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CALCULATION OF LOCAL FORMAL FOURIER TRANSFORMS

ADAM GRAHAM-SQUIRE

Abstract. We calculate the local Fourier transforms for connections on the formal punctured disk,
corroborating the results of J. Fang [4] and C. Sabbah [6] using a different method. Our method is
similar to Fang’s, but more direct.

1. Introduction

In [3], S. Bloch and H. Esnault introduced the local Fourier transforms for connections on the
formal punctured disk. Explicit formulas for it were proved by J. Fang [4] and C. Sabbah [6].
Interestingly, the calculations rely on different ideas: the proof of [4] is more algebraic, while [6]
uses geometric methods.

In this paper, we provide yet another proof of these formulas. Our approach is closer to Fang’s,
but more straightforward. In order to calculate a particular local Fourier transform, one must
ascertain the ‘canonical form’ of the local Fourier transform of a given connection. This amounts
to constructing an isomorphism between two connections (on a punctured formal disk). In [4],
this is done by writing matrices of the connections with respect to certain bases. We work with
operators directly, using techniques described by D. Arinkin in [1, Section 7].

Acknowledgements. I am very grateful to my advisor Dima Arinkin for many helpful discussions
and his consistent encouragement of this work.

2. Definitions and Conventions

We fix a ground field k, which is assumed to be algebraically closed of characteristic zero.

2.1. Connections on formal disks. Consider the field of formal Laurent series K = k((z)).

Definition 1. Let V be a finite-dimensional vector space over K. A connection on V is a k-linear
operator ∇ : V → V satisfying the Leibniz identity:

∇(fv) = f∇(v) +
df

dz
v

for all f ∈ K and v ∈ V . A choice of basis in V gives an isomorphism V ≃ Kn; we can then write
∇ = ∇z as d

dz +A, where A = A(z) ∈ gln(K) is the matrix of ∇ with respect to this basis.

We write C for the category of vector spaces with connections over K. Its objects are pairs (V,∇),
where V is a finite-dimensional K-vector space and ∇ : V → V is a connection. Morphisms
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between (V1,∇1) and (V2,∇2) are K-linear maps φ : V1 → V2 that are horizontal in the sense that
φ∇1 = ∇2φ.

We summarize below some well-known properties of connections on formal disks. The results go
back to Turritin [7] and Levelt [5]; a more recent and concise reference is [2, Sections 5.9 and 5.10].

Let q be a positive integer and consider the field Kq = k((z1/q)). (Note: Kq is the unique extension
of K of degree q.) For every f ∈ Kq, we define an object Ef ∈ C by

Ef = Ef,q =

(

Kq,
d

dz
+ z−1f

)

.

In terms of the isomorphism class of an object Ef , the reduction procedures of [5] and [7] illustrate
that we need only consider f in the quotient

k((z1/q))
/

(

z1/qk[[z1/q]] +
1

q
Z

)

.

Let Rq (we write Rq(z) when we wish to emphasize the local coordinate) be the set of orbits for the
action of the Galois group Gal(Kq/K) on this quotient. Explicitly, the Galois group is identified

with the group of degree q roots of unity η ∈ k; the action on f ∈ Rq is by f(z1/q) 7→ f(ηz1/q).
Finally, denote by R◦

q ⊂ Rq the set of f ∈ Rq that cannot be represented by elements of Kr for any
0 < r < q.

The following proposition lists some well-known facts about the objects Ef . The proofs of the
different parts of the proposition are either straightforward or common in the literature, and are
thus omitted.

Proposition 2.1. With notation as above:

(1) The isomorphism class of Ef depends only on the orbit of the image of f in Rq.
(2) Ef is irreducible if and only if the image of f in Rq belongs to R◦

q . As q and f vary, we
obtain a complete list of irreducible objects of C.

(3) Every E ∈ C can be written as

E ≃
⊕

i

(Efi,qi ⊗ Jmi
),

where the Ef,q are irreducible and Jm = (Km, d
dz + z−1Nm), with Nm representing the

nilpotent Jordan block of size m.

Remark. Proposition is particularly useful because it allows us to reduce the calculation of the
local Frouier transform of E ∈ C to looking at the calculation on Ef . A precise statement is found
in Corollary .

2.2. Local Fourier transforms. Sometimes it is useful to keep track of the choice of local coor-
dinate for C. To stress the coordinate, we write C0 to indicate the coordinate z at the point zero
and C∞ to indicate the coordinate ζ = 1

z at the point at infinity. Note that C0 and C∞ are both

isomorphic to C, but not canonically. We also denote by C<1
∞ (respectively C>1

∞ ) the full subcate-
gory of C∞ of connections whose irreducible components all have slopes less than one (respectively
greater than one); that is, Ef such that −1 < ord(f) (respectively −1 > ord(f)).
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We define the local Fourier transforms F (0,∞), F (∞,0) and F (∞,∞) using [3, Propositions 3.7, 3.9
and 3.12] while following the convention of [1, Section 2.2]. The Fourier transform coordinate of z

is ẑ, with ζ̂ = 1
ẑ . Let E = (V,∇) ∈ C0 such that ∇ has no horizontal sections, thus ∇ is invertible.

The following is a precise definition for F (0,∞)E, the other local Fourier transforms can be defined
analogously. Consider on V the k-linear operators

(1) ζ̂ = −∇−1
z : V → V and ∇̂ζ̂ = −ζ̂−2z : V → V.

As in [1], ζ̂ extends to define an action of K̂ = k((ζ̂)) on V and dimK̂V < ∞. Then the K̂-vector

space V with connection ∇̂ζ̂ is denoted by

F (0,∞)(E) ∈ C<1
∞ ,

which defines the functor F (0,∞) : C0 → C<1
∞ .

Given the conventions above, we can express the other local Fourier transforms by the functors

F (∞,0) : C<1
∞ → C0 and F (∞,∞) : C>1

∞ → C>1
∞ .

If one considers only the full subcategories of C0 and C<1
∞ of connections with no horizontal sections,

the functors F (0,∞) and F (∞,0) define an equivalence of categories. Similarly, F (∞,∞) is an auto-
equivalence of the subcategory C>1

∞ [3, Propositions 3.10 and 3.12].

3. Statement of Theorems

Let s be a nonnegative integer and r a positive integer.

Theorem 3.1. Let f ∈ R◦
r(z) with ord(f) = −s/r and f 6= 0. Then

F (0,∞)Ef ≃ Eg,

where g ∈ R◦
r+s(ζ̂) is determined by the following system of equations:

(2) f = −zẑ

(3) g = f +
s

2(r + s)

Remark. Recall that ζ̂ = 1
ẑ . We determine g using (2) and (3) as follows. First, using (2) we express

z in terms of ζ̂1/(r+s). We then substitute this expression into (3) and solve to get an expression

for g(ζ̂) in terms of ζ̂1/(r+s).

When we use (2) to write an expression for z in terms of ζ̂1/(r+s), the expression is not unique since
we must make a choice of a root of unity. More concretely, let η be a primitive (r+s)th root of unity.

Then replacing ζ̂1/(r+s) with ηζ̂1/(r+s) in our equation for z will yield another possible expression
for z. This choice will not affect the overall result, however, since all such possible expressions will
lie in the same Galois orbit. Thus by Proposition 2.1 (1), they will all correspond to the same
connection.
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Corollary 3.2. Let E be an object in C. By Proposition 2.1 (3), let E have decomposition

E ≃
⊕

i

(

Efi ⊗ Jmi

)

. Then

F (0,∞)E ≃
⊕

i

(

Egi ⊗ Jmi

)

for Eg as defined in Theorem 3.1.

Sketch of Proof. Ef ⊗ Jm is the unique indecomposable object in C formed by m successive ex-

tensions of Ef , thus we only need to know how F (0,∞) acts on Ef . This is given by Theorem
3.1. �

Theorem 3.3. Let f ∈ R◦
r(ζ) with ord(f) = −s/r, s < r, and f 6= 0. Then

F (∞,0)Ef ≃ Eg,

where g ∈ R◦
r−s(ẑ) is determined by the following system of equations:

(4) f = zẑ

(5) g = −f +
s

2(r − s)

Remark. We determine g from (4) and (5) as follows. First, we use (4) to express ζ in terms

of ẑ1/(r−s). We then substitute this expression into (5) to get an expression for g(ẑ) in terms of
ẑ1/(r−s).

Theorem 3.4. Let f ∈ R◦
r(ζ) with ord(f) = −s/r and s > r. Then

F (∞,∞)Ef ≃ Eg,

where g ∈ R◦
s−r(ζ̂) is determined by the following system of equations:

(6) f = zẑ

(7) g = −f +
s

2(s − r)

Remark. We determine g from (6) and (7) as follows. First, we use (6) to express ζ in terms

of ζ̂1/(s−r). We then substitute this expression into (7) to get an expression for g(ζ̂) in terms of

ζ̂1/(s−r).

4. Proof of Theorems

4.1. Outline of Proof of Theorem 3.1. We start with the operators given in (1), viewing them

as equivalent operators over Kr. We wish to understand how the operator ∇̂ζ̂ acts in terms of the

operator ζ̂. To do so, we need to define a fractional power of an operator, which is done in Lemma
2. Lemma 2 is the heavy lifting of the proof; the remaining portion is just calculation to extract
the appropriate constant term (see remark below) from the expression given by Lemma 2.
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Remark. We give a brief explanation regarding the origin of the system of equations found in
Theorem 3.1. Consider the expressions given in (1). Suppose we were to make a “naive” local

Fourier transform over Kr by defining ∇z = z−1f(z) and ∇̂ζ̂ = ζ̂−1g(ζ̂); in other words, as in

Definition 1 but without the differential parts. Then from the equation −(z−1f)−1 = ζ̂ we conclude

(8) f = −zẑ.

Similarly, from −ζ̂−2z = ζ̂−1g we find −ẑz = g, which when combined with (8) gives

(9) f = g.

When one incorporates the differential parts into the expressions for ∇z and ∇̂ζ̂ , one sees that

the system of equations (8) and (9) nearly suffices to find the correct expression for g(ζ̂), only a
constant term is missing. This constant term arises from the interplay between the differential and
linear parts of ∇z, and we wish to derive what the value of it is. Similar calculations can be carried
out to justify the systems of equations for Theorems 3.3 and 3.4.

4.2. Lemmas.

Definition 2. Let A and B be k-linear operators from Kq to Kq. We define Ord(A) to be

Ord(A) = inff∈Kq

(

ord(Af)− ord(f)
)

, with Ord(0) := ∞

and define o(zk) by

A = B + o(zk) if and only if Ord(A−B) ≥ k.

Lemma 1. Let A and B be operators on Kq, with Ord(A) = a, Ord(A−1) = −a, Ord(B) = b,
a ≤ b, A invertible, and [A, [B,A]] = 0. Then

(10) (A+B)m = Am +mA(m−1)B +
m(m− 1)

2
Am−2[B,A] + o(za(m−1)+b)

for all m ∈ Z.

Proof. We prove that (10) holds for m ≥ 1 using induction. When one uses the expansion (A +
B)−1 = A−1 − A−1BA−1 + . . . the proof for m ≤ −1 is similar. The case m = 0 is trivial. Our
base case is m = 1, where the result clearly holds. Assuming the equation holds for (A+B)m, we
have

(A+B)m(A+B) = Am+1 +mAm−1BA+
m(m− 1)

2
Am−2[B,A]A+AmB + o(za(m−1)+b+a)

= Am+1 +mAmB +mAm−1[B,A] +
m(m− 1)

2
Am−1[B,A] +AmB + o(zam+b)

= Am+1 + (m+ 1)AmB +
m(m+ 1)

2
Am−1[B,A] + o(zam+b)

which completes the induction. �

We now wish to use (10) to define fractional powers of the operator (A+B), given certain operators
A and B. We follow the method of [1, Section 7.1] to extend the definition, though our goal is more
narrow; Arinkin defines powers for all α ∈ k, but we only need to define fractional powers m ∈ 1

pZ

for a given nonzero integer p.
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Lemma 2. Let A and B be operators on Kq. Let A = multiplication by f = jzp/q+o(zp/q), j 6= 0,

and B = zn d
dz with n, p 6= 0 and q 6= 0 integers, Ord(A) = a = p

q , Ord(B) = b = n− 1, and a ≤ b.

Then we can choose a pth root of (A+ B), (A+B)1/p, such that (10) holds for all m ∈ 1
pZ where

(A+B)m = ((A+B)1/p)pm.

Proof. We use notation as in [1]. Letting P = (1/j)(A + B) we have P : Kq → Kq is k-linear of
the form

P





∑

β

cβz
β/q



 =
∑

β

cβ
∑

i≥0

pi(β)z
β+i+p

q .

Thus p0(β) = 1 and all pi are constants or have the form β/q+constant, so the necessary conditions
[1, Section 7.1, conditions (1) and (2)] are satisfied. We can now define Pm, and likewise (A+B)m =
jmPm, for m = 1

p . �

4.3. Proof of Theorems.

Proof of Theorem 3.1. From [3, Proposition 3.7] we have the following equations for the local

Fourier transform F (0,∞):

(11) z = −ζ̂2(∂ζ̂) and ∂z = −ζ̂−1.

Writing ∂ζ̂ = ∇̂ζ̂ =
d
dζ̂

+ ζ̂−1g(ζ̂) and ∂z = ∇z =
d
dz + z−1f(z), (11) becomes

(12) z = −ζ̂2
d

dζ̂
− ζ̂g(ζ̂)

and

(13)
d

dz
+ z−1f(z) = −ζ̂−1.

Our goal is to use (13) to write an expression for the operator z in terms of ζ̂, at which point we can

substitute into (12) to find an expression for g(ζ̂). Since the leading term of z−1f(z) is az−(r+s)/r,
(13) implies the operator z can be written as

(14) z = ar/(r+s)(−ζ̂)r/(r+s) + · · ·+ ∗(−ζ̂) + o(ζ̂).

Here the ellipsis refers to higher order terms coming from the algebraic calculation of taking the
( −r
r+s)

th power of z−1f(z), and the * represents the coefficient that will arise from the interplay

between the differential and linear parts of (−ζ̂). As explained in the outline, we wish to find the

value of *. Let A = z−1f(z) and B = d
dz , then [B,A] = A′. From (13) we have −ζ̂ = (A + B)−1,

and we apply Lemma 2 to find

(−ζ̂)r/(r+s) = a−r/(r+s)

(

z + · · ·+ a−1

[

−r

r + s

(

Z

r

)

+
−r

r + s
+

−s

2(r + s)

]

z1+(s/r) + o(z1+(s/r))

)

.

Remark. We use the notation Z

r to represent the operator z d
dz . This notation makes sense, because

z d
dz : Kr → Kr acts as z d

dz (z
n/r) = n

r (z
n/r) for any n ∈ Z.

Also from Lemma 2 we have

(−ζ̂) = a−1z1+(s/r) + o(z1+(s/r)).
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The appropriate value for * in (14) is the expression that will make the leading term of ∗(−ζ̂)

cancel with a−1
[

−Z

r+s +
−r
r+s +

−s
2(r+s)

]

z1+(s/r), thus we find that

(15) ∗ =
Z+ r

r + s
+

s

2(s + r)
.

Applying the equivalent operators of (12) to 1 ∈ Kr, and using the fact that d
dζ̂
(1) = 0, we see that

z(1) = −ζ̂g(ζ̂)(1). Thus to find the expression for g we simply need to compute the Laurent series

in ζ̂ given by (−ζ̂−1)z. Substituting the expressions from (14) and (15) into (−ζ̂−1)z, we have

g(ζ̂) = ar/(r+s)(−ζ̂)−s/(r+s) + · · ·+

(

Z+ r

r + s
+

s

2(r + s)

)

+ o(1).

By Proposition 2.1, (1), Eg,r+s will be isomorphic to Eġ,r+s where

ġ(ζ̂) = ar/(r+s)(−ζ̂)−s/(r+s) + · · · +
s

2(r + s)
,

since g and ġ differ only by Z+r
r+s ∈ 1

r+sZ. The ar/(r+s)(−ζ̂)−s/(r+s) + . . . portion of ġ comes from
the purely algebraic calculation as described in the remark following the statement of Theorem 3.1,
so this completes the proof. �

Proof of Theorem 3.3. This proof is much the same as the proof of Theorem 3.1, so we will only
sketch the pertinent details. From [3, Proposition 3.9], in our notation we have

ζ2∇ζ = ẑ and ζ−1 = −∇̂ẑ

We wish to write ζ−1 = z in terms of ẑr−s. Letting A = ζf(ζ), B = ζ2 d
dζ and ẑ = A+B, we have

[B,A] = ζ2A′ and Lemma 2 gives

ẑr/(r−s) = ar/(r−s)

(

ζ + · · ·+ a−1

[

r

r − s

(

Z

r

)

+
s

2(r − s)

]

ζ1+(s/r) + o(ζ1+(s/r))

)

and

ẑ(r+s)/(r−s) = a(r+s)/(r−s)ζ1+(s/r) + o(ζ1+(s/r)).

We conclude that

ζ = a−r/(r−s)ẑr/(r−s) + · · · + a−2r/(r−s)

[

−Z

r − s
+

−s

2(r − s)

]

ẑ(r+s)/(r−s) + o(ẑ(r+s)/(r−s)).

Inverting the operator, we find

z = ar/(r−s)ẑ−r/(r−s) + · · ·+

(

Z

r − s
+

s

2(r − s)

)

ẑ−1 + o(ẑ)

and it follows that

g(ẑ) = −ẑz = −ar/(r−s)ẑ−s/(r−s) + · · · +
−Z

r − s
+

−s

2(r − s)
+ o(1).

As in the proof of Theorem 3.1, we use Proposition 2.1 (1) to find an object isomorphic to Eg which
matches the object given in the theorem, completing the proof of Theorem 3.3. �
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Proof of Theorem 3.4. The calculations are virtually identical to the proof of Theorem 3.3, but the
expressions are written in terms of ζ̂ instead of ẑ and s − r instead of r − s. Starting with [3,
Proposition 3.12], in our notation we have

ζ2∇ζ = ẑ and ζ−1 = −ζ̂2∇̂ζ̂ .

Repeating the calculations of Theorem 3.3 we conclude that

g(ζ̂) = −ζ̂−1z = −a
−r
s−r ζ̂−s/(s−r) + · · ·+

Z

s− r
+

s

2(s − r)
+ o(1).

As before, by considering an appropriate isomorphic object we eliminate the term with Z, thus
completing the proof of Theorem 3.4. �

5. Comparison with previous results

One notes that in [4], Fang’s Theorems 1, 2, and 3 look slightly different from those given in
(respectively) our Theorems 3.1, 3.3, and 3.4. We shall present a brief synopsis of how to see the
equivalence of Fang’s Theorem 1 and our Theorem 3.1. One difference in our methods is that
Fang’s calculations are split into a regular and irregular part, whereas we calculate both parts
simultaneously. We first verify the equivalence for the irregular part.

Suppose f in Theorem 3.1 has zero regular part, in other words f has no scalar term. Then with
Fang’s notation on the left and our notation on the right, we have the following:

t corresponds to z

t′ corresponds to ẑ

t∂t(α) corresponds to f

(1/t′)∂(1/t′)(β) +
s

2(r + s)
corresponds to g

Using the correspondences above and equation (2.1) from Fang’s paper, one can manipulate the
systems of equations to see that the theorems coincide on the irregular part.

To verify that the regular portion of our calculation matches up with the results from [4], it suffices
to prove the claim below. We note that one can calculate the regular part by using the global
Fourier transform and meromorphic Katz extension; our proof is independent of that method.

Claim 1. Given f(z) = az−s/r + · · · + b + o(1) as in Theorem 3.1, if F (0,∞)Ef = Eg then g will

have constant term

(

r

r + s

)

b+
s

2(r + s)
.

Before we prove Claim 1, we first prove two lemmas regarding general facts about formal Laurent
series and their compositional inverses.

Lemma 3. Every formal Laurent series j(z) = azp/q + . . . with a, p 6= 0 has an expression for a

compositional inverse j〈−1〉(z).

Proof. Let h(z) = (z1/p ◦ j ◦ zq)(z). Then h(z) is a formal power series with no constant term and
a nonzero coefficient for the z term. Such a power series will have a compositional inverse, call it
h〈−1〉(z). Then j〈−1〉(z) = (zq ◦ h〈−1〉 ◦ z1/p)(z) will be a compositional inverse for j. �
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Remarks: If p is negative then j〈−1〉 is not a Laurent series unless it is written in terms of the
variable z−1. Also note that h (and h〈−1〉 as well) is not unique since a choice of root of unity is

made. This will not affect our result, though, since hp and (h〈−1〉)q will be unique.

Lemma 4. For j(z) = az−(r+s)/r + · · · + bz−1 + o(z−1), j(z) ∈ Kr, with s a nonnegative integer
and r ∈ Z

+, we have

j〈−1〉(z) = a−1z−r/(r+s) + · · · +
br

r + s
z−1 + . . .

Proof. Given the construction of j〈−1〉 as described in the proof of Lemma 3, the only part of the
proof that is not straightforward is the calculation of the coefficient for the z−1 term of j〈−1〉. Let
h(z) = (z−1/(r+s) ◦ j ◦ zr)(z). Then from the proof of Lemma 3 we have

(16) j(zr) = h−(r+s) and j〈−1〉(z−(r+s)) = (h〈−1〉)r.

According to the Lagrange inversion formula, the coefficients of h and h〈−1〉 are related by

(17) (r + s)[zr+s](h〈−1〉)r = r[z−r]h−(r+s)

where [zr+s](h〈−1〉)r denotes the coefficient of the zr+s term in the expansion of (h〈−1〉)r. Substi-
tuting (16) into (17) we conclude that

(18) [zr+s]j〈−1〉(z−(r+s)) =
r

r + s
[z−r]j(zr)

Since [z−r]j(zr) = b, the conclusion follows. �

Proof of Claim 1. Given the notation used above for the Lagrange inversion formula, we can restate
the claim as follows: if [z0]f = b, then [ζ̂0]g = br

r+s +
s

2(r+s) .

Let j(z) = −z−1f . Then
[z−1]j = −[z0]f = −b.

By (2) we conclude that ẑ = j(z), and by Lemma 3 let j〈−1〉 be the compositional inverse. Then

j〈−1〉(ẑ) = z. From (3) we have g = −zẑ + s
2(r+s) , which implies that −ẑ−1(g − s

2(r+s)) = j〈−1〉(ẑ).

This gives

(19) [ẑ−1]j〈−1〉 = −[ẑ0]g +
s

2(r + s)
.

By Lemma 4, [z−1]j = −b implies that [ẑ−1]j〈−1〉 = −br
r+s . The result then follows from (19) and

noting that [ẑ0]g = [ζ̂0]g. �
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