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A hypothetical answer to the question of when a sufficiently

large number of elements confirm that the set is infinite

Apoloniusz Tyszka

Abstract. We present a conjecture on integer arithmetic which impliesthat there
is an algorithm that for each recursively enumerable setM ⊆ N given by a Dio-
phantine representation computes a positive integert(M) with the following prop-
erty: if there existsm ∈ M with m > t(M), thenM is infinite.
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Davis-Putnam-Robinson-Matiyasevich theorem states thatevery recursively
enumerable setM ⊆ Nn has a Diophantine representation, that is

(a1, . . . , an) ∈ M ⇐⇒ ∃x1, . . . , xm ∈ N W(a1, . . . , an, x1, . . . , xm) = 0

for some polynomialW with integer coefficients, see [1]. We present a conjecture
on integer arithmetic which implies that there is an algorithm that for each recur-
sively enumerable setM ⊆ N given by a Diophantine representation computes
a positive integert(M) with the following property: if there existsm ∈ M with
m > t(M), thenM is infinite.

Conjecture ([2]). For each integersx1, . . . , xn there exist integersy1, . . . , yn such
that

(

22n−1
< |x1| =⇒ |x1| < |y1|

)

∧
(

∀i, j, k ∈ {1, . . . , n} (xi + x j = xk =⇒ yi + y j = yk)
)

∧ (S 1)

∀i, j, k ∈ {1, . . . , n} (xi · x j = xk =⇒ yi · y j = yk) (S 2)
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For n ≥ 2, the bound 22
n−1

cannot be decreased because for

(x1, . . . , xn) = (22n−1
, 22n−2

, 22n−3
, . . . , 256, 16, 4, 2)

the conjunction of statements (S 1) and (S 2) guarantees that

(y1, . . . , yn) = (0, . . . , 0)∨ (y1, . . . , yn) =
(

22n−1
, 22n−2

, 22n−3
, . . . , 256, 16, 4, 2

)

For a Diophantine equationD(x1, . . . , xp) = 0, let M denote the maximum
of the absolute values of its coefficients. LetT denote the family of all polyno-
mials W(x1, . . . , xp) ∈ Z[x1, . . . , xp] whose all coefficients belong to the interval
[−M,M] and deg(W, xi) ≤ di = deg(D, xi) for eachi ∈ {1, . . . , p}. Here we con-
sider the degrees ofW(x1, . . . , xp) andD(x1, . . . , xp) with respect to the variablexi.
It is easy to check that

card(T ) = (2M + 1)(d1 + 1) · . . . · (dp + 1)

To each polynomial that belongs toT \ {x1, . . . , xp} we assign a new vari-
able xi with i ∈ {p + 1, . . . , card(T )}. Then, D(x1, . . . , xp) = xq for some
q ∈ {1, . . . , card(T )}. LetH denote the family of all equations of the form

xi = 1, xi + x j = xk, xi · x j = xk (i, j, k ∈ {1, . . . , card(T )})

which are polynomial identities inZ[x1, . . . , xp]. If some variablexm is assigned to
a polynomialW(x1, . . . , xp) ∈ T , then for each ringK extendingZ the systemH
impliesW(x1, . . . , xp) = xm. This observation proves the following Lemma.

Lemma. The systemH∪{xq+ xq = xq} is algorithmically determinable. For each
ring K extendingZ, the equationD(x1, . . . , xp) = 0 is equivalent to the system
H ∪ {xq + xq = xq}. Formally, this equivalence can be written as

∀x1, . . . , xp ∈ K
(

D(x1, . . . , xp) = 0⇐⇒ ∃xp+1, . . . , xcard(T ) ∈ K

(x1, . . . , xp, xp+1, . . . , xcard(T )) solves the systemH ∪ {xq + xq = xq}
)

Theorem. The Conjecture implies that there is an algorithm that for each recur-
sively enumerable setM ⊆ N given by a Diophantine representation computes a
threshold numbert(M) ∈ N with the following property: if there existsx1 ∈ M

with x1 > t(M), thenM is infinite.

Proof. There is a polynomialW(x, x1, . . . , xm) with integer coefficients for which
the formula

∃x1 . . .∃xm W(x, x1, . . . , xm) = 0

definesM in N. By Lagrange’s four-square theorem, the formula
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∃a, b, c, d, x1, a1, b1, c1, d1, . . . , xm, am, bm, cm, dm W2(x, x1, . . . , xm)+

(x−a2−b2−c2−d2)2
+ (x1−a2

1−b2
1−c2

1−d2
1)2
+ . . .+ (xm−a2

m−b2
m−c2

m−d2
m)2
= 0

definesM in Z. By the Lemma,M is defined inZ by a formula

∃x2 . . .∃xn Ω(x1, x2, . . . , xn)

whereΩ(x1, x2, . . . , xn) is a conjunction of formulae of the formxi = 1, xi + x j = xk,
xi · x j = xk (i, j, k ∈ {1, . . . , n}) and n can be algorithmically computed. We put

t(M) = 22n−1
. Assume thatx1 ∈ M and x1 > t(M). Then, there exist integers

x2, . . . , xn satisfying
(

22n−1
< x1
)

∧Ω(x1, x2, . . . , xn)

We apply the Conjecture to the tuple (x1, x2, . . . , xn) and obtain an integer tuple
(y1, y2, . . . , yn) whose elements satisfy

(

22n−1
< x1 < y1

)

∧ Ω(y1, y2, . . . , yn)

By repeating this argument and applying induction, we complete the proof.
�

Assuming the Conjecture, we can use the Theorem to prove thata particular
recursively enumerable setM ⊆ N is infinite. Of course, we disregard here the
time for finding x1 ∈ M with x1 > t(M). For example, the largest known twin
prime is much smaller than the threshold number computed forthe set{p ∈ N :
(p is prime )∧ (p + 2 is prime)}.
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