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Abstract

The asymptotic behavior (such as convergence to an equilibrium, convergence
to a 2-cycle, and divergence to ∞) of solutions of the following multi-parameter,
rational, second order difference equation

xn+1 =
ax3n + bx2nxn−1 + cxnx

2
n−1 + dx3n−1

x2n
, x−1, x0 ∈ R,

is studied in this paper.
Keywords: Difference equation; equilibrium; 2-cycle; convergence; divergence

1 Introduction

Most of the work about rational difference equations treat the case where both nu-
merator and denominator are linear polynomials. For second order rational difference
equations with linear numerator and denominator we refer the reader to the monograph
of Kulenovic and Ladass ([2]). In 2008, Sedaghat et al ([1]) extended the existing re-
sults about second order rational difference equations to second order rational difference
equations with quadratic numerator and linear denominator.

In this paper we extend the existing results to the following difference equation

xn+1 =
ax3

n + bx2
nxn−1 + cxnx

2
n−1 + dx3

n−1

x2
n

, (1.1)

which is a second order rational difference equation with cubic numerator and quadratic
monomial denominator. The parameters a, b, d are positive while the parameter c and
initial conditions x−1, x0 could accept some negative values.
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In ([5]) we investigated the dynamics of the following difference equation

xn+1 =
ax3

n + bx2
n + cxn + d

x3
n

, (1.2)

where it was shown that in most cases every positive solution of Eq.(1.2) converges to
either an equilibrium or, a 2-cycle.

In this part we study the asymptotic behavior of solutions of Eq.(1.1) including
convergence to an equilibrium, convergence to a 2-cycle, and divergence. Our analysis
on the dynamics of Eq.(1.1) is essentially based on the dynamics of Eq.(1.2). The
concepts of equilibrium point, 2-cycle, stability, asymptotic stability have been defined
in the first part and will not be repeated here. Moreover, throughout the present paper
we refer to some of the results in the first part.

Divide both sides of Eq.(1.1) by xn to obtain

xn+1

xn

= a+ b

(

xn−1

xn

)

+ c

(

xn−1

xn

)2

+ d

(

xn−1

xn

)3

,

In the preceding equation substitute

tn =
xn

xn−1

,

to obtain

tn+1 =
at3n + bt2n + ctn + d

t3n
,

which simply is the first order Eq.(1.2) (similar to the first part we use the function
φ(t) = (at3 + bt2 + ct + d)/t3, which defines the right hand side of Eq.(1.2), in the
present paper frequently). In fact the solutions of Eq.(1.2) are the successive ratios of
the solutions of Eq.(1.1). So we call {tn} the sequence of ratios. Eq.(1.1) is a special
semiconjugate factorization of Eq.(1.2) which is called semiconjugacy by ratios. For
more about semiconjugacy and semiconjugacy by ratios see [3] and [4] respectively. We
analyze the dynamics of Eq.(1.1) using the dynamics of Eq.(1.2) which was studied in
the first part.

Now we discuss about the initial conditions of Eq.(1.1). Since in this paper we
studied the dynamics of positive solutions of Eq.(1.2) then the initial conditions of
Eq.(1.1) should be chosen in such a way that the sequence of ratios becomes positive
eventually. If both x−1 and x0 are positive or negative then the sequence of ratios is
positive from the first step. On the other hand, if one of them be positive and the other
one be negative then the ratio xn/xn−1 may never becomes positive or even the iteration
process may stop. For example if φ has a negative equilibrium which is attractive then it
attracts some ratios in a neighborhood around itself and therefore such a ratio remains
negative forever. Also, if at any step the ratio equals zero then the iteration process
stops. We should avoid such cases. Although, the determination of these cases in general
is not possible but we are able to determine some of them. Now, we mention one of them.
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Consider the function φ on the interval (−∞, 0). Assume that c− < c ≤ −c∗ =
√
3bd or,

c > −c∗ and φ(xm) > 0 (note that xm < 0 when c > −c∗). Then, there exists a unique
number r < 0 such that φ(r) = 0. Suppose that r < r′ < 0 is the unique number such
that φ(r′) = r. Then, it is evident that any ratio in (−∞, r) ∪ (r′, 0) will eventually
become positive after at most three steps. Note that if {xn} is a solution for Eq.(1.1)
then so is {−xn}. Also, first and third quadrants of R2, namely (0,∞)2 and (−∞, 0)2,
are invariant under Eq.(1.1). By the discussions in the previous paragraph the ratio
xn/xn−1 should be positive eventually. Then there are two possibilities. Either xn > 0
or, xn < 0 for all n ≥ n0 for some n0 ∈ N. If the second case occurs then the change
of variable yn = −xn (or considering {−xn} as solution) reduces Eq.(1.1) to the first
case. Therefore, without loss of generality we assume that both of initial conditions are
positive, hereafter.

In the first part we discussed (in great detail) about the convergence of solutions of
Eq.(1.2) (or the sequence of ratios) to both an equilibrium and a 2-cycle. Now, we want
to study the dynamics of solutions of Eq.(1.1) in both of these cases.

2 Asymptotic stability when the sequence of ratios

converges to an equilibrium

Theorem 2.1. Assume that the sequence {xn}∞n=−1 is a positive solution for Eq.(1.1).
Assume also that t is an equilibrium of Eq.(1.2) such that the sequence of ratios {xn/xn−1}∞n=0

converges to it.

(a) If t > 1 then {xn} diverges to ∞.

(b) If t < 1 then {xn} converges to zero.

(c) Assume that t = 1(or equivalently a + b + c + d = 1). Let S = {φ−n(1)}∞n=0. If
x0/x−1 ∈ S then {xn} is convergent to an equilibrium. Otherwise, |b+2c+3d| ≤ 1
and also

(c1) If |b + 2c + 3d| < 1 then {xn} converges to an equilibrium. Moreover, if
0 < b + 2c + 3d < 1 then one of subsequences {x2n} and {x2n+1} will be
increasing and the other one will be decreasing eventually while {xn} will be
increasing or decreasing eventually if −1 < b+ 2c+ 3d ≤ 0.

(c2) If b+ 2c+ 3d = −1 then {xn} will be increasing or decreasing eventually. In
the later case {xn} converges to an equilibrium obviously. In the former case
if c > −3d then {xn} diverges to ∞.

(c3) If b + 2c + 3d = 1 then both of subsequences of even and odd terms will be
increasing eventually. In particular, if c > −2d

a+d
− b then {xn} diverges to ∞.

Proof. (a) Since limn→∞ xn/xn−1 = t > 1 then there exist L > 1 and N ∈ N such
that xn/xn−1 > L for all n > N . This simply shows that xn → ∞ as n → ∞. The proof
of (b) is similar and will be omitted.
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(c) The equality t = 1 is simply equivalent to the equality a + b + c + d = 1. If
x0/x−1 ∈ S then there exists N ∈ N such that xn+1/xn = 1 for all n > N . Thus xn

remains constant for all n > N . Hence, xn converges to an equilibrium.
Next, assume that x0/x−1 6∈ S. Then, since {xn/xn−1} converges to the equilibrium

t = 1 we have |φ′

(1)| ≤ 1 or equivalently

|b+ 2c+ 3d| ≤ 1. (2.1)

On the other hand, since a + b + c + d = 1 then we obtain by some computations
that

xn+1 − xn = rn(xn − xn−1), rn = −
(

b+ c+ d+
c+ d

tn
+

d

t2n

)

, (2.2)

notice that rn → b+2c+3d as n → ∞ since tn converges to 1. Therefore, by (2.1) there
are three cases to consider as follow:
Case I; |b+2c+3d| < 1: Thus there exist 0 < L < 1 and N ∈ N such that |rn| < L for
all n > N . So (2.2) implies for n > N that

|xn+1 − xn| < L|xn − xn−1|, (2.3)

thus we have (by induction) for n ≥ N that

|xn+1 − xn| < Ln−N |xN+1 − xN |,

Therefore
lim
n→∞

xn+1 − xn = 0. (2.4)

On the other hand we obtain from (2.3) for n > N that

|xn+1 − xN | ≤ |xn+1 − xn|+ |xn − xn−1|+ . . .+ |xN+1 − xN |

<

(

n−N
∑

i=0

Li

)

|xN+1 − xN | <
(

∞
∑

i=0

Li

)

|xN+1 − xN |

=
|xN+1 − xN |

1− L
,

therefore, {xn} is bounded. This fact together with (2.4) imply that {xn} is convergent.
On the other hand , (2.2) implies that tn(tn+1 − 1) = rn(tn − 1). Therefore

tn+1tn − 1 = tn+1tn ∓ tn − 1

= tn(tn+1 − 1) + (tn − 1)

= (tn − 1)(rn + 1),

or equivalently
xn+1

xn−1

− 1 = (tn − 1)(rn + 1), (2.5)
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Note that since |rn| → |b + 2c + 3d| < 1 as n → ∞ there exists n0 ∈ N such that
rn + 1 > 0 for all n > n0. Also, we know that when φ′(1) = −(b + 2c + 3d) ∈ (−1, 0),
tn oscillates alternately around 1 while when −(b+ 2c+ 3d) ∈ [0, 1), tn remains on one
side of 1 forever. These facts together with (2.5) complete the proof of (c1).

Case II; b + 2c + 3d = −1: In this case φ′(1) = φ(1) = 1 (recall that this case
occurs when c = cm and 1 is the greater equilibrium of φ or, c = cM and 1 is the lower
equilibrium of φ. This case also may occur when xm < 1 < xM ) . Therefore, it’s evident
that there exists an n0 ∈ N such that either xn/xn−1 < 1 or, xn/xn−1 > 1 for n > n0.
If the former case occurs then {xn} is decreasing for all n > n0 and therefore it will
converge to an equilibrium.

On the other hand if the later case occurs then {xn} is increasing for n > n0. Define
the following function

r(t) = −
(

b+ c+ d+
c+ d

t
+

d

t2

)

, t > 0,

note that r(1) = 1, r′(1) = c + 3d. Thus, if c > −3d then r′(1) > 0. As a result,
there exists ǫ > 0 such that r(t) > 1 for all t ∈ (1, 1 + ǫ). Therefore, since rn = r(tn),
tn = xn/xn−1 > 1 for all n > n0, and tn → 1 as n → ∞ we conclude that there exists
n1 > n0 such that rn > 1 for all n > n1. Thus by (2.2) the sequence of differences
{xn+1 − xn} is increasing for n > n1.

This fact together with the fact that {xn} is increasing eventually imply that {xn}
diverges to ∞.

Case III; b+2c+3d = 1: In this case φ′(1) = −φ(1) = −1 (recall that this case may
occur when c ≥ c∗ or, c < c∗ and 1 < xm. Also note that by Lemma 2(c) in [5] this case
never occurs when xM < 1). Therefore, it’s evident that there exists n0 ∈ N such that
the sequence of ratios oscillate alternately around 1 for all n > n0. Some computations
show that

xn+1 − xn−1 = ρn(xn − xn−1), ρn = c+ 2d− c + d

tn
− d

t2n
, (2.6)

since ρn = (tn − 1)[(c+ 2d)tn + d]/t2n, c+ 2d = a > 0, and tn 6= 1 for all n ≥ 0 then

ρn(tn − 1) > 0, (2.7)

where the equality c+ 2d = a is gained by the subtraction of equalities a+ b+ c+ d =
b+2c+3d = 1. Now consider the consecutive ratios x2n/x2n−1 and x2n+1/x2n for n > n0.
Since these ratios oscillate around 1 alternately then one of them is greater than 1 and
the other one is less than 1. Without loss of generality assume that x2n+1/x2n < 1 <
x2n/x2n−1. Thus by (2.7) ρ2n+1 < 0 < ρ2n. Therefore, (2.6) implies that x2n+1 >
x2n−1 and x2n+2 > x2n, i.e., both of subsequences of even and odd terms are increasing
eventually.

Next, define the function

R(t) = r(t)r(φ(t)), t > 0,
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where r is defined in the previous case. Some algebra shows that

R(1) = 1, R′(1) = 0, R′′(1) = 2(b+ c)(a+ d) + 4d,

Therefore, if R′′(1) > 0, i.e., c > −2d/(a + d) − b then 1 is a local minimum point for
R. As a result, there exists ǫ > 0 such that R(t) > 1 for all t ∈ (1 − ǫ, 1 + ǫ), t 6= 1.
Therefore, since rn+1rn = R(tn) and tn → 1 as n → ∞ then there exists n1 > n0

such that rn+1rn > 1 for all n > n1. Thus, we obtain from (2.2) that for n > n1

|xn+1 − xn| = rnrn−1|xn−1 − xn−2| > |xn−1 − xn−2| or equivalently, |dn+1| > |dn−1| where
dn is the sequence of differences. Therefore, both of sequences {|d2n+1|} and {|d2n|} are
increasing. Hence, either they are convergent to a positive number or divergent to ∞.

Finally, we claim that both of subsequences of even and odd terms (and therefore
{xn}) diverge to ∞. Suppose for the sake of contradiction that one of them is convergent
or both of them are convergent. If one of them is convergent and the other one is
divergent then this simply is a contradiction since the ratio xn/xn−1 converges to 1.
On the other hand, if both of them are convergent then by the same reason both of
them should be convergent to a same number. So {xn} is convergent. Thus, |dn+1| =
|xn+1 − xn| → 0 as n → ∞ which is a contradiction. Therefore, {xn} diverges to ∞.
The proof is complete.

3 Asymptotic stability when the sequence of ratios

converges to a 2-cycle

Lemma 3.1. (a) Eq.(1.2) has a unique 2-cycle (p, q) with pq = 1 if and only if

a− c

d
=

d− b+ 1

a
> 2. (3.1)

(b) Assume that (p, q) is an attractive 2-cycle of Eq.(1.2) with pq = 1, p < 1 < q. Then

q + pφ′(p) < 0 < p+ qφ′(q).

(c) Assume that (3.1) holds. Then Eq.(1.1) has infinite number of 2-cycles. More
precisely, the following set is the family of 2-cycles of Eq.(1.1)

A = {(p′, q′)| p′/q′ = p or p′/q′ = q}.

Proof. (a) Assume that Eq.(1.2) has a 2-cycle (p, q) with pq = 1. So q2 = aq3 +
bq2+ cq+ d and p2 = ap3+ bp2+ cp+ d. Multiply the first equation by p and the second
equation by q and apply some algebra to obtain

p+ q =
d− b+ 1

a
,

6



in a similar fashion multiply those two equations by p2 and q2 to obtain

p+ q =
a− c

d
.

Therefore (a− c)/d = (d− b + 1)/a. Since pq = 1 and p + q = (a− c)/d then both
p and q satisfy the following quadratic polynomial

X2 − a− c

d
X + 1 = 0, (3.2)

Therefore such a 2-cycle is unique. On the other hand, Eq.(3.2) should have positive
determinant. So (a− c)/d > 2 and therefore (18) holds.

Next, suppose that (18) holds. Then, it’s easy to verify that the polynomial G in
Lemma 1 in [5] is factored by Eq.(3.2). As a result, Eq.(1.2) has a 2-cycle (p, q) with
pq = 1.

(b) At first we show that both of quantities q + pφ′(p) and p+ qφ′(q) have different
signs. Since (p, q) is an attractive 2-cycle of Eq.(1.2) then

φ′(p)φ′(q) = (φ2)′(p) ≤ 1. (3.3)

On the other hand, since pq = 1 then (a) implies that (3.1) holds. This fact together
with the fact that p+ q = (a− c)/d imply that

p2φ′(p) + q2φ′(q) = −
(

bq2 + 2cq + 3d

q2
+

bp2 + 2cp+ 3d

p2

)

= −
(

2b+ 2c(p+ q) + 3d((p+ q)2 − 2)
)

= −
(

2b+ 2c

(

a− c

d

)

+ 3d

[

(

a− c

d

)2

− 2

])

= −
(

2b+ 2a
a− c

d
+

(a− c)2

d
− 6d

)

= −
(

2b+ 2(d− b+ 1) +
(a− c)2

d
− 6d

)

= −
(

2 +
(a− c)2 − 4d2

d

)

< −2. (3.4)

Thus (3.3), (3.4), and the equality pq = 1 yield

(q + pφ′(p))(p+ qφ′(q)) = 1 + φ′(p)φ′(q) + p2φ′(p) + q2φ′(q) < 2− 2 = 0,

therefore, both of quantities q+ pφ′(p) and p+ qφ′(q) have different signs. On the other
hand, the equality pq = 1 together with (3.2) imply that

q + pφ′(p) = q(1− b− 2cq − 3dq2) = q(1− b+ 3d+ (c− 3a)q), (3.5)
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similarly
p+ qφ′(q) = p(1− b+ 3d+ (c− 3a)p). (3.6)

If p + qφ′(q) < 0 < q + pφ′(p) then (3.5) and (3.6) imply that

0 < (1− b+ 3d+ (c− 3a)q)− (1− b+ 3d+ (c− 3a)p) = (c− 3a)(q − p),

So since p < q we obtain that c > 3a which simply contradicts (3.1). Hence, q+pφ′(p) <
0 < p+ qφ′(q).

(d) The proof of (d) is clear and will be omitted.
The proof is complete.

The following theorem (whose proof somehow uses the ideas in the proof of Theorem
2.1) discusses about the dynamics of solutions of Eq.(1.1) when the sequence of ratios
converges to a 2-cycle.

Theorem 3.1. Assume that the sequence {xn}∞n=−1 is a positive solution for Eq.(1.1)
and (p, q) is a 2-cycle of Eq.(1.2) such that the sequence of ratios {xn/xn−1}∞n=0 converges
to it.

(a) If pq > 1 then {xn} diverges to ∞.

(b) If pq < 1 then {xn} converges to zero.

(c) Assume that pq = 1(or equivalently (3.1) holds). Let S = {φ−n(p), φ−n(q)}∞n=0. If
x0/x−1 ∈ S then {xn} converges to a 2-cycle. Otherwise, we have |φ′(p)φ′(q)| ≤ 1
and we consider three cases as follow

(c1) |φ′(p)φ′(q)| < 1; In this case {xn} converges to a 2-cycle. Moreover, if −1 <
φ′(p)φ′(q) < 0 then the subsequences {x4n} and {x4n+3} will be increasing
and the other two will be decreasing eventually or vice versa while both of
subsequences {x2n} and {x2n+1} will be increasing or decreasing eventually if
0 ≤ φ′(p)φ′(q) < 1.

(c2) φ′(p)φ′(q) = 1; In this case both of subsequences {x2n} and {x2n+1} will be
increasing or decreasing eventually. In the later case {xn} converges to a
2-cycle. In the former case {xn} diverges to ∞ if

p+ qφ′(q) + (φ′(q))2φ′′(p)/2 + φ′(p)φ′′(q)/2 > 0

(c3) φ′(p)φ′(q) = −1; Let l = −(p2 + (φ′(q))2q2) + (q + pφ′(p))φ′′(q)/2 + (p +
qφ′(q))(φ′(q))2 φ′′(p)/2. If l < 0 then all of subsequences {x4n}, {x4n+1}, {x4n+2},
and {x4n+3} are decreasing eventually. In this case {xn} converges to a 2-
cycle. If l > 0 then all of subsequences {x4n}, {x4n+1}, {x4n+2}, and {x4n+3}
are increasing eventually. In this case {xn} diverges to ∞ if

−2s′′(q)− 2(s′(q))2 − s′(q)(φ2)′′(q) > 0

8



where

s(t) =
tφ(t)γ(φ(t))θ(t)[φ2(t)θ(φ2(t) + p]

tθ(t) + p
,

γ(t) = −
(

b

pt
+

c(t + p)

p2t2
+

d(t2 + pt+ p2)

p3t3

)

,

θ(t) = −
(

b

qt
+

c(t + q)

q2t2
+

d(t2 + qt+ q2)

q3t3

)

.

Proof. Throughout the proof we assume, without loss of generality, that

t2n → p, t2n+1 → q, as n → ∞, (3.7)

therefore
xn+2

xn

= tn+2tn+1 → pq as n → ∞,

Thus if pq > 1 then there exist N ∈ N and L > 1 such that xn+2/xn > L for all n > N .
This simply proves (a). In a similar fashion (b) is proved. Now we proceed to (c).
Since pq = 1 then we assume, without loss of generality, that p < 1 < q hereafter. If
x0/x−1 ∈ S then there exists an integer N such that xN+1/xN = p or xN+1/xN = q.
Thus xn+1/xn = p and xn+2/xn+1 = q for all n ≥ N or vice versa. Therefore for n ≥ N

xn+2

xn

= pq = 1,

which means that {xn} converges to a 2-cycle. Now assume that x0/x−1 6∈ S. Then since
the 2-cycle (p, q) attracts the sequence of ratios {xn/xn−1} we have |φ′(p)φ′(q)| ≤ 1.

(c1) Define Dn = xn − xn−2. Therefore, using (3.7) and hopital law in calculous one
can write

lim
n→∞

∣

∣

∣

∣

D2n+2

D2n

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

t2n+2t2n+1t2nt2n−1 − t2nt2n−1

t2nt2n−1 − 1

∣

∣

∣

∣

= lim
t→q

∣

∣

∣

∣

tφ(t)φ2(t)φ3(t)− tφ(t)

tφ(t)− 1

∣

∣

∣

∣

= |φ′(p)φ′(q)|
< 1.

In a similar fashion

lim
n→∞

∣

∣

∣

∣

D2n+1

D2n−1

∣

∣

∣

∣

= |φ′(p)φ′(q)| < 1,

Consequently, there exist n0 ∈ N and 0 < L < 1 such that for n > n0

|D2n+2| < L|D2n|, |D2n+1| < L|D2n−1|.
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Therefore, by an analysis precisely similar to what was applied in Theorem 2.1(c) it
could be shown that both of subsequences {x2n} and {x2n+1} are convergent and hence
{xn} converges to a 2-cycle.

Some calculations show that

tn+1 − q = γn(tn − p), γn = −
(

b

ptn
+

c(tn + p)

p2t2n
+

d(t2n + ptn + p2)

p3t3n

)

, (3.8)

and

tn+1 − p = θn(tn − q), θn = −
(

b

qtn
+

c(tn + q)

q2t2n
+

d(t2n + qtn + q2)

q3t3n

)

. (3.9)

by (3.7) we obtain

γ2n → φ′(p), θ2n+1 → φ′(q), as n → ∞. (3.10)

Now, suppose that −1 < φ′(p)φ′(q) < 0. By Lemma 3.1(b), φ′(p) < −q/p < 0. So
φ′(q) > 0. Therefore, in a neighborhood around p and another neighborhood around
q φ is decreasing and increasing respectively. This fact together with (3.7) imply that
there exists n0 ∈ BBbN such that for n ≥ n0

(i) either t4n < p, t4n+1 > q, t4n+2 > p, t4n+3 < q or,

(ii) t4n > p, t4n+1 < q, t4n+2 < p, t4n+3 > q.

On the other hand, (3.8) and (3.9) imply that

tn+4tn+3tn+2tn+1 − 1 = tn+4tn+3tn+2tn+1 ∓ p2tn+3tn+1 − p2q2

= tn+3tn+1(tn+4tn+2 − p2) + p2(tn+3tn+1 − q2)

= tn+3tn+1(tn+4tn+2 ∓ ptn+2 − p2) + p2(tn+3tn+1 ∓ qtn+1 − q2)

= tn+3tn+1[tn+2(tn+4 − p) + p(tn+2 − p)] +

p2[tn+1(tn+3 − q) + q(tn+1 − q)]

= tn+3tn+1(tn+2θn+3γn+2 + p)(tn+2 − p) +

p2(tn+1γn+2θn+1 + q)(tn+1 − q)

= [tn+3tn+1θn+1(tn+2θn+3γn+2 + p) + p2(tn+1γn+2θn+1 + q)]×
(tn+1 − q),

Therefore

xn+4

xn

−1 = λn(tn+1− q), λn = &tn+3tn+1θn+1(tn+2θn+3γn+2+ p)+ p2(tn+1γn+2θn+1+ q),

(3.11)
In a similar fashion one can write

xn+4

xn

−1 = ξn(tn+1−p), ξn = &tn+3tn+1γn+1(tn+2γn+3θn+2+ q)+ q2(tn+1θn+2γn+1+p),

(3.12)
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notice that (3.7) and (3.10) imply that

λ2n → (φ′(p)φ′(q) + 1)(p+ qφ′(q)), ξ2n+1 → (φ′(p)φ′(q) + 1)(q + pφ′(p)), as n → ∞.
(3.13)

Consequently, by the fact that φ′(p)φ′(q) > −1, Lemma 3.1(b), (3.11), (3.12), and
(3.13) the subsequences {x4n} and {x4n+3} will be increasing while the other two will
be decreasing eventually if (i) holds. Otherwise, the subsequences {x4n} and {x4n+3}
will be decreasing while the other two will be increasing eventually.

Next, assume that 0 ≤ φ′(p)φ′(q) < 1. By Lemma 3.1(b) φ′(p) < −q/p < 0. Thus
φ′(q) ≤ 0. If φ′(q) < 0 then in a neighborhood around p and another neighborhood
around q φ is decreasing. As a result by (3.7) we conclude that there exists an integer
n0 ∈ N such that for n ≥ n0

(i) either t2n > p, t2n+1 < q or,

(ii) t2n < p, t2n+1 > q.

If, on the other hand φ′(q) = 0 then q = xm or q = xM . It’s easy to show that if
q = xm then case (i) occurs while case (ii) occurs if q = xM . By an analysis somehow
similar to that of applied for the expression xn+4/xn − 1 we obtain

xn+2

xn

−1 = λ′

n(tn+1−q) = ξ′n(tn+1−p), λ′

n = tn+1θn+1+p, ξ′n = tn+1γn+1+q, (3.14)

with
λ′

2n → p+ qφ′(q), ξ′2n+1 → q + pφ′(p), as n → ∞. (3.15)

Therefore, Lemma 3.1(b), (3.14), and (3.15) imply that both of subsequences {x2n}
and {x2n+1} are decreasing eventually if (i) holds and vice versa if (ii) holds.

(c2) By an analysis precisely similar to what was applied for the case 0 ≤ φ′(p)φ′(q) <
1 in (c1) one can prove that both of subsequences {x2n} and {x2n+1} are increasing or
decreasing eventually. If the later case occurs (note that this case occurs when case (i) in
(c1) occurs, i.e., t2n > p, t2n+1 < q for n > n0) then {xn} converges to a 2-cycle obviously.
Now assume that the former case occurs (note that in this case t2n < p, t2n+1 > q for
n > n0). Then

Dn+2

Dn

=
xn+2 − xn

xn − xn−2

=
tntn−1(tn+2tn+1 − 1)

tntn−1 − 1
,

Therefore (3.14), (3.8), (3.9), and some algebra imply that

Dn+2 = snDn, sn =
tntn−1γnθn−1λ

′

n

λ′

n−2

. (3.16)
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Some computations show that

γ(p) = φ′(p), θ(q) = φ′(q), γ′(p) =
φ′′(p)

2
, θ′(q) =

φ′′(q)

2
, (3.17)

Notice that sn = s(tn−1) and by (3.17) s(q) = 1. Also using (3.17) and some algebra we
obtain that

s′(q) = p + qφ′(q) + (φ′(q))2
φ′′(p)

2
+ φ′(p)

φ′′(q)

2
> 0,

As a result there exists ǫ > 0 such that s(t) > 1 for all t ∈ (q, q + ǫ). Therefore,
since s2n = s(t2n−1), t2n−1 > q for all n > n0, and t2n−1 → q as n → ∞ then there
exists n1 > n0 such that s2n > 1 for all n > n1. Thus by (3.16) the sequence {D2n} is
increasing eventually.

Consequently, since {x2n} is increasing eventually then {x2n} should be divergent to
∞ and hence by (3.7) {x2n+1} should be divergent to ∞, too. This means that {xn} is
divergent to ∞.

(c3) Note that similar to the case −1 ≤ φ′(p)φ′(q) < 0 in (c1) there exists n0 ∈ N

such that either t4n < p, t4n+1 > q, t4n+2 > p, t4n+3 < q or, t4n > p, t4n+1 < q, t4n+2 <
p, t4n+3 > q for n > n0. Consider the quantities λn and ξn in (c1) and define the following
functions for t > 0

λ(t) = tφ2(t)θ(t)[φ(t)θ(φ2(t))γ(φ(t)) + p] + p2[tγ(φ(t))θ(t) + q],

ξ(t) = tφ2(t)γ(t)[φ(t)γ(φ2(t))θ(φ(t)) + p] + p2[tθ(φ(t))γ(t) + q],

Notice that λn = λ(tn+1), ξn = ξ(tn+1), and by (3.17) λ(q) = ξ(p) = 0. Also by (3.17)
and some algebra we have

(φ′(q))2ξ′(p) = λ′(q) = l,

Therefore both of quantities ξ′(p) and λ′(q) have the same signum. Now assume that
both of them are negative, i.e., l < 0. Then there are neighborhoods around p and q
that ξ and λ are decreasing on respectively. Assume that t4n < p, t4n+1 > q, t4n+2 >
p, t4n+3 < q for n > n0. Thus since λ4n = λ(t4n+1), λ4n+2 = λ(t4n+3), ξ4n+1 = ξ(t4n+2),
and ξ4n+3 = ξ(t4n+4) then by (3.7) we obtain that there exists n1 > n0 such that for
n > n1

λ4n < 0 < λ4n+2, ξ4n+1 < 0 < ξ4n+3,

Consequently by (3.11) and (3.12) we conclude that all of subsequences {x4n},{x4n+1},
{x4n+2}, and {x4n+3} are decreasing eventually (note that similar result obtains if t4n >
p, t4n+1 < q, t4n+2 < p, t4n+3 > q for n > n0). As a result, all of these four subsequences
are convergent and by the fact that xn+2/xn → 1 as n → ∞ we obtain that both of
subsequences {x4n}, {x4n+2} of even terms should be convergent to a same number. The
same result holds for the subsequences {x4n+1}, {x4n+3} of odd terms. Hence, {xn}
converges to a 2-cycle.

Next, suppose that l > 0. Then similar arguments show that all of subsequences
{x4n},{x4n+1},{x4n+2}, and {x4n+3} are increasing eventually. Define the function

S(t) = s(t)s(φ2(t)), t > 0,
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using the fact that s(q) = φ′(p)φ′(q) = −1 and by some algebra we obtain that

S(q) = 1, S ′(q) = 0, S ′′(q) = −2s′′(q)− 2(s′(q))2 − s′(q)(φ2)′′(q) > 0,

Thus q is a local minimum point for S. So there exists ǫ > 0 such that S(t) > 1 for
t ∈ (q − ǫ, q + ǫ), t 6= q. Therefore, since s4n+2s4n = s(t4n+1)s(t4n−1) = S(t4n−1) and
t4n−1 → q as n → ∞ then there exists n0 ∈ N such that s4n+2s4n > 1 for all n > n0. As
a result (3.16) implies that |D4n+4| = s4n+2s4n|D4n| > |D4n|, i.e., the sequence {|D4n|}
is increasing eventually. Thus, either it converges to a positive number or, diverges to
∞.

We claim that both of subsequences of even terms, i.e., {x4n} and {x4n+2} are di-
vergent to ∞ (and therefore by (3.7) the other two subsequences are divergent, too.
Hence, {xn} diverges to ∞). Otherwise, at least one of them should be convergent and
therefore since x4n+2/x4n → 1 as n → ∞ we conclude that both of them are convergent.
As a result D4n → 0 as n → ∞ which simply is a contradiction. The proof is complete.

Remark 3.1. In Theorem 2.1 and Theorem 3.1 dynamical behavior of solutions of
Eq.(1.1) was studied where the sequence of ratios converges to an equilibrium and a 2-
cycle respectively. By Theorem 4 and Theorem 5 in [5] we know that one of these two
cases occur definitely when c ≥ c∗ or, c < c∗, xM ≤ t or, c < c∗, xm ≤ t ≤ xM . But if
c < c∗ and t < xm the sequence of ratios may fail to be convergent to an equilibrium or a
2-cycle. In this case according to Theorem 6(a) in [5] the interval I = [φ(xm), φ

2(xm)] is
invariant under hypothesis (H) or even ratios eventually end up in I if c ≤ c∗1. Therefore,
if x0/x−1 ∈ I and (H) holds, or x0/x−1 6∈ I but c ≤ c∗1 then {xn} diverges to ∞ when
φ(xm) ≥ 1 while {xn} converges to zero when φ2(xm) ≤ 1 obviously.

4 Some examples

Example 1. Consider the first example in Remark 4 in [5]. Note that c > c− ≈ −4.1305
where c− is the unique negative root of the cubic polynomial Q in Theorem 1 in [5]. So
By Theorem 1(b) in [5] nonpositive iterations of Eq.(1.2) do not occur. In this example
Eq.(1.2) has two equilibria and no 2-cycle. Some computations show that

xm ≈ 0.7133, t1 ≈ 0.7845, t2 = 1, δ ≈ 0.5833,

where δ has been defined in Theorem 7(a) in [5]. Notice that here a+ b+ c+ d = 1 and
hence one of two equilibria is 1. By Theorem 7(a1) if t0 ∈ (δ, t2) then {tn} converges to
t1 otherwise, it converges to t2. Moreover, if t0 6∈ (δ, t2) then {tn} converges to t2 from
the right.

Therefore, since t1 < 1, a + b + c + d = 1, b + 2c + 3d = −1, and c > −3d then
Theorem 2.1(c2) and Theorem 2.1(b) imply that

(i) If x0/x−1 ∈ (δ, t2) then {xn} converges to zero.

(ii) If t0 6∈ (δ, t2) then {xn} diverges to ∞.
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Example 2. In Eq.(1.1) set a = 0.2, b = 1.7, c = −2, d = 1.1. So c > c− ≈ −2.8540
and therefore similar to the arguments in the previous example nonpositive iterations of
Eq.(1.2) do not occur. In this example Eq.(1.2) has a unique equilibrium t = 1 (notice
that a + b + c + d = 1) and two 2-cycles (p1, q1) ≈ (0.2262, 63.6517) and (p2, q2) ≈
(0.5110, 4.1111). Since c > c∗ = −

√
3bd ≈ −2.3685 then by Theorem 4(c) in [5] {tn}

converges to 1 if t0 ∈ (p2, q2) and converges to the 2-cycle (p1, q1) if t0 ∈ (0, p2)∪(q2,∞).
Therefore, since p1q1 > 1, a + b + c + d = b + 2c + 3d = 1, and c > −2d

a+d
− b then

Theorem 2.1(c3), Theorem 3.1(a), and Theorem 3.1(c) imply that

(i) If x0/x−1 ∈ (0,∞) \ {p1, p2, t, q2, q1} then {xn} diverges to ∞.

(ii) if x0/x−1 = t then {xn} converges to an equilibrium.

(iii) If x0/x−1 ∈ {p1, p2, q2, q1} then {xn} converges to a 2-cycle.

Example 3. In Eq.(1.1) set a = 0.1, b = 1.79, c = −2, d = 1. Thus again c > c− ≈
−2.7295 which similar to the previous examples this guarantees that all iterations of
Eq.(1.2) remain positive forever. In this example Eq.(1.2) has a unique equilibrium
t ≈ 0.9423 and three 2-cycles (p1, q1) ≈ (0.1024, 759.2585), (p2, q2) = (0.6021, 2.1370)
and (p3, q3) ≈ (0.7298, 1.3702). Since c > c∗ ≈ −5.37 then by Theorem 4(d) in [5] {tn}
converges to the 2-cycle (p1, q1) if t0 ∈ (0, p2) ∪ (q2,∞) and converges to the 2-cycle
(p3, q3) if t0 ∈ (p2, q2) \ {t}. Notice that p3q3 = 1. This is evident since in this example
(3.1) holds easily.

Consequently, since p3q3 = 1, 0 < φ′(p3)φ
′(q3) < 1, and p1q1 > 1 then by Theorem

2.1, Theorem 3.1(a), and Theorem 3.1(c1) we conclude that

(i) If x0/x−1 ∈ (0, p2) ∪ (q2,∞) then {xn} diverges to ∞.

(ii) If x0/x−1 ∈ [p2, q2] \ {t} then {xn} converges to a 2-cycle.

(iii) If x0/x−1 = t then {xn} simply converges to an equilibrium.
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