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TWO-SYMMETRIC LORENTZIAN MANIFOLDS

D.V.ALEKSEEVSKY AND A.S.GALAEV

Abstract. The local form of all two-symmetric Lorentzian manifolds is found. To do this,

the methods of the theory of the holonomy groups is used.
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1. Introduction

Symmetric pseudo-Riemannian manifolds is an important class of spaces. The direct gener-

alization of these manifolds form the so called k-symmetric pseudo-Riemannian spaces (M,g)

satisfying the condition

∇kR = 0, ∇k−1R 6= 0,
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where k ≥ 1 and R is the curvature tensor of (M,g). For Riemannian manifolds the condition

∇kR = 0 implies ∇R = 0 [13].

The paper [12] deals with the two-symmetric Lorentzian manifolds. It contains a historical

review of the problem and a long list of literature. In this paper it is shown that such space

must admit a parallel null vector field.

In [1] the local structure of four-dimensional two-symmetric Lorentzian manifolds is found.

It is shown that these spaces are special pp-waves. For the proof the Petrov classification and

the computations in local coordinates are used.

In the present paper we generalize the result of [1] for the arbitrary dimension. We prove

the following theorem.

Theorem 1. Let (M,g) be a Lorentzian manifold of dimension n + 2. Then (M,g) is two-

symmetric if and only if locally there exist coordinates v, x1, ..., xn, u such that

g = 2dvdu +
n
∑

i=1

(dxi)2 + (Hiju+ Fij)x
ixj(du)2,

where Hij is a diagonal matrix with the diagonal elements λ1 ≤ · · · ≤ λn that are simultaneously

non-zero real numbers, Fij is a symmetric real matrix.

Any other metric of this form isometric to g is given by the same Hij and by F̃ij = cHij +

Fkla
k
i a

l
j, where c ∈ R and aji is an orthogonal matrix such that Hkla

k
i a

l
j = Hij.

For the proof we used the methods of the theory of holonomy groups. We may assume that

the manifold is locally indecomposable. The condition that a Lorentzian manifold (M,g) is

two-symmetric implies that the holonomy algebra holm of (M,g) at a point m ∈M annihilates

the value ∇Rm that can be assumed to be non-zero. This can not happen if the holonomy

algebra is the whole Lorentzian Lie algebra so(1, n + 1). Hence the holonomy algebra must

preserve a null line and it is contained in the maximal Lie algebra with this property [6],

holm ⊂ simn = (R⊕ so(n)) + R
n.

We show that in fact holm ⊂ so(n) + R
n and it is enough to consider the following two case:

holm = R
n and holm = h + R

n, where h ⊂ so(n) is an irreducible subalgebra. The first case

corresponds to pp-waves. In the second case we find the form of ∇R. Using the result of [9], we

show that the Weyl conformal curvature tensor W is parallel. This and the results of [4, 5, 10]

give a contradiction. Thus holm = R
n, i.e. we deal with a pp-wave. The condition ∇2R = 0

and simple computations allow to find its coordinate form.

2. Holonomy groups of Lorentzian manifolds

We recall some basic facts about holonomy groups of Lorentzian manifold. Let (M,g) be a

Lorentzian d-dimensional manifold and Hol 0(M) = Hol 0(M)m its connected holonomy group
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at a point m ∈M . It is a subgroup of the (connected) Lorentz group SO(V )0 where V = TmM

is the tangent space and it is determined by its Lie algebra hol(M) ⊂ so(V ) which is called the

holonomy algebra of M .

The manifoldM is indecomposable (i.e. locally is not decomposable into a direct product of two

pseudo-Riemannian manifolds) if and only if the holonomy group Hol 0(M) ( or the holonomy

algebra hol(M) ) is weakly irreducible, i.e. it does not preserve any proper nondegenerate

subspace of V . Any weakly irreducible holonomy group Hol (M) different from the Lorentz

group SO(V )0 is a subgroup of the horospheric group SO(V )[p], the subgroup of SO0(V ) which

preserves a null line [p] = Rp.

This group is identified with the group Simn = R
∗ · SOn · R

n, n = d− 2 of the Euclidean space

En as follows.

The Lorentzian group SO(V )0 acts transitively on the celestial sphere Sn = PV 0 ( the space of

null lines ) which is the projectivization of the null cone V 0 ⊂ V with the stabilizer SO(V )[p].

The stabilizer has an open orbit Sn \ [p] which is identified via the stereographic projection with

the Euclidean space En. Having in mind this isomorphism, we will call the group SO(V )[p] the

similarity group and denote it by Simn.

Using the metric < ., . >= gm, we will identify the Lorentz Lie algebra so(V ) ≃ so(1, n+1)

with the space Λ2V of bivectors.

Then the Lie algebra simn of the similarity group can be written as

simn = so(V )[p] = Rp ∧ q + p ∧ E + so(E)

where p, q are isotropic vectors with < p, q >= 1 which span 2-dimensional Minkowski subspace

U and E = U⊥ is its orthogonal complement. The commutative ideal p ∧ E generates the

commutative normal subgroup TE ⊂ Simn which acts on En by parallel translations. This

group is called the vector group. The one-dimensional subalgebra Rp∧ q = so(U) generates the

maximal diagonal subgroup A of Simn which is the Lorentz group SO(U)0 and the maximal

compact subalgebra so(E) generates the group SO(E) of orthogonal transformations of E.

The above decomposition of the Lie algebra simn defines the Iwasawa decomposition

Simn = K ·A ·N = SO(E) · SO(U)0 · TE

of the group Simn.

The list of connected weakly irreducible connected holonomy groups Hol 0(M) of Lorentzian

manifolds is known, see [11, 6]. Assume for simplicity that Hol0(M) is an algebraic group.

Then it contains the vector group TE and has one of the following forms:

(type I) Hol0(M) = K · SO(U)0 · TE

(type II) Hol0(M) = K ·TE where K ⊂ SO(E) is a connected holonomy group of a Riemannian

n− 2-dimensional manifold , i.e. a product of the Lie groups from the Berger list :

SOm, Um, SUm, Sp1 · Spm, Spm, G2, Spin7 and the isotropy groups of irreducible symmetric

Riemannian manifolds.
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If the holonomy group is not algebraic, it is obtained from one of the holonomy groups of type

I or II by some twisting (holonomy groups of type III and IV ).

Note that all these holonomy groups act transitively on the Euclidean space En = PV 0 \ [p] [8].

The Lorentzian holonomy algebras g ⊂ simn are the following (in all cases h ⊂ so(E) is a

Riemannian holonomy algebra):

(type I) Rp ∧ q + h+ p ∧ E;

(type II) h+ p ∧ E;

(type III) {ϕ(A)p ∧ q + A|A ∈ h}+ p ∧ E, where ϕ : h → R is a linear map that is zero on the

commutant [h, h];

(type IV) {A+ p ∧ ψ(A)|A ∈ h}+ p ∧E1, where E = E1 ⊕E2 is an orthogonal decomposition,

h annihilates E2, i.e. h ⊂ so(E1), and ψ : h → E2 is a surjective linear map that is zero on the

commutant [h, h].

A simply connected Lorentzian manifold admits a parallel null vector field if and only if its

holonomy group is of type II or IV.

3. The holonomy group of a 2-symmetric Lorentzian manifold

Definition 1. A pseudo-Riemannian manifold (M,g) with the curvature tensor R is called

k-symmetric if

∇kR = 0, ∇k−1R 6= 0.

So 1-symmetric spaces is the same as locally symmetric spaces (∇R = 0). Recall that a

complete simply connected locally symmetric space is a symmetric space, that is it admits a

central symmetry Sm with center at any point m, i.e. an involutive isometry Sm which has m

as an isolated fixed point.

Remark that any k-symmetric Riemannian manifold is in fact locally symmetric [13].

All irreducible simply connected Lorentzian symmetric spaces are exhausted by the De Sitter

and the anti De Sitter spaces and the Cahen-Wallach spaces, which have the vector holonomy

group TE .

Below we prove that any indecomposable Lorentzian 2-symmetric space has vector holonomy

group TE .

Theorem 2. The holonomy group Hol 0(M) of an (n+ 2)-dimensional locally indecomposable

two-symmetric Lorentz manifold (M,g) is the vector group TE with the Lie algebra p ∧ E ⊂

so(V ).

It is known that any Lorentzian manifold with the holonomy algebra p∧E is a pp-wave (see

e.g. [6]), i.e. locally there exist coordinates such that the metric g can be written in the form

g = 2dvdu + δijdx
idyj +H(du)2, ∂vH = 0.
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We will need only to decide which functions H corresponds to two-symmetric spaces.

3.1. Algebraic curvature tensors and their derivatives. Let (W, g) be a pseudo-Euclidean

space and f ⊂ so(W ) be a subalgebra. The vector space

R(f) = {R ∈ Λ2W ∗ ⊗ f|R(u, v)w +R(v,w)u +R(w, u)v = 0 for all u, v, w ∈W}

is called the space of algebraic curvature tensors of type f. It is known that if f ⊂ so(W ) is the

holonomy algebra of a pseudo-Riemannian manifold (M,g), then the values of the curvature

tensor of (M,g) belong to R(f) and

f = span{R(u, v)|R ∈ R(f), u, v ∈W},

i.e. f is spanned by the images of the elements R ∈ R(f).

The spaces R(g) for holonomy algebras of Lorentzian manifolds are found in [7]. Let e.g.

g = Rp ∧ q + h+ p ∧ E. For the subalgebra h ⊂ so(n) define the space

P(h) = {P ∈ E∗ ⊗ h|g(P (x)y, z) + g(P (y)z, x) + g(P (z)x, y) = 0 for all x, y, z ∈ E}.

Any R ∈ R(g) is uniquely given by

λ ∈ R, v ∈ E, P ∈ P(h), R0 ∈ R(h), and T ∈ End(E) with T ∗ = T

in the following way:

R(p, q) =− λp ∧ q − p ∧ v, R(x, y) = R0(x, y)− p ∧ (P (y)x− P (x)y),

R(x, q) =− g(v, x)p ∧ q + P (x)− p ∧ T (x), R(p, x) = 0

for all x, y ∈ E. For the algebras g of the other types, any R ∈ R(g) can be given in the same

way and by the condition that R takes values in g. For example, R ∈ R(h+ p ∧E) if and only

if λ = 0 and v = 0.

Let again f ⊂ so(W ). Consider the vector space

R∇(f) = {S ∈W ∗ ⊗R(f)|Su(v,w) + Sv(w, u) + Sw(u, v) = 0 for all u, v, w ∈W}.

If f ⊂ so(W ) is the holonomy algebra of a pseudo-Riemannian manifold (M,g), then the

values of the covariant derivative of the curvature tensor of (M,g) belong to R(f). The spaces

R∇(so(r, s)) and R∇(u(r, s)) are found in [9].

To find the spaces R∇(g) for the Lorentzian holonomy algebras g ⊂ simn it is enough to

consider an element S ∈ V ∗ ⊗R(g), then for any u ∈ V its value Su ∈ R(g) can be expressed

in terms of some elements λu, vu, Pu, R0u, Tu as above, and it is enough to write down the

second Bianchi identity.
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3.2. Adapted coordinates and a reduction lemma. Let (M,g) be an (n+2)-dimensional

locally indecomposable two-symmetric Lorentz manifold, i.e. the tensor ∇R is non-zero and

parallel. Suppose that the holonomy algebra of (M,g) is so(1, n+1). Then for any pointm ∈M ,

the holonomy algebra so(TmM) ≃ so(1, n+1) must annihilate the value∇Rm ∈ R∇(so(TmM)).

From [9] it follows that the spaceR∇(so(1, n+1)) does not contain non-zero elements annihilated

by so(1, n + 1). We get a contradiction. The Lie algebra so(1, n + 1) is the only irreducible

holonomy algebra [6]. Hence the holonomy algebra of (M,g) preserves a null line, i.e. it is

contained in simn. Consequently (M,g) admits (locally) a parallel distribution of null lines.

Let (M,g) be Lorentzian manifold (of dimension d = n+2) that admits a parallel distribution

of null lines. Then locally there exist the so called Walker coordinates v, x1, ..., xn, u and the

metric g has the form

(3.1) g = 2dvdu + h+ 2Adu+H(du)2,

where h = hij(x
1, ..., xn, u)dxidxj is an u-dependent family of Riemannian metrics, A =

Ai(x
1, . . . , xn, u)dxi is an u-dependent family of one-forms, and H is a local function on M

[14]. The vector field ∂v defines the parallel distribution of null lines.

Let g ⊂ simn be the holonomy algebra of the Lorentzian manifold (M,g) and h ⊂ so(E) be

the associated Riemannian holonomy algebra. Then there exists an orthogonal decomposition

(3.2) E = E0 ⊕ E1 ⊕ · · · ⊕Er

and the corresponding decomposition into the direct sum of ideals

(3.3) h = {0} ⊕ h1 ⊕ · · · ⊕ hr

such that h annihilates E0, hi(Ej) = 0 for i 6= j, and hi ⊂ so(Ei) is an irreducible subalgebra

for 1 ≤ i ≤ s. In [2] it is proved that there exist Walker coordinates

v, x10, . . . , x
n0

0 , . . . , x
1
r , ..., x

nr

r , u

that are adapted to the decompositions (3.2) and (3.3). This means that

h = h0 + h1 + · · ·+ hr, h0 =

n0
∑

i=1

(dxi0)
2

and

A =

r
∑

α=1

nα
∑

k=1

Aα
kdx

k
α, (A0 = 0)

and for each 1 ≤ α ≤ r it holds

hα =

nα
∑

i,j=1

hαijdx
i
αdx

j
α

with
∂

∂xkβ
hαij =

∂

∂xkβ
Aα

i = 0

for all 1 ≤ i, j ≤ nα if β 6= α.
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For i = 0, ..., r consider the metric

gi = 2dvdu+ hi + 2Aidu+Hi(du)
2,

where Hi equals to H assuming that all coordinates except v, x1i , ..., x
ni

i , u are parameters.

Lemma 1. If the metric g is two-symmetric, then each metric gi satisfies ∇2R = 0.

Proof. It is easy to see that the Christoffel symbols of any metric gi equal to the corresponding

Christoffel symbols of the metric g. Consequently, the components of the curvature tensor of

gi and its derivatives equal to the corresponding components of the corresponding tensors for

the metric g.

It is clear that the projection on so(Ei) of the holonomy algebra of the metric gi equals to

hi (i = 1, ..., r).

3.3. Proof of Theorem 2. First we prove the following two propositions.

Proposition 1. Any two-symmetric Lorentzian manifold (M,g) admits a parallel null vector

field.

Proof. We may assume that (M,g) is locally indecomposable. The metric g is locally

given by (3.1). The above arguments allow us to assume that the projection h ⊂ so(E) of the

holonomy algebra g on so(E) is irreducible. It is enough to prove that g is of type 2 or 4, i.e.

it is not of type 1 or 3.

The condition ∇2R = 0 means that ∇R is parallel. The holonomy principle shows that g

must annihilate a tensor in the space R∇(g). If g is of type 1, then it contains p∧ q. Using this

element and the second Bianchi identity it can be proven that there are no non-zero elements

in R∇(g) that are annihilated by g. If g is of type 3, then h ⊂ u(E) and for some a ∈ R, the

element p∧ q+aJ belongs to g. Simple computations show that there are no non-zero elements

in R∇(g) that are annihilated by g.

Thus g is of type 2 or 4, in this case (M,g) admits a parallel null vector field.

Proposition 2. A Lorentzian manifold with the holonomy algebra h + p ∧ E with h 6= 0 can

not be two-symmetric.

Proof. Suppose that (M,g) is two-symmetric and its holonomy algebra equals to h+ p∧E

with h 6= 0. We may assume that h ⊂ so(E) is irreducible.

Lemma 2. The subspace of R∇(g) annihilated by g is one-dimensional and it is spanned by

the tensor S with the only non-zero value

Sq(x, q) = p ∧ x, x ∈ E.
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Proof. Let S ∈ R∇(g) and assume that g annihilates S. For any u ∈ V the element

Su ∈ R(g) can be expressed in terms of some R0u, Pu and Tu as above. Since S·(p, ·) = 0, it

holds Sp = 0. The fact that g annihilates S can be expressed as

[ξ, Su(u1, u2)]− Sξu(u1, u2)− Su(ξu1, u2)− Su(u1, ξu2) = 0

for all ξ ∈ g and u, u1, u2 ∈ V . Let U,X, Y, Z ∈ E. We have

[p ∧X,SU (Y,Z)] = 0.

Hence, R0U (Y,Z)X = 0, i.e. R0U = 0. Next,

[p ∧X,SU (Y, q)]− SU(Y,X) = 0.

Consequently,

−p ∧ PU (Y )X − p ∧ (PU (Y )X − PU (X)Y ) = 0,

i.e. 2PU (Y )X = PU (X)Y . Since this equality holds for any X,Y ∈ E, we conclude PU = 0.

We have got SU(X,Y ) = 0. Similarly,

[p ∧X,Sq(Y,Z)] = 0,

i.e. R0q = 0. The equality

[p ∧X,Sq(Y, q)]− SX(Y, q)− Sq(Y,X) = 0

implies

TX(Y ) = 2Pq(Y )X − Pq(X)Y.

From the second Bianchi identity

Sq(X,Y ) + SX(Y, q) + SY (q,X) = 0

it follows that

TX(Y )− T (Y )X = Pq(X)Y − Pq(Y )X.

We conclude Pq(Y )X − Pq(X)Y = 0. This and the definition of the space P(h) imply Pq = 0.

Consequently, TX = 0. Finally, let A ∈ h, then

[A,Sq(X, q)] − Sq(AX, q) = 0.

This implies AT (X) = T (AX), i.e. T commutes with h. Since T is symmetric, by the Schur

Lemma, T is proportional to the identity. This proves the lemma. 2

We may write the metric g in the form (3.1). In this case ∂v is parallel and ∂vH = 0.

Consider the local frame basis

p = ∂v, Xi = ∂i −Ai∂v, q = ∂u −
1

2
H∂v.

Let E = span{X1, ...,Xn}. We obtain that the only non-zero value of ∇R is of the form

(3.4) ∇qR(X, q) = fp ∧X, X ∈ Γ(E),
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for some function f .

From [9] it follows that the tensor ∇R can be decomposed into four components

∇R = S′

0 + S′′

0 + S′ + S1,

where S′
0 can be expressed through the covariant derivative ∇W of the Weyl conformal tensor

W and the Cotton tensor C; S′′
0 is defined by the symmetrization of the tensor Ric− 2s

d+2g; S
′

is defined by the Cotton tensor C; S1 is defined by the gradient grads of the scalar curvature

s. From (3.4) it follows that tr 1,5∇R = 0. This implies C = 0 and grads = 0. Consequently,

∇R = ∇W + S′′
0 .

The tensor S′′
0 is defined as

(S′′
0 )X(Y,Z) = TXY ∧ Z + Y ∧ TXZ,

where T is defined by the equality

tr 2,4∇R = (2− d)T.

Hence the only non-zero value of T is

Tqq = −fp.

Consequently, the only non-zero value of S′′
0 is

(S′′
0 )q(X, q) = fX ∧ p.

Thus, ∇R = S′′
0 and

∇W = 0.

The local form of Lorentzian manifolds with ∇W = 0 are found in [5, 4], where it is shown

that this condition implies one of the following: W = 0 (i.e. (M,g) is locally conformally flat),

∇R = 0, (M,g) is a pp-wave. In [10] it is shown that if the metric (3.1) is conformally flat,

than this is a metric of a pp-wave. Thus the holonomy algebra of (M,g) is contained in p ∧ E

and we get a contradiction.

This proposition and Lemma 1 prove Theorem 2.

4. Lorentzian manifolds with vector holonomy group TE (pp-waves)

In this section we derive formulas for the curvature tensor and its covariant derivatives for

an (n+2)-dimensional Lorentzian manifold with the vector holonomy group Hol (M) = TE (or,

equivalently, the holonomy algebra hol(M) = p ∧ E).
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4.1. Adapted local coordinates and associated pseudo-group of transformations. It is

well known that a Lorentzian manifold (M,g) (of dimension n+2) has the connected holonomy

group TE if and only if in a neighborhood of any point x ∈ M with respect to some local

coordinates v, x1, · · · , xn, u (called adapted coordinates ) the metric is given by

(4.1) g = 2dudv + δijdx
idxj +Hdu2,

where H is a function depending on xi and u. Such Lorentzian manifolds are called pp-waves.

It is not hard to prove the following.

Lemma 3. Any two adapted coordinate systems with the same ∂v are related by

(4.2) ũ = u+ c, x̃i = aijx
j + bi(u), ṽ = v −

∑

j

a
j
i

dbj(u)

du
xi + d(u),

where c ∈ R, aji is an orthogonal matrix, and bi(u), d(u) are arbitrary functions of u.

4.2. Levi-Civita connection. We associate with an adapted coordinates (u, xi, v) of a pp-

wave space (M,g) with a potential H = H(xi, u) a standard field of frames

p = ∂v, ei = ∂i =
∂

∂xi
, q = ∂u −

1

2
H∂v

and the dual field of coframes

p′ = dv +
1

2
Hdu, ei = dxi, q′ = du.

The Gram matrix of these bases is given by

G =







0 0 1

0 1
¯n

0

1 0 0







We will consider coordinates of all tensor fields with respect to these non-holonomic frame

and coframe. Then the covariant derivative of a vector Y = Y pp + Y iei + Y qq and a covector

ω = ωpp
′ + ωie

i + ωqq
′ in direction of a vector field X can be written as

∇XY = ∂XY +AXY, ∇Xω = ∂Xω −AT
Xω

where ∂X is the derivative of coordinates in direction of X and AX is a matrix and AT
X is the

transposed matrix.

Lemma 4. The matrix Au, Ai, Av of the connection which correspond to the coordinate vector

fields ∂u, ∂i, ∂v and their transposed are given by

Au =







0 1
2Hi 0

0 0 −1
2Hi

0 0 0






, AT

u =







0 0 0
1
2Hi 0 0

0 −1
2Hi 0






, Ai = AT

i = Av = AT
v = 0.
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In particular, ∇p = ∇p′ = 0.

Proof: The only non zero Christoffel symbols are

Γv
uu =

1

2
H,u, Γi

uu = −
1

2
H,i, Γv

iu =
1

2
H,i

where the comma means the partial derivative. Then we calculate

∇∂v = ∇p = 0, ∇u∂i =
1

2
H,ip,

∇uq = ∇u(∂u −
1

2
H∂v) =

1

2
H,up−

1

2
H,iei −

1

2
H,up = −

1

2
H,iei.

∇i∂j = 0, ∇i∂u =
1

2
H,ip, ∇iq = ∇i(∂u −

1

2
Hp) = 0, ∇v∂u = ∇v∂i = ∇v∂v = 0.

Corollary 1. A Lorentzian manifold M with vector holonomy group Hol (M) = TE has the

(globally defined) parallel vector field p = ∂v and parallel 1-form q′ = du.

4.3. The curvature tensor of a pp-wave space.

Lemma 5. With respect to the standard frame p = ∂v , ei = ∂i, q = ∂u − 1
2H∂v and the dual

coframe p′, ei, q′, the curvature tensor of a pp-wave with potential H(u, xi) is given by

R =
∑

i,j

1

2
H,ij(p ∧ ei ∨ p ∧ ej) ( the contravariant curvature tensor)

R̄ =
1

2
H,ij(q

′ ∧ ei ∨ q′ ∧ ej) ( the covariant curvature tensor).

Proof: It follows from the formula R(X,Y ) = ∂XAY − ∂YAX −A[X,Y ] for vector fields X,Y on

M .

Corollary 2. The Ricci tensor of M is given by

ric =
1

2
∆Hq′ ⊗ q′ =

1

2
∆Hdu2

where ∆ is the Euclidean Laplacian.

4.4. The covariant derivatives of the curvature tensor. Note that for any i, j, the co-

variant tensor q′ ∧ ei ∨ q′ ∧ ej and the contravariant tensor p ∧ ei ∨ p ∧ ej are parallel. Hence

the first covariant derivative of the curvature tensor is the following:

(4.3) ∇R̄ =
1

2
H,ijke

k ⊗ (q′ ∧ ei ∨ q′ ∧ ej) +
1

2
H,ijuq

′ ⊗ (q′ ∧ ei ∨ q′ ∧ ej).

We get

Corollary 3. The manifold (M,g) is a locally symmetric space if and only if the Hessian H,ij

of the potential H is a constant, that is H = Hijx
ixj +Gi(u)x

i +K(u).
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It can be shown that in the last case the coordinates can be chosen in such a way that

H = λ1(x
1)2 + · · · + λn(x

n)2 for some non-zero real numbers λi such that λ1 ≤ · · · ≤ λn [3].

The second covariant derivative of the curvature tensor has the following form:

(4.4) ∇2R̄ =

(

1

2
H,ijk −

1

4

∑

k

H,kH,ijk

)

q′2 ⊗ (q′ ∧ ei ∨ q′ ∧ ej)

+
1

2
H,ijku(q

′ ∨ ek)⊗ (q′ ∧ ei ∨ q′ ∧ ej) +
1

2
H,ijkℓ(e

k ⊗ eℓ)⊗ (q′ ∧ ei ∨ q′ ∧ ej).

This implies the following.

Theorem 3. A pp-wave with the metric (4.1) is two-symmetric if and only if

H = (uHij + Fij)x
ixj +Gi(u)x

i +K(u),

where Hij and Fij are symmetric real matrices, the matrix Hij is non-zero, Gi(u) and K(u)

are functions depending on u.

5. Proof of Theorem 1

To prove the theorem we start with the metric (4.1) and H as in Theorem 3 and use

transformation (4.2) in order to write the metric as in Theorem 1. Let ṽ, x̃1, ..., x̃n, ũ be a new

coordinate system. We may assume that the inverse transformation is given by

(5.1) u = ũ+ c, xi = aij x̃
j + bi(ũ), v = ṽ −

∑

j

a
j
i

dbj(ũ)

dũ
x̃i + d(ũ).

For the new function H̃ written as in Theorem 3 we get

H̃kl = Hija
i
ka

j
l ,(5.2)

F̃kl = (cHij + Fij)a
i
ka

j
l ,(5.3)

G̃k(ũ) = −2
∑

j

a
j
k

d2bj

(dũ)2
+ 2((ũ + c)Hij + Fij)b

ia
j
k +Gia

i
k,(5.4)

K̃(ũ) = 2
dd(ũ)

dũ
+
∑

j

(

dbj

du

)2

+ ((ũ+ c)Hij + Fij)b
ibj +Gib

i +K.(5.5)

Equation (5.4) shows that there exist functions bj(ũ) such that G̃k = 0. Then using the last

equation it is possible to find d(ũ) such that K̃ = 0. From equation (5.2) it follows that there

exists an orthogonal matrix aji such that H̃kl is a diagonal matrix with the diagonal elements

λ1, ..., λn such that λ1 ≤ · · · ≤ λn.

Since ∇R 6= 0, Corollary 3 shows that Hij must be non-zero.
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Clearly, the transformations that do not change the form of the metric from Theorem 1 are

defined by the transformation (5.1) such that Hkla
k
i a

l
j = Hij and with certain bi(ũ) and d(ũ).

This and (5.3) prove the theorem.
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