TWO-SYMMETRIC LORENTZIAN MANIFOLDS

D.V.ALEKSEEVSKY AND A.S.GALAEV

Abstract

The local form of all two-symmetric Lorentzian manifolds is found. To do this, the methods of the theory of the holonomy groups is used.

Contents

1. Introduction2. Holonomy groups of Lorentzian manifolds2
2. The holonomy group of a 2-symmetric Lorentzian manifold 4
3.1. Algebraic curvature tensors and their derivatives
3.2. Adapted coordinates and a reduction lemma 6
3.3. Proof of Theorem 2 7
3. Lorentzian manifolds with vector holonomy group T_{E} (pp-waves) 9
4.1. Adapted local coordinates and associated pseudo-group of transformations 10
4.2. Levi-Civita connection 10
4.3. The curvature tensor of a pp-wave space 11
4.4. The covariant derivatives of the curvature tensor 11
4. Proof of Theorem 1 12
References 13

1. Introduction

Symmetric pseudo-Riemannian manifolds is an important class of spaces. The direct generalization of these manifolds form the so called k-symmetric pseudo-Riemannian spaces (M, g) satisfying the condition

$$
\nabla^{k} R=0, \quad \nabla^{k-1} R \neq 0
$$

where $k \geq 1$ and R is the curvature tensor of (M, g). For Riemannian manifolds the condition $\nabla^{k} R=0$ implies $\nabla R=0$ [13.

The paper [12] deals with the two-symmetric Lorentzian manifolds. It contains a historical review of the problem and a long list of literature. In this paper it is shown that such space must admit a parallel null vector field.

In [1] the local structure of four-dimensional two-symmetric Lorentzian manifolds is found. It is shown that these spaces are special pp-waves. For the proof the Petrov classification and the computations in local coordinates are used.

In the present paper we generalize the result of [1] for the arbitrary dimension. We prove the following theorem.

Theorem 1. Let (M, g) be a Lorentzian manifold of dimension $n+2$. Then (M, g) is twosymmetric if and only if locally there exist coordinates $v, x^{1}, \ldots, x^{n}, u$ such that

$$
g=2 d v d u+\sum_{i=1}^{n}\left(d x^{i}\right)^{2}+\left(H_{i j} u+F_{i j}\right) x^{i} x^{j}(d u)^{2},
$$

where $H_{i j}$ is a diagonal matrix with the diagonal elements $\lambda_{1} \leq \cdots \leq \lambda_{n}$ that are simultaneously non-zero real numbers, $F_{i j}$ is a symmetric real matrix.

Any other metric of this form isometric to g is given by the same $H_{i j}$ and by $\tilde{F}_{i j}=c H_{i j}+$ $F_{k l} a_{i}^{k} a_{j}^{l}$, where $c \in \mathbb{R}$ and a_{i}^{j} is an orthogonal matrix such that $H_{k l} a_{i}^{k} a_{j}^{l}=H_{i j}$.

For the proof we used the methods of the theory of holonomy groups. We may assume that the manifold is locally indecomposable. The condition that a Lorentzian manifold (M, g) is two-symmetric implies that the holonomy algebra $\mathfrak{h o l}{ }_{m}$ of (M, g) at a point $m \in M$ annihilates the value ∇R_{m} that can be assumed to be non-zero. This can not happen if the holonomy algebra is the whole Lorentzian Lie algebra $\mathfrak{s o}(1, n+1)$. Hence the holonomy algebra must preserve a null line and it is contained in the maximal Lie algebra with this property [6],

$$
\mathfrak{h o l}{ }_{m} \subset \mathfrak{s i m}_{n}=(\mathbb{R} \oplus \mathfrak{s o}(n))+\mathbb{R}^{n}
$$

We show that in fact $\mathfrak{h o l}{ }_{m} \subset \mathfrak{s o}(n)+\mathbb{R}^{n}$ and it is enough to consider the following two case: $\mathfrak{h o l}{ }_{m}=\mathbb{R}^{n}$ and $\mathfrak{h o l} l_{m}=\mathfrak{h}+\mathbb{R}^{n}$, where $\mathfrak{h} \subset \mathfrak{s o}(n)$ is an irreducible subalgebra. The first case corresponds to pp-waves. In the second case we find the form of ∇R. Using the result of [9], we show that the Weyl conformal curvature tensor W is parallel. This and the results of [4, 5, 10 , give a contradiction. Thus $\mathfrak{h o l}{ }_{m}=\mathbb{R}^{n}$, i.e. we deal with a pp-wave. The condition $\nabla^{2} R=0$ and simple computations allow to find its coordinate form.

2. Holonomy groups of Lorentzian manifolds

We recall some basic facts about holonomy groups of Lorentzian manifold. Let (M, g) be a Lorentzian d-dimensional manifold and $\operatorname{Hol}^{0}(M)=\operatorname{Hol}{ }^{0}(M)_{m}$ its connected holonomy group
at a point $m \in M$. It is a subgroup of the (connected) Lorentz group $S O(V)^{0}$ where $V=T_{m} M$ is the tangent space and it is determined by its Lie algebra $\mathfrak{h o l}(M) \subset \mathfrak{s o}(V)$ which is called the holonomy algebra of M.
The manifold M is indecomposable (i.e. locally is not decomposable into a direct product of two pseudo-Riemannian manifolds) if and only if the holonomy group $\operatorname{Hol}^{0}(M)$ (or the holonomy algebra $\mathfrak{h o l}(M)$) is weakly irreducible, i.e. it does not preserve any proper nondegenerate subspace of V. Any weakly irreducible holonomy group $\operatorname{Hol}(M)$ different from the Lorentz group $S O(V)^{0}$ is a subgroup of the horospheric group $S O(V)_{[p]}$, the subgroup of $S O^{0}(V)$ which preserves a null line $[p]=\mathbb{R} p$.
This group is identified with the group $\operatorname{Sim}_{\mathrm{n}}=\mathbb{R}^{*} \cdot \mathrm{SO}_{\mathrm{n}} \cdot \mathbb{R}^{\mathrm{n}}, \mathrm{n}=\mathrm{d}-2$ of the Euclidean space E^{n} as follows.
The Lorentzian group $S O(V)^{0}$ acts transitively on the celestial sphere $S^{n}=P V^{0}$ (the space of null lines) which is the projectivization of the null cone $V^{0} \subset V$ with the stabilizer $S O(V)_{[p]}$. The stabilizer has an open orbit $S^{n} \backslash[p]$ which is identified via the stereographic projection with the Euclidean space E^{n}. Having in mind this isomorphism, we will call the group $S O(V)_{[p]}$ the similarity group and denote it by $\operatorname{Sim}_{\mathrm{n}}$.

Using the metric $<, . .>=g_{m}$, we will identify the Lorentz Lie algebra $\mathfrak{s o}(V) \simeq \mathfrak{s o}(1, n+1)$ with the space $\Lambda^{2} V$ of bivectors.
Then the Lie algebra $\mathfrak{s i m}_{n}$ of the similarity group can be written as

$$
\mathfrak{s i m}_{n}=\mathfrak{s o}(V)_{[p]}=\mathbb{R} p \wedge q+p \wedge E+\mathfrak{s o}(E)
$$

where p, q are isotropic vectors with $\langle p, q\rangle=1$ which span 2-dimensional Minkowski subspace U and $E=U^{\perp}$ is its orthogonal complement. The commutative ideal $p \wedge E$ generates the commutative normal subgroup $T_{E} \subset \operatorname{Sim}_{\mathrm{n}}$ which acts on E^{n} by parallel translations. This group is called the vector group. The one-dimensional subalgebra $\mathbb{R} p \wedge q=\mathfrak{s o}(U)$ generates the maximal diagonal subgroup A of $\operatorname{Sim}_{\mathrm{n}}$ which is the Lorentz group $S O(U)^{0}$ and the maximal compact subalgebra $\mathfrak{s o}(E)$ generates the group $S O(E)$ of orthogonal transformations of E. The above decomposition of the Lie algebra $\mathfrak{s i m}_{n}$ defines the Iwasawa decomposition

$$
\operatorname{Sim}_{\mathrm{n}}=\mathrm{K} \cdot \mathrm{~A} \cdot \mathrm{~N}=\mathrm{SO}(\mathrm{E}) \cdot \mathrm{SO}(\mathrm{U})^{0} \cdot \mathrm{~T}_{\mathrm{E}}
$$

of the group Sim_{n}.
The list of connected weakly irreducible connected holonomy groups $\operatorname{Hol}^{0}(M)$ of Lorentzian manifolds is known, see [11, 6]. Assume for simplicity that $\operatorname{Hol}^{0}(M)$ is an algebraic group. Then it contains the vector group T_{E} and has one of the following forms:
(type I) $H o l^{0}(M)=K \cdot S O(U)^{0} \cdot T_{E}$
(type II) $\operatorname{Hol}^{0}(M)=K \cdot T_{E}$ where $K \subset S O(E)$ is a connected holonomy group of a Riemannian n-2-dimensional manifold, i.e. a product of the Lie groups from the Berger list :
$S O_{m}, U_{m}, S U_{m}, S p_{1} \cdot S p_{m}, S p_{m}, G_{2}, S p i n_{7}$ and the isotropy groups of irreducible symmetric Riemannian manifolds.

If the holonomy group is not algebraic, it is obtained from one of the holonomy groups of type I or II by some twisting (holonomy groups of type III and IV).
Note that all these holonomy groups act transitively on the Euclidean space $E^{n}=P V^{0} \backslash[p][8]$.
The Lorentzian holonomy algebras $\mathfrak{g} \subset \mathfrak{s i m}_{n}$ are the following (in all cases $\mathfrak{h} \subset \mathfrak{s o}(E)$ is a Riemannian holonomy algebra):
(type I) $\mathbb{R} p \wedge q+\mathfrak{h}+p \wedge E$;
(type II) $\mathfrak{h}+p \wedge E$;
(type III) $\{\varphi(A) p \wedge q+A \mid A \in \mathfrak{h}\}+p \wedge E$, where $\varphi: \mathfrak{h} \rightarrow \mathbb{R}$ is a linear map that is zero on the commutant $[\mathfrak{h}, \mathfrak{h}]$;
(type IV) $\{A+p \wedge \psi(A) \mid A \in \mathfrak{h}\}+p \wedge E_{1}$, where $E=E_{1} \oplus E_{2}$ is an orthogonal decomposition, \mathfrak{h} annihilates E_{2}, i.e. $\mathfrak{h} \subset \mathfrak{s o}\left(E_{1}\right)$, and $\psi: \mathfrak{h} \rightarrow E_{2}$ is a surjective linear map that is zero on the commutant $[\mathfrak{h}, \mathfrak{h}]$.

A simply connected Lorentzian manifold admits a parallel null vector field if and only if its holonomy group is of type II or IV.

3. The holonomy group of a 2-Symmetric Lorentzian manifold

Definition 1. A pseudo-Riemannian manifold (M, g) with the curvature tensor R is called k-symmetric if

$$
\nabla^{k} R=0, \quad \nabla^{k-1} R \neq 0
$$

So 1 -symmetric spaces is the same as locally symmetric spaces $(\nabla R=0)$. Recall that a complete simply connected locally symmetric space is a symmetric space, that is it admits a central symmetry S_{m} with center at any point m, i.e. an involutive isometry S_{m} which has m as an isolated fixed point.

Remark that any k-symmetric Riemannian manifold is in fact locally symmetric [13.
All irreducible simply connected Lorentzian symmetric spaces are exhausted by the De Sitter and the anti De Sitter spaces and the Cahen-Wallach spaces, which have the vector holonomy group T_{E}.
Below we prove that any indecomposable Lorentzian 2-symmetric space has vector holonomy group T_{E}.

Theorem 2. The holonomy group $\operatorname{Hol}^{0}(M)$ of an $(n+2)$-dimensional locally indecomposable two-symmetric Lorentz manifold (M, g) is the vector group T_{E} with the Lie algebra $p \wedge E \subset$ $\mathfrak{s o}(V)$.

It is known that any Lorentzian manifold with the holonomy algebra $p \wedge E$ is a pp-wave (see e.g. [6]), i.e. locally there exist coordinates such that the metric g can be written in the form

$$
g=2 d v d u+\delta_{i j} d x^{i} d y^{j}+H(d u)^{2}, \quad \partial_{v} H=0 .
$$

We will need only to decide which functions H corresponds to two-symmetric spaces.
3.1. Algebraic curvature tensors and their derivatives. Let (W, g) be a pseudo-Euclidean space and $\mathfrak{f} \subset \mathfrak{s o}(W)$ be a subalgebra. The vector space

$$
\mathcal{R}(\mathfrak{f})=\left\{R \in \Lambda^{2} W^{*} \otimes \mathfrak{f} \mid R(u, v) w+R(v, w) u+R(w, u) v=0 \text { for all } u, v, w \in W\right\}
$$

is called the space of algebraic curvature tensors of type \mathfrak{f}. It is known that if $\mathfrak{f} \subset \mathfrak{s o}(W)$ is the holonomy algebra of a pseudo-Riemannian manifold (M, g), then the values of the curvature tensor of (M, g) belong to $\mathcal{R}(\mathfrak{f})$ and

$$
\mathfrak{f}=\operatorname{span}\{R(u, v) \mid R \in \mathcal{R}(\mathfrak{f}), u, v \in W\}
$$

i.e. \mathfrak{f} is spanned by the images of the elements $R \in \mathcal{R}(\mathfrak{f})$.

The spaces $\mathcal{R}(\mathfrak{g})$ for holonomy algebras of Lorentzian manifolds are found in [7. Let e.g. $\mathfrak{g}=\mathbb{R} p \wedge q+\mathfrak{h}+p \wedge E$. For the subalgebra $\mathfrak{h} \subset \mathfrak{s o}(n)$ define the space

$$
\mathcal{P}(\mathfrak{h})=\left\{P \in E^{*} \otimes \mathfrak{h} \mid g(P(x) y, z)+g(P(y) z, x)+g(P(z) x, y)=0 \text { for all } x, y, z \in E\right\} .
$$

Any $R \in \mathcal{R}(\mathfrak{g})$ is uniquely given by

$$
\lambda \in \mathbb{R}, v \in E, P \in \mathcal{P}(\mathfrak{h}), R_{0} \in \mathcal{R}(\mathfrak{h}), \text { and } T \in \operatorname{End}(E) \text { with } T^{*}=T
$$

in the following way:

$$
\begin{aligned}
& R(p, q)=-\lambda p \wedge q-p \wedge v, \quad R(x, y)=R_{0}(x, y)-p \wedge(P(y) x-P(x) y), \\
& R(x, q)=-g(v, x) p \wedge q+P(x)-p \wedge T(x), \quad R(p, x)=0
\end{aligned}
$$

for all $x, y \in E$. For the algebras \mathfrak{g} of the other types, any $R \in \mathcal{R}(\mathfrak{g})$ can be given in the same way and by the condition that R takes values in \mathfrak{g}. For example, $R \in \mathcal{R}(\mathfrak{h}+p \wedge E)$ if and only if $\lambda=0$ and $v=0$.

Let again $\mathfrak{f} \subset \mathfrak{s o}(W)$. Consider the vector space

$$
\mathcal{R}^{\nabla}(\mathfrak{f})=\left\{S \in W^{*} \otimes \mathcal{R}(\mathfrak{f}) \mid S_{u}(v, w)+S_{v}(w, u)+S_{w}(u, v)=0 \text { for all } u, v, w \in W\right\} .
$$

If $\mathfrak{f} \subset \mathfrak{s o}(W)$ is the holonomy algebra of a pseudo-Riemannian manifold (M, g), then the values of the covariant derivative of the curvature tensor of (M, g) belong to $\mathcal{R}(\mathfrak{f})$. The spaces $\mathcal{R}^{\nabla}(\mathfrak{s o}(r, s))$ and $\mathcal{R}^{\nabla}(\mathfrak{u}(r, s))$ are found in [9].

To find the spaces $\mathcal{R}^{\nabla}(\mathfrak{g})$ for the Lorentzian holonomy algebras $\mathfrak{g} \subset \mathfrak{s i m}_{n}$ it is enough to consider an element $S \in V^{*} \otimes \mathcal{R}(\mathfrak{g})$, then for any $u \in V$ its value $S_{u} \in \mathcal{R}(\mathfrak{g})$ can be expressed in terms of some elements $\lambda_{u}, v_{u}, P_{u}, R_{0 u}, T_{u}$ as above, and it is enough to write down the second Bianchi identity.
3.2. Adapted coordinates and a reduction lemma. Let (M, g) be an $(n+2)$-dimensional locally indecomposable two-symmetric Lorentz manifold, i.e. the tensor ∇R is non-zero and parallel. Suppose that the holonomy algebra of (M, g) is $\mathfrak{s o}(1, n+1)$. Then for any point $m \in M$, the holonomy algebra $\mathfrak{s o}\left(T_{m} M\right) \simeq \mathfrak{s o}(1, n+1)$ must annihilate the value $\nabla R_{m} \in \mathcal{R}^{\nabla}\left(\mathfrak{s o}\left(T_{m} M\right)\right)$. From [9] it follows that the space $\mathcal{R}^{\nabla}(\mathfrak{s o}(1, n+1))$ does not contain non-zero elements annihilated by $\mathfrak{s o}(1, n+1)$. We get a contradiction. The Lie algebra $\mathfrak{s o}(1, n+1)$ is the only irreducible holonomy algebra [6]. Hence the holonomy algebra of (M, g) preserves a null line, i.e. it is contained in $\mathfrak{s i m}_{n}$. Consequently (M, g) admits (locally) a parallel distribution of null lines.

Let (M, g) be Lorentzian manifold (of dimension $d=n+2$) that admits a parallel distribution of null lines. Then locally there exist the so called Walker coordinates $v, x^{1}, \ldots, x^{n}, u$ and the metric g has the form

$$
\begin{equation*}
g=2 d v d u+h+2 A d u+H(d u)^{2} \tag{3.1}
\end{equation*}
$$

where $h=h_{i j}\left(x^{1}, \ldots, x^{n}, u\right) d x^{i} d x^{j}$ is an u-dependent family of Riemannian metrics, $A=$ $A_{i}\left(x^{1}, \ldots, x^{n}, u\right) d x^{i}$ is an u-dependent family of one-forms, and H is a local function on M [14]. The vector field ∂_{v} defines the parallel distribution of null lines.

Let $\mathfrak{g} \subset \mathfrak{s i m}_{n}$ be the holonomy algebra of the Lorentzian manifold (M, g) and $\mathfrak{h} \subset \mathfrak{s o}(E)$ be the associated Riemannian holonomy algebra. Then there exists an orthogonal decomposition

$$
\begin{equation*}
E=E_{0} \oplus E_{1} \oplus \cdots \oplus E_{r} \tag{3.2}
\end{equation*}
$$

and the corresponding decomposition into the direct sum of ideals

$$
\begin{equation*}
\mathfrak{h}=\{0\} \oplus \mathfrak{h}_{1} \oplus \cdots \oplus \mathfrak{h}_{r} \tag{3.3}
\end{equation*}
$$

such that \mathfrak{h} annihilates $E_{0}, \mathfrak{h}_{i}\left(E_{j}\right)=0$ for $i \neq j$, and $\mathfrak{h}_{i} \subset \mathfrak{s o}\left(E_{i}\right)$ is an irreducible subalgebra for $1 \leq i \leq s$. In [2] it is proved that there exist Walker coordinates

$$
v, x_{0}^{1}, \ldots, x_{0}^{n_{0}}, \ldots, x_{r}^{1}, \ldots, x_{r}^{n_{r}}, u
$$

that are adapted to the decompositions (3.2) and (3.3). This means that

$$
h=h_{0}+h_{1}+\cdots+h_{r}, \quad h_{0}=\sum_{i=1}^{n_{0}}\left(d x_{0}^{i}\right)^{2}
$$

and

$$
A=\sum_{\alpha=1}^{r} \sum_{k=1}^{n_{\alpha}} A_{k}^{\alpha} d x_{\alpha}^{k}, \quad\left(A_{0}=0\right)
$$

and for each $1 \leq \alpha \leq r$ it holds

$$
h_{\alpha}=\sum_{i, j=1}^{n_{\alpha}} h_{\alpha i j} d x_{\alpha}^{i} d x_{\alpha}^{j}
$$

with

$$
\frac{\partial}{\partial x_{\beta}^{k}} h_{\alpha i j}=\frac{\partial}{\partial x_{\beta}^{k}} A_{i}^{\alpha}=0
$$

for all $1 \leq i, j \leq n_{\alpha}$ if $\beta \neq \alpha$.

For $i=0, \ldots, r$ consider the metric

$$
g_{i}=2 d v d u+h_{i}+2 A_{i} d u+H_{i}(d u)^{2},
$$

where H_{i} equals to H assuming that all coordinates except $v, x_{i}^{1}, \ldots, x_{i}^{n_{i}}, u$ are parameters.
Lemma 1. If the metric g is two-symmetric, then each metric g_{i} satisfies $\nabla^{2} R=0$.

Proof. It is easy to see that the Christoffel symbols of any metric g_{i} equal to the corresponding Christoffel symbols of the metric g. Consequently, the components of the curvature tensor of g_{i} and its derivatives equal to the corresponding components of the corresponding tensors for the metric g.

It is clear that the projection on $\mathfrak{s o}\left(E_{i}\right)$ of the holonomy algebra of the metric g_{i} equals to $\mathfrak{h}_{i}(i=1, \ldots, r)$.
3.3. Proof of Theorem 2. First we prove the following two propositions.

Proposition 1. Any two-symmetric Lorentzian manifold (M, g) admits a parallel null vector field.

Proof. We may assume that (M, g) is locally indecomposable. The metric g is locally given by (3.1). The above arguments allow us to assume that the projection $\mathfrak{h} \subset \mathfrak{s o}(E)$ of the holonomy algebra \mathfrak{g} on $\mathfrak{s o}(E)$ is irreducible. It is enough to prove that \mathfrak{g} is of type 2 or 4, i.e. it is not of type 1 or 3 .

The condition $\nabla^{2} R=0$ means that ∇R is parallel. The holonomy principle shows that \mathfrak{g} must annihilate a tensor in the space $\mathcal{R}^{\nabla}(\mathfrak{g})$. If \mathfrak{g} is of type 1 , then it contains $p \wedge q$. Using this element and the second Bianchi identity it can be proven that there are no non-zero elements in $\mathcal{R}^{\nabla}(\mathfrak{g})$ that are annihilated by \mathfrak{g}. If \mathfrak{g} is of type 3 , then $\mathfrak{h} \subset \mathfrak{u}(E)$ and for some $a \in \mathbb{R}$, the element $p \wedge q+a J$ belongs to \mathfrak{g}. Simple computations show that there are no non-zero elements in $\mathcal{R}^{\nabla}(\mathfrak{g})$ that are annihilated by \mathfrak{g}.

Thus \mathfrak{g} is of type 2 or 4 , in this case (M, g) admits a parallel null vector field.
Proposition 2. A Lorentzian manifold with the holonomy algebra $\mathfrak{h}+p \wedge E$ with $\mathfrak{h} \neq 0$ can not be two-symmetric.

Proof. Suppose that (M, g) is two-symmetric and its holonomy algebra equals to $\mathfrak{h}+p \wedge E$ with $\mathfrak{h} \neq 0$. We may assume that $\mathfrak{h} \subset \mathfrak{s o}(E)$ is irreducible.

Lemma 2. The subspace of $\mathcal{R}^{\nabla}(\mathfrak{g})$ annihilated by \mathfrak{g} is one-dimensional and it is spanned by the tensor S with the only non-zero value

$$
S_{q}(x, q)=p \wedge x, \quad x \in E .
$$

Proof. Let $S \in \mathcal{R}^{\nabla}(\mathfrak{g})$ and assume that \mathfrak{g} annihilates S. For any $u \in V$ the element $S_{u} \in \mathcal{R}(\mathfrak{g})$ can be expressed in terms of some $R_{0 u}, P_{u}$ and T_{u} as above. Since $S .(p, \cdot)=0$, it holds $S_{p}=0$. The fact that \mathfrak{g} annihilates S can be expressed as

$$
\left[\xi, S_{u}\left(u_{1}, u_{2}\right)\right]-S_{\xi u}\left(u_{1}, u_{2}\right)-S_{u}\left(\xi u_{1}, u_{2}\right)-S_{u}\left(u_{1}, \xi u_{2}\right)=0
$$

for all $\xi \in \mathfrak{g}$ and $u, u_{1}, u_{2} \in V$. Let $U, X, Y, Z \in E$. We have

$$
\left[p \wedge X, S_{U}(Y, Z)\right]=0
$$

Hence, $R_{0 U}(Y, Z) X=0$, i.e. $R_{0 U}=0$. Next,

$$
\left[p \wedge X, S_{U}(Y, q)\right]-S_{U}(Y, X)=0
$$

Consequently,

$$
-p \wedge P_{U}(Y) X-p \wedge\left(P_{U}(Y) X-P_{U}(X) Y\right)=0
$$

i.e. $2 P_{U}(Y) X=P_{U}(X) Y$. Since this equality holds for any $X, Y \in E$, we conclude $P_{U}=0$. We have got $S_{U}(X, Y)=0$. Similarly,

$$
\left[p \wedge X, S_{q}(Y, Z)\right]=0
$$

i.e. $R_{0 q}=0$. The equality

$$
\left[p \wedge X, S_{q}(Y, q)\right]-S_{X}(Y, q)-S_{q}(Y, X)=0
$$

implies

$$
T_{X}(Y)=2 P_{q}(Y) X-P_{q}(X) Y .
$$

From the second Bianchi identity

$$
S_{q}(X, Y)+S_{X}(Y, q)+S_{Y}(q, X)=0
$$

it follows that

$$
T_{X}(Y)-T(Y) X=P_{q}(X) Y-P_{q}(Y) X
$$

We conclude $P_{q}(Y) X-P_{q}(X) Y=0$. This and the definition of the space $\mathcal{P}(\mathfrak{h})$ imply $P_{q}=0$. Consequently, $T_{X}=0$. Finally, let $A \in \mathfrak{h}$, then

$$
\left[A, S_{q}(X, q)\right]-S_{q}(A X, q)=0 .
$$

This implies $A T(X)=T(A X)$, i.e. T commutes with \mathfrak{h}. Since T is symmetric, by the Schur Lemma, T is proportional to the identity. This proves the lemma.

We may write the metric g in the form (3.1). In this case ∂_{v} is parallel and $\partial_{v} H=0$. Consider the local frame basis

$$
p=\partial_{v}, \quad X_{i}=\partial_{i}-A_{i} \partial_{v}, \quad q=\partial_{u}-\frac{1}{2} H \partial_{v} .
$$

Let $E=\operatorname{span}\left\{X_{1}, \ldots, X_{n}\right\}$. We obtain that the only non-zero value of ∇R is of the form

$$
\begin{equation*}
\nabla_{q} R(X, q)=f p \wedge X, \quad X \in \Gamma(E), \tag{3.4}
\end{equation*}
$$

for some function f.
From [9] it follows that the tensor ∇R can be decomposed into four components

$$
\nabla R=S_{0}^{\prime}+S_{0}^{\prime \prime}+S^{\prime}+S_{1}
$$

where S_{0}^{\prime} can be expressed through the covariant derivative ∇W of the Weyl conformal tensor W and the Cotton tensor C; $S_{0}^{\prime \prime}$ is defined by the symmetrization of the tensor Ric $-\frac{2 s}{d+2} g ; S^{\prime}$ is defined by the Cotton tensor C; S_{1} is defined by the gradient grads of the scalar curvature s. From (3.4) it follows that $\operatorname{tr}_{1,5} \nabla R=0$. This implies $C=0$ and grad $s=0$. Consequently,

$$
\nabla R=\nabla W+S_{0}^{\prime \prime}
$$

The tensor $S_{0}^{\prime \prime}$ is defined as

$$
\left(S_{0}^{\prime \prime}\right)_{X}(Y, Z)=T_{X} Y \wedge Z+Y \wedge T_{X} Z
$$

where T is defined by the equality

$$
\operatorname{tr}_{2,4} \nabla R=(2-d) T
$$

Hence the only non-zero value of T is

$$
T_{q} q=-f p
$$

Consequently, the only non-zero value of $S_{0}^{\prime \prime}$ is

$$
\left(S_{0}^{\prime \prime}\right)_{q}(X, q)=f X \wedge p
$$

Thus, $\nabla R=S_{0}^{\prime \prime}$ and

$$
\nabla W=0
$$

The local form of Lorentzian manifolds with $\nabla W=0$ are found in [5, 4], where it is shown that this condition implies one of the following: $W=0$ (i.e. (M, g) is locally conformally flat), $\nabla R=0,(M, g)$ is a pp-wave. In [10] it is shown that if the metric (3.1) is conformally flat, than this is a metric of a pp-wave. Thus the holonomy algebra of (M, g) is contained in $p \wedge E$ and we get a contradiction.

This proposition and Lemma 1 prove Theorem 2.

4. Lorentzian manifolds with vector holonomy group T_{E} (pp-waves)

In this section we derive formulas for the curvature tensor and its covariant derivatives for an $(n+2)$-dimensional Lorentzian manifold with the vector holonomy group $\operatorname{Hol}(M)=T_{E}$ (or, equivalently, the holonomy algebra $\mathfrak{h o l}(M)=p \wedge E)$.
4.1. Adapted local coordinates and associated pseudo-group of transformations. It is well known that a Lorentzian manifold (M, g) (of dimension $n+2$) has the connected holonomy group T_{E} if and only if in a neighborhood of any point $x \in M$ with respect to some local coordinates $v, x^{1}, \cdots, x^{n}, u$ (called adapted coordinates) the metric is given by

$$
\begin{equation*}
g=2 d u d v+\delta_{i j} d x^{i} d x^{j}+H d u^{2} \tag{4.1}
\end{equation*}
$$

where H is a function depending on x^{i} and u. Such Lorentzian manifolds are called pp-waves.
It is not hard to prove the following.
Lemma 3. Any two adapted coordinate systems with the same ∂_{v} are related by

$$
\begin{equation*}
\tilde{u}=u+c, \quad \tilde{x}^{i}=a_{j}^{i} x^{j}+b^{i}(u), \quad \tilde{v}=v-\sum_{j} a_{i}^{j} \frac{d b^{j}(u)}{d u} x^{i}+d(u) \tag{4.2}
\end{equation*}
$$

where $c \in \mathbb{R}, a_{i}^{j}$ is an orthogonal matrix, and $b^{i}(u), d(u)$ are arbitrary functions of u.
4.2. Levi-Civita connection. We associate with an adapted coordinates $\left(u, x^{i}, v\right)$ of a ppwave space (M, g) with a potential $H=H\left(x^{i}, u\right)$ a standard field of frames

$$
p=\partial_{v}, \quad e_{i}=\partial_{i}=\frac{\partial}{\partial x^{i}}, \quad q=\partial_{u}-\frac{1}{2} H \partial_{v}
$$

and the dual field of coframes

$$
p^{\prime}=d v+\frac{1}{2} H d u, \quad e^{i}=d x^{i}, \quad q^{\prime}=d u
$$

The Gram matrix of these bases is given by

$$
G=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & \underline{1}_{n} & 0 \\
1 & 0 & 0
\end{array}\right)
$$

We will consider coordinates of all tensor fields with respect to these non-holonomic frame and coframe. Then the covariant derivative of a vector $Y=Y^{p} p+Y^{i} e_{i}+Y^{q} q$ and a covector $\omega=\omega_{p} p^{\prime}+\omega_{i} e^{i}+\omega_{q} q^{\prime}$ in direction of a vector field X can be written as

$$
\nabla_{X} Y=\partial_{X} Y+A_{X} Y, \nabla_{X} \omega=\partial_{X} \omega-A_{X}^{T} \omega
$$

where ∂_{X} is the derivative of coordinates in direction of X and A_{X} is a matrix and A_{X}^{T} is the transposed matrix.

Lemma 4. The matrix A_{u}, A_{i}, A_{v} of the connection which correspond to the coordinate vector fields $\partial_{u}, \partial_{i}, \partial_{v}$ and their transposed are given by

$$
A_{u}=\left(\begin{array}{ccc}
0 & \frac{1}{2} H_{i} & 0 \\
0 & 0 & -\frac{1}{2} H_{i} \\
0 & 0 & 0
\end{array}\right), A_{u}^{T}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
\frac{1}{2} H_{i} & 0 & 0 \\
0 & -\frac{1}{2} H_{i} & 0
\end{array}\right), A_{i}=A_{i}^{T}=A_{v}=A_{v}^{T}=0 .
$$

In particular, $\nabla p=\nabla p^{\prime}=0$.

Proof: The only non zero Christoffel symbols are

$$
\Gamma_{u u}^{v}=\frac{1}{2} H_{, u}, \quad \Gamma_{u u}^{i}=-\frac{1}{2} H_{, i}, \quad \Gamma_{i u}^{v}=\frac{1}{2} H_{, i}
$$

where the comma means the partial derivative. Then we calculate

$$
\begin{gathered}
\nabla \partial_{v}=\nabla p=0, \nabla_{u} \partial_{i}=\frac{1}{2} H_{, i} p \\
\nabla_{u} q=\nabla_{u}\left(\partial_{u}-\frac{1}{2} H \partial_{v}\right)=\frac{1}{2} H_{, u} p-\frac{1}{2} H_{, i} e_{i}-\frac{1}{2} H_{, u} p=-\frac{1}{2} H_{, i} e_{i} \\
\nabla_{i} \partial_{j}=0, \nabla_{i} \partial_{u}=\frac{1}{2} H_{, i} p, \nabla_{i} q=\nabla_{i}\left(\partial_{u}-\frac{1}{2} H p\right)=0, \nabla_{v} \partial_{u}=\nabla_{v} \partial_{i}=\nabla_{v} \partial_{v}=0 .
\end{gathered}
$$

Corollary 1. A Lorentzian manifold M with vector holonomy group $\operatorname{Hol}(M)=T_{E}$ has the (globally defined) parallel vector field $p=\partial_{v}$ and parallel 1 -form $q^{\prime}=d u$.

4.3. The curvature tensor of a pp-wave space.

Lemma 5. With respect to the standard frame $p=\partial_{v}, e_{i}=\partial_{i}, q=\partial_{u}-\frac{1}{2} H \partial_{v}$ and the dual coframe $p^{\prime}, e^{i}, q^{\prime}$, the curvature tensor of a pp-wave with potential $H\left(u, x^{i}\right)$ is given by

$$
\begin{gathered}
R=\sum_{i, j} \frac{1}{2} H_{, i j}\left(p \wedge e_{i} \vee p \wedge e_{j}\right)(\text { the contravariant curvature tensor) } \\
\bar{R}=\frac{1}{2} H_{, i j}\left(q^{\prime} \wedge e^{i} \vee q^{\prime} \wedge e^{j}\right) \text { (the covariant curvature tensor). }
\end{gathered}
$$

Proof: It follows from the formula $R(X, Y)=\partial_{X} A_{Y}-\partial_{Y} A_{X}-A_{[X, Y]}$ for vector fields X, Y on M.

Corollary 2. The Ricci tensor of M is given by

$$
\operatorname{ric}=\frac{1}{2} \Delta H q^{\prime} \otimes q^{\prime}=\frac{1}{2} \Delta H d u^{2}
$$

where Δ is the Euclidean Laplacian.
4.4. The covariant derivatives of the curvature tensor. Note that for any i, j, the covariant tensor $q^{\prime} \wedge e^{i} \vee q^{\prime} \wedge e^{j}$ and the contravariant tensor $p \wedge e_{i} \vee p \wedge e_{j}$ are parallel. Hence the first covariant derivative of the curvature tensor is the following:

$$
\begin{equation*}
\nabla \bar{R}=\frac{1}{2} H_{, i j k} e^{k} \otimes\left(q^{\prime} \wedge e^{i} \vee q^{\prime} \wedge e^{j}\right)+\frac{1}{2} H_{, i j u} q^{\prime} \otimes\left(q^{\prime} \wedge e^{i} \vee q^{\prime} \wedge e^{j}\right) \tag{4.3}
\end{equation*}
$$

We get
Corollary 3. The manifold (M, g) is a locally symmetric space if and only if the Hessian $H_{, i j}$ of the potential H is a constant, that is $H=H_{i j} x^{i} x^{j}+G_{i}(u) x^{i}+K(u)$.

It can be shown that in the last case the coordinates can be chosen in such a way that $H=\lambda_{1}\left(x^{1}\right)^{2}+\cdots+\lambda_{n}\left(x^{n}\right)^{2}$ for some non-zero real numbers λ_{i} such that $\lambda_{1} \leq \cdots \leq \lambda_{n}$ [3].

The second covariant derivative of the curvature tensor has the following form:

$$
\begin{align*}
\nabla^{2} \bar{R}= & \left(\frac{1}{2} H_{, i j k}-\frac{1}{4} \sum_{k} H_{, k} H_{, i j k}\right) q^{\prime 2} \otimes\left(q^{\prime} \wedge e^{i} \vee q^{\prime} \wedge e^{j}\right) \tag{4.4}\\
& +\frac{1}{2} H_{, i j k u}\left(q^{\prime} \vee e^{k}\right) \otimes\left(q^{\prime} \wedge e^{i} \vee q^{\prime} \wedge e^{j}\right)+\frac{1}{2} H_{, i j k \ell}\left(e^{k} \otimes e^{\ell}\right) \otimes\left(q^{\prime} \wedge e^{i} \vee q^{\prime} \wedge e^{j}\right) .
\end{align*}
$$

This implies the following.
Theorem 3. A pp-wave with the metric (4.1) is two-symmetric if and only if

$$
H=\left(u H_{i j}+F_{i j}\right) x^{i} x^{j}+G_{i}(u) x^{i}+K(u),
$$

where $H_{i j}$ and $F_{i j}$ are symmetric real matrices, the matrix $H_{i j}$ is non-zero, $G_{i}(u)$ and $K(u)$ are functions depending on u.

5. Proof of Theorem 1

To prove the theorem we start with the metric (4.1) and H as in Theorem 3 and use transformation (4.2) in order to write the metric as in Theorem (1) Let $\tilde{v}, \tilde{x}^{1}, \ldots, \tilde{x}^{n}, \tilde{u}$ be a new coordinate system. We may assume that the inverse transformation is given by

$$
\begin{equation*}
u=\tilde{u}+c, \quad x^{i}=a_{j}^{i} \tilde{x}^{j}+b^{i}(\tilde{u}), \quad v=\tilde{v}-\sum_{j} a_{i}^{j} \frac{d b^{j}(\tilde{u})}{d \tilde{u}} \tilde{x}^{i}+d(\tilde{u}) . \tag{5.1}
\end{equation*}
$$

For the new function \tilde{H} written as in Theorem 3 we get

$$
\begin{align*}
\tilde{H}_{k l} & =H_{i j} a_{k}^{i} a_{l}^{j}, \tag{5.2}\\
\tilde{F}_{k l} & =\left(c H_{i j}+F_{i j}\right) a_{k}^{i} a_{l}^{j}, \tag{5.3}\\
\tilde{G}_{k}(\tilde{u}) & =-2 \sum_{j} a_{k}^{j} \frac{d^{2} b^{j}}{(d \tilde{u})^{2}}+2\left((\tilde{u}+c) H_{i j}+F_{i j}\right) b^{i} a_{k}^{j}+G_{i} a_{k}^{i}, \tag{5.4}\\
\tilde{K}(\tilde{u}) & =2 \frac{d d(\tilde{u})}{d \tilde{u}}+\sum_{j}\left(\frac{d b^{j}}{d u}\right)^{2}+\left((\tilde{u}+c) H_{i j}+F_{i j}\right) b^{i} b^{j}+G_{i} b^{i}+K . \tag{5.5}
\end{align*}
$$

Equation (5.4) shows that there exist functions $b^{j}(\tilde{u})$ such that $\tilde{G}_{k}=0$. Then using the last equation it is possible to find $d(\tilde{u})$ such that $\tilde{K}=0$. From equation (5.2) it follows that there exists an orthogonal matrix a_{i}^{j} such that $\tilde{H}_{k l}$ is a diagonal matrix with the diagonal elements $\lambda_{1}, \ldots, \lambda_{n}$ such that $\lambda_{1} \leq \cdots \leq \lambda_{n}$.

Since $\nabla R \neq 0$, Corollary 3 shows that $H_{i j}$ must be non-zero.

Clearly, the transformations that do not change the form of the metric from Theorem 1 are defined by the transformation (5.1) such that $H_{k l} a_{i}^{k} a_{j}^{l}=H_{i j}$ and with certain $b^{i}(\tilde{u})$ and $d(\tilde{u})$. This and (5.3) prove the theorem.

References

[1] O. F. Blanco, M. Sánchez, J. M. Senovilla, Complete classifcation of second-order symmetric spacetimes. Journal of Physics: Conference Series 229 (2010), 012021, 5pp.
[2] C. Boubel, On the holonomy of Lorentzian metrics. Ann. Fac. Sci. Toulouse Math. (6) 16 (2007), no. 3, 427-475.
[3] M. Cahen, N. Wallach, Lorentzian symmetric spaces, Bull. Amer. Math. Soc. 76 (1970), 585-591.
[4] A. Derdzinski, W. Roter, On conformally symmetric manifolds with metrics of indices 0 and 1 , Tensor (N.S.) 31 (1977), no. 3, 255-259.
[5] A. Derdzinski, W. Roter, The local structure of conformally symmetric manifolds, Bull. Belg. Math. Soc. Simon Stevin 16 (2009), no. 1, 117-128.
[6] A. S. Galaev, T. Leistner, Holonomy groups of Lorentzian manifolds: classification, examples, and applications, Recent developments in pseudo-Riemannian geometry, 53-96, ESI Lect. Math. Phys., Eur. Math. Soc., Zürich, 2008.
[7] A. S. Galaev, The spaces of curvature tensors for holonomy algebras of Lorentzian manifolds, Diff. Geom. and its Applications 22 (2005), 1-18.
[8] A. S. Galaev, Isometry groups of Lobachevskian spaces, similarity transformation groups of Euclidean spaces and Lorentzian holonomy groups, Rend. Circ. Mat. Palermo (2) Suppl. No. 79 (2006), 87-97.
[9] A. S. Galaev, Decomposition of the covariant derivative of the curvature tensor of a pseudo-Kählerian manifold, arXiv:1010.0861.
[10] A. S. Galaev, Holonomy groups of conformally flat Lorentzian manifolds, in preparation.
[11] T. Leistner, On the classification of Lorentzian holonomy groups, J. Differential Geom. 76 (2007), no. 3, 423-484.
[12] J. M. Senovilla, Second-order symmetric Lorentzian manifolds. I. Characterization and general results, Classical Quantum Gravity 25 (2008), no. 24, 245011, 25 pp.
[13] S. Tanno, Curvature tensors and covariant derivatives. Ann. Mat. Pura Appl. (4) 96 (1972), 233-241.
[14] A. G. Walker, On parallel fields of partially null vector spaces, Quart. J. Math., Oxford Ser., 20 (1949), 135-145.

