the throughput
performance of coding over generations. In this section, the
original collector’s brotherhood model is generalized in two
ways. And later in this paper, the analysis of the throughput
performance of coding over disjoint generations in SectionV
rests on the first generalization, whereas that of coding over
overlapping generations in Section VI rests on the second
generalization. As our results are of more general interestthan
the coding-over-generations problem, we will express themin
the coupon collection language. For example, the probability
ρi of scheduling generationGi (defined in Section II) here
refers to the probability of sampling a copy of couponGi, for
i = 1, 2, . . . , n.

A. Generating Functions, Expected Values and Variances

For anym ∈ N, we defineSm(x) as follows:

Sm(x) =1 +
x

1!
+

x2

2!
+ · · ·+

xm−1

(m− 1)!
(m ≥ 1) (5)

Sm(x) =0 (m ≤ 0) andS∞(x) = ex. (6)

Let the total number of samplings needed to ensure that
at leastmi(≥ 0) copies of couponGi are collected for all
i = 1, 2, . . . , n be T (ρ,m), wherem = (m1,m2, . . . ,mn).
The following Theorem 2 givesϕT (ρ,m)(z), the generating
function of the tail probabilities ofT (ρ,m). This result
is generalized from [10] and [11], and its proof uses the
Newman-Shepp symbolic method in [10]. Boneh et al. [12]
gave the same generalization, but we restate it here for use in
our analysis of coding over disjoint generations. If for each
j = 1, 2, . . . , n, the number of coded packets needed from
generationGj for its decoding is known to bemj (which
can be strictly larger than the generation sizegj), T (ρ,m)
then gives the total number of coded packets needed to ensure
successful decoding of the entire content when the generations
are scheduled according to the probability vectorρ.

Theorem 2:(Non-Uniform Sampling) Let

ϕT (ρ,m)(z) =
∑

i≥0

Prob[T (ρ,m) > i]zi. (7)

Then,

ϕT (ρ,m)(z) = (8)
∫ ∞

0

{

e−x(1−z) −
n
∏

i=1

[

e−ρix(1−z) − Smi
(ρixz)e

−ρix
]

}

dx.

Proof: Please refer to Appendix B, where we give a
full proof of the theorem to demonstrate the Newman-Shepp
symbolic method [10], which is also used in the proof of our
other generalization in Theorem 4.

The expected value and the variance ofT (ρ,m) follow
from the tail probability generating function derived in Theo-
rem 2.

Corollary 3:

E[T (ρ,m)] = ϕT (ρ,m)(1)

=

∫ ∞

0

{

1−
n
∏

i=1

[

1− Smi
(ρix)e

−ρix
]

}

dx,

V ar[T (ρ,m)] = 2ϕ′
T (ρ,m)(1) + ϕT (ρ,m)(1)− ϕ2

T (ρ,m)(1).

Proof: Please refer to Appendix B.
Note that in Theorem 2 and Corollary 3,mi-s are allowed

to be 0, thus including the case where only a specific subset
of the coupons is of interest. Theorem 2 and Corollary 3 are
also useful for the analysis of coding over generations when
there is a difference in priority among the generations. For
instance, in layered coded multimedia content, the generations
containing the packets of the basic layer could be given
a higher priority than those containing enhancement layers
because of a hierarchical reconstruction at the receiver.

In the following, we present another generalization of the
collector’s brotherhood model. Sometimes we are simply
interested in collecting a coupon subset of a certain size,
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regardless of the specific content of the subset. This can be
further extended to the following more complicated case: for
eachi = 1, 2, . . . , A(A ≥ 1), ensure that there exists a subset
of {G1, G2, . . . , Gn} such that each of itski elements has at
leastmi copies in the collected samples. Such a generalization
is intended for treatment of coding over equally important
generations, for example, when each generation is a substream
of multiple-description coded data. In this generalization,
the generation scheduling (coupon sampling) probabilities are
assumed to be uniform, i.e.,ρ1 = ρ2 = · · · = ρn = 1/n.

Suppose that for some positive integerA ≤ n, integers
k1, . . . , kA andm1, . . . ,mA satisfy 1 ≤ k1 < · · · < kA ≤ n
and ∞ = m0 > m1 > · · · > mA > mA+1 = 0. We are
interested in the total numberU(m,k) of coupons that needs
to be collected, to ensure that the number of distinct coupons
for which at leastmi copies have been collected is at least
ki, for all i = 1, 2, . . . , A, wherem = (m1,m2, . . . ,mA)
andk = (k1, k2, . . . , kA). The following Theorem 4 gives the
generating functionϕU(m,k)(z) of U(m,k).

Theorem 4:(Uniform Sampling)

ϕU(m,k)(z) = n

∫ ∞

0

e−nx
{

enxz− (9)

∑

(i0,i1,...,iA+1):

i0=0,iA+1=n

ij∈[kj,ij+1]

j=1,2,...,A

A
∏

j=0

(

ij+1

ij

)

[

Smj
(xz)− Smj+1(xz)

]ij+1−ij}

dx.

Proof: Please refer to Appendix B.
Same as for Corollary 3, we can findE[U(m,k)] =

ϕU(m,k)(1). A computationally wieldy representation of
E[U(m,k)] is offered in the following Corollary 5 in a
recursive form.

Corollary 5: For k = k1, k1 + 1, . . . , n, let

φ0,k(x) = [(Sm0(x) − Sm1(x))e
−x]k;

For j = 1, 2, . . . , A, let

φj,k(x)

=

k
∑

w=kj

(

k

w

)

[

(Smj
(x) − Smj+1(x))e

−x
]k−w

φj−1,w(x),

for k = kj+1, kj+1 + 1, . . . , n.

Then,

E[U(m,k)] = n

∫ ∞

0

(1− φA,n(x)) dx. (10)

It is not hard to find an algorithm that calculates1−φA,n(x)

in (c1m1+c2(n−1)+c3
∑A

j=1

∑n
k=kj+1

(k−kj)) basic arith-
metic operations, wherec1, c2 andc3 are positive constants. As
long asm1 = O(An2), we can estimate the amount of work
for a single evaluation of1 − φA,n(x) to be O(An2). The
integral (10) can be computed through the use of an efficient
quadrature method, for example, Gauss-Laguerre quadrature.
For reference, some numerical integration issues for the special
case whereA = 1 have been addressed in Part 7 of [13] and
in [12].

In Section VI, we will apply Corollary 5 to find out the
expected throughput of therandom annex code, an overlapping

coding scheme in which generations share randomly chosen
information packets. The effect of the overlap size on the
throughput can be investigated henceforth.

B. Limiting Mean Value and Distribution

In the previous subsection, we considered collecting a finite
number of copies of a coupon set of a finite size. In this part,
we present some results from existing literature on the limiting
behavior ofT (ρ,m) asn → ∞ or m1 = m2 = · · · = mn =
m → ∞, assumingρ1 = ρ2 = · · · = ρn = 1

n . By slight abuse
in notation, we denoteT (ρ,m) here asTn(m).

By Corollary 3,

E[Tn(m)] = n

∫ ∞

0

[

1− (1 − Sm(x)e−x)n
]

dx. (11)

The asymptotics ofE[Tn(m)] for largen has been discussed
in literature [10], [14] and [15], and is summarized in the
following Theorem 6, (13), and Theorem 7.

Theorem 6:([14]) Whenn → ∞,

E[Tn(m)] = n logn+(m−1)n log log n+Cmn+o(n), (12)

whereCm = γ − log(m − 1)!, γ is Euler’s constant, and
m ∈ N.

For m ≫ 1, on the other hand, we have [10]

E[Tn(m)] → nm. (13)

What is worth mentioning is that, as the number of coupons
n → ∞, for the first complete set of coupons, the number
of samplings needed isO(n logn), whereas the additional
number of samplings needed for each additional set is only
O(n log logn).

In addition to the expected value ofTn(m), the concen-
tration of Tn(m) around its mean is also of great interest to
us. This concentration leads to an estimate of the probability
of successful decoding for a given number of collected coded
packets. We can specialize Corollary 3 to derive the variance
of Tn(m), as a measure of probability concentration.

Further, since the tail probability generating functions de-
rived in the last subsection are power series of non-negative
coefficients and are convergent at1, they are absolutely
convergent on and inside the circle|z| = 1 in the complex
z-plane. Thus, it is possible to compute the tail probabilities
using Cauchy’s contour integration formula. However, extra
care is required for numerical stability in such computation.

Here we instead look at the asymptotic case where the
number of couponsn → ∞. Erdös and Rényi have proven
in [16] the limit law of Tn(m) asn → ∞. Here we restate
Lemma B from [14] by Flatto, which in addition expresses
the rate of convergence to the limit law. We will later use this
result to derive a lower bound for the probability of decoding
failure in Theorem 9 in Section V-B.

Theorem 7:([14]) Let

Yn(m) =
1

n
(Tn(m)− n logn− (m− 1)n log log n) .

Then,

Pr[Yn(m) ≤ y] = exp

(

−
e−y

(m− 1)!

)

+O

(

log logn

logn

)

.
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Remark 1: (Remarks 2&3, [14]) The estimation in Theorem
7 is understood to hold uniformly on any finite interval−a ≤
y ≤ a. i.e., for anya > 0,
∣

∣

∣

∣

Prob[Yn(m) ≤ y]− exp

(

−
exp(−y)

(m− 1)!

)∣

∣

∣

∣

≤ C(m, a)
log logn

log n
,

n ≥ 2 and −a ≤ y ≤ a. C(m, a) is a positive constant
depending onm anda, but independent ofn. Form = 1, the
convergence rate to limit law is much faster: theO

(

log log n
logn

)

term becomesO
(

logn
n

)

.

V. CODING OVER DISJOINT GENERATIONS

In this section, we study the performance of coding over
disjoint generations. We derive both an upper bound and a
lower bound for the expected decoding latency (as defined
in Section II-F). We also derive the variance of the decoding
latency.

A. Expected Decoding Latency and Its Variance

Let Mi (i = 1, 2, . . . , n) be the number of collected
coded packets from generationGi when Gi first becomes
decodable. ThenMi is at leastgi, has the same distribution as
M(gi, gi), the number of coded packets needed for a certain
generation to gather enough linearly independent equations
for decoding, as defined and studied in Section III.Mi’s are
independent random variables. Let the decoding latency over a
perfect channel beW (ρ,g), whereg = (g1, g2, . . . , gn). Use
Wǫ(ρ,g) to denote the decoding latency on a BEC(ǫ).

Let Xk (k = 1, 2, . . . ) be i.i.d. geometric random variables
with success rate1−ǫ. Therefore,E[Xk] =

1
1−ǫ andE[X2

k ] =
1+ǫ

(1−ǫ)2 . Then

Wǫ(ρ,g) =

W (ρ,g)
∑

i=1

Xi,

and therefore,

E[Wǫ(ρ,g)] =
1

1− ǫ
E[W (ρ,g)], (14)

V ar[Wǫ(ρ,g)] =
1

(1− ǫ)2
(

V ar[W (ρ,g)] + ǫE[W 2(ρ,g)]
)

.

(15)

By definition,E[W (ρ,g)] is lower bounded byE[T (ρ,g)],
the expected number of coded packets necessary for collect-
ing at leastgi coded packets for each generationGi, and
E[T (ρ,g)] is as given in Corollary 3.

The following Theorem 8 gives the exact expression for the
first and second moments ofW (ρ,g), along with an upper
bound forE[W (ρ,g)] considering the effect of finite finite
field size q. Then, the expected value and the variance of
Wǫ(ρ,g) can be derived from (14) and (15).

Theorem 8:The expected number of coded packets needed
for successful decoding of allN information packets

E[W (ρ,g)]

=

∫ ∞

0

(

1−
n
∏

i=1

(

1− e−ρixEMi
[SMi

(ρix)]
)

)

dx (16)

<

∫ ∞

0

(

1−
n
∏

i=1

(

1− e−ρix
(

Sgi(ρix) (17)

+ αq,giq
gieρix/q − αq,giq

giSgi(ρix/q)
)

)

)

dx,

E[W 2(ρ,g)] (18)

=2

∫ ∞

0

x

(

1−
n
∑

i=1

ρi
1− EMi

[SMi−1(ρix)]e
−ρix

1− EMi
[SMi

(ρix)] e−ρix
·

·
n
∏

j=1

(

1− EMj

[

SMj
(ρjx)

]

e−ρjx
)

)

dx

+

∫ ∞

0

(

1−
n
∏

i=1

(

1− e−ρixEMi
[SMi

(ρix)]
)

)

dx

whereαq,gi = −
∑gi−1

k=0 ln
(

1− qk−gi
)

, i = 1, 2, . . . , n.
Proof: Please refer to Appendix C.

In the case where generations are of equal size and sched-
uled uniformly at random, we can estimate the asymptotic
lower bound forE[W (ρ,g)] by the asymptotics ofTn(m)
given in (12) and (13).

Figure 2(a) shows several estimates ofE[W (ρ,g)], and Fig-
ure 2(b) shows the standard deviation ofW (ρ,g) calculated
from Theorem 8 and simulation results, whenρi = 1

n and
gi = g for i = 1, 2, . . . , n. The estimates are plotted versus
the uniform generation sizeg for fixed N = ng = 1000.

For coding over disjoint generations and a fixed total num-
ber of information packets, both the expected value and the
standard deviation of the decoding latency drop significantly
as the generation sizeg grows to a relatively small value from
the case where no coding is used (g = 1). Hence, throughput
is improved by a moderate increase in the computational cost
that scales quadratically with the generation size (see Section
II-E). On the other hand, we also observe that past a moderate
generation size (∼ 50 − 100 coded packets forN = 1000),
the decrease in decoding latency becomes slower by further
increasing the encoding/decoding complexity. We therefore
argue for a “sweet spot” generation size which characterizes
the tradeoff between throughput and complexity.

B. Probability of Decoding Failure

In this subsection we assume uniform generation size and
scheduling probability, i.e.,ρi = 1

n , gi = g for i = 1, 2, . . . , n.
For short, we denoteW (ρ,g) as Wn(g). From Theorem 7,
we obtain the following lower bound to the probability of
decoding failure asn → ∞:

Theorem 9:When n → ∞, the probability of decoding
failure whent coded packets have been collected is greater
than1−exp

[

− 1
(g−1)!n(logn)

g−1 exp
(

− t
n

)

]

+O
(

log log n
logn

)

.
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(a)

(b)

(c)

Fig. 2. (a) Estimates ofE[W (ρ,g)], the expected number of coded packets
required for successful decoding when the total number of information packets
is N = 1000, and bothg andρ are uniform. Estimates shown: lower bound
E[T (ρ,g)]; upper bound (17); mean ofW (ρ, g) in simulation; n → ∞
asymptotic (12);m ≫ 1 asymptotics (13); (b) Estimates of the standard
deviation ofW (ρ,g); (c) Estimates of probability of decoding failure versus
the number of coded packets collected: Theorem 9 along with simulation
results.

Proof: The probability of decoding failure after acquiring
t coded packets equals Prob[Wn(g) > t]. SinceWn(g) ≥
Tn(g),

Prob[Wn(g) > t] ≥ Prob[Tn(g) > t]

= 1−Prob

[

Yn(g) ≤
t

n
− logn− (g − 1) log logn

]

.

The result in Theorem 9 follows directly from Theorem 7.
Corollary 10: When g is fixed andn → ∞, in order

to make the probability of decoding failure smaller thanδ,
the number of coded packets collected has to be at least
E[Tn(g)] − n log log 1

1−δ . If δ = 1
Nc for some constantc,

then the number of coded packets necessary for successful
decoding has to be at leastE[Tn(g)] + cn log(ng).

Theorem 4.2 in [5] also gives the number of coded packets
needed to have the probability of decoding failure belowδ =
1
Nc , but under the assumption thatln(N/δ) = o(N/n) = o(g).
In comparison, Corollary 10 treats the case whereg is constant.

Figure 2(c) shows the estimate of the probability of decod-
ing failure versusT , the number of coded packets collected.
As pointed out in Remark 1, form ≥ 2, the deviation of
the CDF ofTn(m) from the limit law for n → ∞ depends
on m and is on the order ofO( log logn

logn ) for m ≥ 2, which
is quite slow, partly explaining the deviation of the limit law
curves from the simulation curves form = 5 andm = 10 in
Figure 2(c).

VI. CODING OVER OVERLAPPING GENERATIONS

Even when generations are scheduled uniformly at random,
there will be more coded packets accumulated in some of
the generations than in others. The “slowest” generation is
the bottleneck for file decoding. It is then advisable to design
a mechanism that allows “faster” generations to help those
lagging behind. In this section, we propose therandom an-
nex code, a new coding scheme in which generations share
randomly chosen packets, as opposed to previously proposed
“head-to-toe” overlapping scheme of [7].

We provide a heuristic analysis of the code throughput
based on our results for the coupon collection model and an
examination of the overlapping structure. Previous work on
coding over overlapping generations, [6] and [7], lacks accu-
rate performance analysis for information blocks of moderate
finite lengths. On the other hand, the computational effort
needed to carry out our analysis scales well with the length
of information, and the performance predictions coincide with
simulation data. In addition, we find that our random annex
code outperforms the “head-to-toe” overlapping scheme of [7]
over a unicast link.

In this section we conveniently assume that the coded
packets are sent over a perfect channel, since here we are
interested in comparing the performance of different rateless
coding schemes.

A. Forming Overlapping Generations

We form n overlapping generations out of a file withN
information packets in two steps as follows:
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1) Partition the file setF of N packets into subsets
B1, B2, . . . , Bn, each containingh consecutive packets.
Thesen = N/h subsets are referred to asbase gener-
ations. Thus,Bi = {p(i−1)h+1, p(i−1)h+2, . . . , pih} for
i = 1, 2, . . . , n. N is assumed to be a multiple ofh for
convenience. In practice, ifN is not a multiple ofh, set
n = ⌈N/h⌉ and assign the last[N − (n− 1)h] packets
to the last (smaller) base generation.

2) To each base generationBi, add a randomannexRi,
consisting of l packets chosen uniformly at random
(without replacement) from theN − h = (n − 1)h
packets inF\Bi. The base generation together with its
annex constitutes theextended generationGi = Bi∪Ri,
the size of which isg = h + l. Throughout this
paper, unless otherwise stated, the term “generation” will
refer to “extended generation” whenever used alone for
overlapping generations.

The generation scheduling probabilities are chosen to be
uniform, ρ1 = ρ2 = · · · = ρn = 1/n. The encoding and
decoding procedures run the same as described in the general
model in Section II.

B. Analyzing the Overlapping Structure

The following Claims 11 through 14 present combinatorial
derivations of quantities concerning the frequency at which
an arbitrary information packet is represented in different
generations.

Claim 11: For any packet in a base generationBk, the
probability that it belongs to annexRr for some r ∈
{1, 2, . . . , n}\{k} is

π =

(

N − h− 1

l − 1

)

/

(

N − h

l

)

=
l

N − h
=

l

(n− 1)h
,

whereas the probability that it does not belong toRr is π̄ =
1− π.

Claim 12: Let X be the random variable representing the
number of generations an information packet participates in.
Then,X = 1 + Y, whereY is Binom(n− 1, π).

E[X ] = 1 + (n− 1)π = 1 +
l

h
,

and
V ar[X ] = (n− 1)ππ̄.

Claim 13: In each generation of sizeg = h+l, the expected
number of information packets not participating in any other
generation ishπ̄(n−1) ≈ he−l/h for n ≫ 1; the expected
number of information packets participating in at least two
generations is

l + h[1− π̄(n−1)] ≈ l + h
[

1− e−l/h
]

< min{g, 2l}

for n ≫ 1 and l > 0.
Claim 14: The probability that two generations overlap is

1 −
(

N−2h
l,l,N−2h−2l

)

/
(

N−h
l

)2
. The number of generations over-

lapping with any one generationGi is then

Binom

(

n− 1,

[

1−

(

N − 2h

l, l, N − 2h− 2l

)

/

(

N − h

l

)2
])

.

The following Theorem 15 quantifies the expected amount
of help a generation may receive from previously decoded
generations in terms of common information packets. In the
next subsection, we use Corollary 5 and Theorem 15 for a
heuristic analysis of the expected throughput performanceof
the random annex code.

Theorem 15:For anyI ⊂ {1, 2, . . . , n} with |I| = s, and
any j ∈ {1, 2, . . . , n}\I,

Ω(s) = E[| (∪i∈IGi) ∩Gj |] = g · [1− π̄s] + sh · ππ̄s (19)

where |B| denotes the cardinality of setB. Whenn → ∞,
if l

h → α and s
n → β, and letω(β) = Ω(s), thenω(β) →

h
[

(1 + α)
(

1− e−αβ
)

+ αβe−αβ
]

.
Proof: Please refer to Appendix D.

C. Expected Throughput Analysis: The Algorithm

Given the overlapping structure, we next describe an analy-
sis of the expected number of coded packets a receiver needs
to collect in order to decode allN information packets ofF
when they are encoded by the random annex code. We base
our analysis on Theorem 15 above, Corollary 5 in Section IV,
and also (3) in Section III, and use the mean value for every
quantity involved.

By the time whens (s = 0, 1, . . . , n− 1) generations have
been decoded, for any one of the remaining(n−s) generations,
on the averageΩ(s) of its participating information packets
have been decoded, or equivalently,(g − Ω(s)) of them are
not yet resolved. If for any one of these remaining generations
the receiver has collected enough coded packets to decode
its unresolved packets, that generation becomes the(s+ 1)th
decoded; otherwise, if no such generation exists, decoding
fails.

The quantityηg(x) defined in (3) in Section III estimates the
number of coded packets from a generation of sizeg adequate
for collectingx linearly independent equations. By extending
the domain ofηg(x) from integers to real numbers, we can
estimate that the number of coded packets needed for the(s+
1)th decoded generation should exceedm′

s = ⌈ηg(g−Ω(s))⌉.
Since in the random annex code, all generations are randomly
scheduled with equal probability, for successful decoding, we
would like to have at leastm′

0 coded packets belonging to one
of the generations, at leastm′

1 belonging to another, and so
on. Then Corollary 5 in Section IV can be applied to estimate
the total number of coded packets needed to achieve these
minimum requirements for the numbers of coded packets.

The algorithm for our heuristic analysis is listed as follows:
1) ComputeΩ(s− 1) for s = 1, . . . , n using Theorem 15;
2) Computem′

s = ⌈ηg(g − Ω(s− 1))⌉ for s = 1, 2, . . . , n
using (3);

3) Map m′
s (s = 1, 2, . . . , n) into A valuesmj (j =

1, 2, . . . , A) so thatmj = m′
kj−1+1 = m′

kj−1+2 = · · · =
m′

kj
, for j = 1, 2, . . . , A, k0 = 0 andkA = n;

4) Evaluate (10) in Corollary 5 with theA, kjs, andmjs
obtained in Step 3), as an estimate for the expected num-
ber of coded packets needed for successful decoding.

Remark 2:The above Step 3) is viable becauseΩ(s) is
nondecreasing ins, ηg(x) is non-decreasing inx for fixed g,
and thusm′

s is non-increasing ins.
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Although our analysis is heuristic, we will see in the next
section that the estimate closely follows the simulated average
performance curve of the random annex coding scheme.

D. Numerical Evaluation and Simulation Results

1) Throughput vs. Complexity in Fixed Number of Genera-
tions Schemes:Our goal here is to find out how the annex size
l affects the decoding latency of the scheme with fixed base
generation sizeh and the total number of information packets
N (and consequently, the number of generationsn). Note
that the generation sizeg = h + l affects the computational
complexity of the scheme, and hence we are actually looking
at the tradeoff between throughput and complexity.

Figure 3 shows both the analytical and simulation results
when the total numberN of information packets is1000 and
the base generation sizeh is 25. Figure 3(a) showsh + l −
Ω(s) for s = 0, 1, . . . , n with different annex sizes. Recall
that Ω(s) is the expected size of the overlap of the union of
s generations with any one of the leftovern− s generations.
After the decoding ofs generations, for any generation not yet
decoded, the expected number of information packets that still
need to be resolved is thenh+ l−Ω(s). We observe that the
h+ l − Ω(s) curves start fromh+ l for s = 0 and gradually
descends, ending somewhere aboveh− l, for s = n− 1.

Recall that we measure throughput by decoding latency
(Section II-F). Figure 3(b) shows the expected performance
of the random annex code, along with the performance of the
head-to-toe overlapping code and the non-overlapping code
(l = 0). Figure 3(c) shows the probability of decoding failure
of these codes versus the number of coded packets collected.

• Our analysis for the expected decoding latency closely
matches the simulation results.

• Figure 3(b) shows that by fixing the file sizeN and the
base generation sizeh, the expected decoding latency
decreases roughly linearly with increasing annex sizel,
up tol = 12 for the random annex scheme and up tol = 8
for the head-to-toe scheme. Meanwhile, the decoding
cost per information packet is quadratic ing = h + l.
Beyond the optimal annex size, throughput cannot be
further increased by raising computational cost.

• The random annex code outperforms head-to-toe over-
lapping at their respective optimal points. Both codes
outperform the non-overlapping scheme.

• As more coded packets are collected, the probability of
decoding failure of the random annex code converges to
0 faster than that of the head-to-toe and that of the non-
overlapping scheme.

Overlaps provide a tradeoff between computational com-
plexity and decoding latency.

2) Enhancing Throughput in Fixed Complexity Schemes:
Our goal here is to see if we can choose the annex size
to optimize the throughput with negligible sacrifice in com-
plexity. To this end, we fix the extended generation size
g = h + l and vary only the annex sizel. Consequently, the
computational complexity for coding does not increase when
l increases. Actually, since some of the information packetsin
a generation of sizeg could already be solved while decoding

(a)

(b)

(c)

Fig. 3. N = 1000, h = 25, q = 256: (a) Difference between the generation
size and the expected size of overlap with previously decoded generations
(h+ l−Ω(s)); (b) Expected number of coded packets needed for successful
decoding versus annex sizel; (c) Probability of decoding failure

other generations, the remaining information packets in this
generation can be solved in a system of linear equations of
fewer thang unknowns, and as a result increasingl might
decrease the decoding complexity.

Figure 4 shows both the analytical and simulation results for
the code performance when the total numberN of information
packets is fixed at1000 and sizeg of extended generation fixed
at 25.

• Again our analytical results agree with simulation results
very well;

• It is interesting to observe that, without raising computa-
tional complexity, increasing annex size properly can still
give non-negligible improvement to throughput;

• Figure 4(a) shows a roughly linear improvement of
throughput with increasingl, up tol = 10 for the random
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(a)

(b)

Fig. 4. N = 1000, g = h+l = 25, q = 256: (a) Expected number of coded
packets needed for successful decoding versus annex sizel; (b) Probability
of decoding failure

annex scheme and up tol = 6 for the head-to-toe scheme.
Increasingl beyond affects throughput adversely;

• The random annex code again outperforms head-to-toe
overlapping at their optimal points. Both codes outper-
form the non-overlapping scheme;

• We again observe that the probability of decoding failure
of the random annex code converges faster than those of
the head-to-toe and the non-overlapping schemes.

When the overlap size increases, we either have larger
generations with unchanged number of generations, or a larger
number of generations with unchanged generation size. In both
cases the decoding latency would increase if we neglected the
effect of overlaps during the decoding process. If we make use
of the overlap in decoding, on the other hand, the larger the
overlap size, the more help the generations can lend to each
other in decoding and, hence, reducing the decoding latency.
Two canceling effects result in a non-monotonic relationship
between throughput and overlap size.

The effect of generation size on the throughput of random
annex codes is further illustrated in Figure 5. Figure 5 plots the
optimal expected decoding latency achievable by random an-
nex codes and the corresponding optimal annex size versus the
generation size forN = 1000 andq = 16. The plotted values
are calculated using the algorithm listed in Section VI-C. We
can see from Figure 5 that with the random annex code and a
generation size of20, the expected throughput is better than
what can be achieved with coding over disjoint generations
and a generation size of50. The reduction in computational

Fig. 5. Optimal expected decoding latency and the optimal overlap size with
random annex codes.N = 1000, q = 16

complexity is considerable. Capturing the optimal overlapsize
in terms of other parameters of the code is our object of interest
in the future.

APPENDIX A
PROOF OFCLAIM 1

For i = 1, 2, . . . , n and anys ≥ g, we have

lnProb
{

M(g, g) ≤ s
}

= ln

h−1
∏

k=0

(1− qk−s) =

g−1
∑

k=0

ln(1− qk−s)

=−

g−1
∑

k=0

∞
∑

j=1

1

j
q(k−s)j = −

∞
∑

j=1

1

j

g−1
∑

k=0

qj(k−s)

=−
∞
∑

j=1

1

j
q−js q

jg − 1

qj − 1

=− q−(s−g)
∞
∑

j=1

1

j
q−(j−1)(s−g) 1− q−jg

qj − 1

>q−(s−g)
∞
∑

j=1

1

j

1− q−jg

1− qj

=q−(s−g) lnProb
{

M(g, g) ≤ g
}

>q−(s−g) lim
h→∞,q=2

lnProb
{

M(g, g) ≤ g
}

The claim is obtained by setting

αq,g = − lnProb
{

M(g, g) ≤ g
}

,

and

α2,∞ = − lim
g→∞,q=2

lnProb
{

M(g, g) ≤ g
}

.
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APPENDIX B
PROOFS OFGENERALIZED RESULTS OFCOLLECTOR’ S

BROTHERHOODPROBLEM

Proof of Theorem 2

Our proof generalizes the symbolic method of [10].
Let ξ be the event that the number of copies of couponGi

is at leastmi for every i = 1, 2, . . . , n. For integert ≥ 0,
let ξ(t) be the event thatξ has occurred after a total oft
samplings, and let̄ξ(t) be the complementary event. Then,
the tail probabilityProb[T (ρ,m) > t] = Prob[ξ̄(t)] = νt.

To derive νt, we introduce an operatorf acting on
an n-variable polynomial g. f removes all monomials
xw1
1 xw2

2 . . . xwn
n in g satisfying w1 ≥ m1, . . . , wn ≥ mn.

Note thatf is a linear operator, i.e., ifg1 and g2 are two
polynomials in the samen variables, anda andb two scalars,
we haveaf(g1) + bf(g2) = f(ag1 + bg2).

Each monomial in(x1+· · ·+xn)
t corresponds to one of the

nt possible outcomes oft samplings, with the exponent ofxi

being the number of copies of couponGi. Since the samplings
are independent, the probability of an outcomexw1

1 xw2
2 . . . xwn

n

is ρw1
1 ρw2

2 . . . ρwn
n . Hence, the probability of̄ξ(t) is f((x1 +

· · ·+ xn)
t), when evaluated atxi = ρi for i = 1, 2, . . . n, i.e.,

νt = f((x1 + · · ·+ xn)
t)|xi=ρi,i=1,...,n. (20)

Hence, (20) and (7) lead to

ϕT (ρ,m)(z) =
∑

t≥0

f
(

(x1 + · · ·+ xn)
t
)

zt|xi=ρi,i=1,...,n.

The identity
∫ ∞

0

1

t!
yte−ydy = 1

and the linearity of the operatorf imply that

ϕT (ρ,m)(z) =

∫ ∞

0

∑

t≥0

f ((x1 + · · ·+ xn)
t)

t!
ztyte−ydy

=

∫ ∞

0

f
(

∑

t≥0

(x1zy + · · ·+ xnzy)
t

t!

)

e−ydy

=

∫ ∞

0

f (exp(x1zy + · · ·+ xnzy)) e
−ydy (21)

evaluated atxi = ρi, i = 1, . . . , n.
We next find the sum of the monomials in the polynomial

expansion ofexp(x1+ · · ·+xn) that should be removed under
f . Clearly, this sum should be

∏n
i=1 (e

xi − Smi
(xi)), where

S is defined in (5) and (6)). Therefore,

f (exp(x1zy + · · ·+ xnzy)) |xi=ρi,i=1,...,n

= ezy −
n
∏

i=1

(eρizy − Smi
(ρizy)) .

ϕT (ρ,m)(z) =

∫ ∞

0

[

ezy −
n
∏

i=1

(eρizy − Smi
(ρizy))

]

e−ydy

(22)

Proof of Corollary 3

Note that

ϕT (ρ,m)(z) =

∞
∑

t=0

Prob[T (ρ,m) > t]zt

=

∞
∑

t=0

∞
∑

j=t+1

Prob[T (ρ,m) = j]zt

=

∞
∑

j=1

Prob[T (ρ,m) = j]

j−1
∑

t=0

zt

E[T (ρ,m)] =

∞
∑

j=1

jProb[T (ρ,m) = j] = ϕT (ρ,m)(1).

Similarly,

ϕ′
T (ρ,m)(z) =

∞
∑

t=0

tProb[T (ρ,m) > t]zt−1

=

∞
∑

j=1

Prob[T (ρ,m) = j]

j−1
∑

t=0

tzt−1

ϕ′
T (ρ,m)(1) =

∞
∑

j=1

1

2
j(j − 1)Prob[T (ρ,m) = j].

Hence,

E[T (ρ,m)2] =

∞
∑

j=1

j2Prob[T (ρ,m) = j]

=2ϕ′
T (ρ,m)(1) + ϕT (ρ,m)(1),

and consequently,

Var[T (ρ,m)] = 2ϕ′
T (ρ,m)(1) + ϕT (ρ,m)(1)− ϕ2

T (ρ,m)(1).

We have

ϕ′
T (ρ,m)(z) =
∫ ∞

0

x

(

e−x(1−z) −
n
∑

i=1

ρi
e−ρix(1−z) − Smi−1(ρixz)e

−ρix

e−ρix(1−z) − Smi
(ρixz)e−ρix

·

·
n
∏

j=1

(

e−ρjx(1−z) − Smj
(ρjxz)e

−ρjx
)

)

dx,

and from there, we can getϕ′
T (ρ,m)(1) and Var[T (ρ,m)].

Proof of Theorem 4

We again apply the Newman-Shepp symbolic method. Similar
to the proof of Theorem 2, we introduce an operatorf acting
on ann-variable polynomialg. For a monomialxw1

1 . . . xwn
n ,

let ij be the number of exponentswu amongw1, . . . , wn

satisfying wu ≥ kj , for j = 1, . . . , A. f removes all
monomialsxw1

1 . . . xwn
n in g satisfyingi1 ≥ k1, . . . , iA ≥ kA

and i1 ≤ · · · ≤ iA. f is again a linear operator. One can see
that

ϕU(m,k)(z) = (23)
∫ ∞

0

f (exp(x1zy + · · ·+ xnzy)) e
−ydy|x1=x2=···=xn=

1
n
.
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We choose integers0 = i0 ≤ i1 ≤ · · · ≤ iA ≤ iA+1 = n,
such thatij ≥ kj for j = 1, . . . , A, and then partition indices
{1, . . . , n} into (A+ 1) subsetsI1, . . . , IA+1, whereIj(j =
1, . . . , A+ 1) hasij − ij−1 elements. Then

A+1
∏

j=1

∏

i∈Ij

(Smj−1 (xi)− Smj
(xi)) (24)

equals the sum of all monomials inexp(x1 + · · ·+ xn) with
(ij − ij−1) of then exponents smaller thanmj−1 but greater
than or equal tomj , for j = 1, . . . , A+1. (HereS is as defined
by (5-6).) The number of such partitions of{1, . . . , n} is equal
to
(

n
n−iA,...,i2−i1,i1

)

=
∏A

j=0

(

ij+1

ij

)

. Finally, we need to sum
the terms of the form (24) over all partitions of all choices of
i1, . . . , iA satisfyingkj ≤ ij ≤ ij+1 for j = 1, . . . , A:

f (exp(x1zy + · · ·+ xnzy)) |x1=···=xn=
1
n
= exp(zy)−

∑

(i0,i1,...,iA+1):

i0=0,iA+1=n

ij∈[kj,ij+1]

j=1,2,...,A

A
∏

j=0

(

ij+1

ij

)

[

Smj
(
zy

n
)− Smj+1(

zy

n
)
]ij+1−ij

.

(25)

Bringing (25) into (23) gives our result in Theorem 4.
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E[W (ρ,g)]

=
∑

m

(

n
∏

i=1

Pr[Mi = mi]

)

E[T (ρ,m)]

=

∫ ∞

0

[

1−
n
∏

i=1

∑

mi

Pr[Mi = mi](1− Smi
(ρix)e

−ρix)

]

dx

(26)

=

∫ ∞

0

(

1−
n
∏

i=1

(

1− e−ρixEMi
[SMi

(ρix)]
)

)

dx.

(26) comes from the distributivity.
Since

EMi
[SMi

(ρix)] =

∞
∑

j=0

(ρix)
j

j!
Pr[Mi > j],

by Claim 1,

EMi
[SMi

(ρix)]

< Sgi(ρix) +

∞
∑

j=gi

(ρix)
j

j!
αq,gq

−(j−g)

= Sgi(ρix) + αq,giq
gieρix/q − αq,giq

giSgi(ρix/q),

where

αq,gi = − lnPr
{

M(gi, gi) ≤ gi
}

= −

gi−1
∑

k=0

ln
(

1− qk−gi
)

for i = 1, 2, . . . , n.
Hence, we have (17).

Expression (18) forE[W 2(ρ,g)] can be derived in the same
manner, and then the expression for Var[W (ρ,g)] immediately
follows.
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Without loss of generality, letI = {1, 2, . . . , s} and j =
s + 1, and defineRs = ∪s

i=1Ri, Bs = ∪s
i=1Bi, and Gs =

∪s
i=1Gi for s = 0, 1, . . . , n− 1. Then,E [| (∪i∈IGi) ∩Gj |] =

E [|Gs ∩Gs+1|]. For any two setsX andY , we useX + Y
to denoteX ∪ Y whenX ∩ Y = ∅.

Gs ∩Gs+1 =(Bs +Rs\Bs) ∩ (Bs+1 +Rs+1)

=Bs ∩Rs+1 +Rs ∩Bs+1 + (Rs\Bs) ∩Rs+1,

and therefore

E[|Gs ∩Gs+1|] =E[|Bs ∩Rs+1|]+ (27)

E[|Rs ∩Bs+1|] + E[|(Rs\Bs) ∩Rs+1|].

Using Claim 11, we have

E[|Bs ∩Rs+1|] = shπ, (28)

E[|Rs ∩Bs+1|] = h[1− (1− π)s], (29)

E[|(Rs\Bs) ∩Rs+1|] = (n− s− 1)hπ[1− (1− π)s], (30)

whereπ is as defined in Claim 11. Bringing (28)-(30) into
(27), we obtain (19).

Furthermore, whenn → ∞, if l/h → α ands/n → β, then

E[|Gs ∩Gs+1|] =g · [1− π̄s] + sh · ππ̄s

→h(1 + α)
[

1−
(

1−
α

n− 1

)nβ]

+

hαβ
(

1−
α

n− 1

)nβ

→h
[

(1 + α)(1 − e−αβ) + αβe−αβ
]

=h
[

1 + α− (1 + α− αβ)e−αβ
]
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