A hypothetical answer to the question of when a sufficiently large number of elements confirm that the set is infinite

Apoloniusz Tyszka

Abstract. We present a conjecture on integer arithmetic which implies that there is an algorithm that for each recursively enumerable set $\mathcal{M} \subseteq \mathbb{N}$ given by a Diophantine representation computes a positive integer $t(\mathcal{M})$ with the following property: if there exists $m \in \mathcal{M}$ with $m > t(\mathcal{M})$, then \mathcal{M} is infinite.

Key words and phrases: Davis-Putnam-Robinson-Matiyasevich theorem, Diophantine representation, recursively enumerable set.

2010 Mathematics Subject Classification: 03B30, 03D25, 11U99.

Davis-Putnam-Robinson-Matiyasevich theorem states that every recursively enumerable set $\mathcal{M} \subseteq \mathbb{N}^n$ has a Diophantine representation, that is

$$(a_1,\ldots,a_n) \in \mathcal{M} \iff \exists x_1,\ldots,x_m \in \mathbb{N} \ W(a_1,\ldots,a_n,x_1,\ldots,x_m) = 0$$

for some polynomial W with integer coefficients, see [1]. We present a conjecture on integer arithmetic which implies that there is an algorithm that for each recursively enumerable set $\mathcal{M} \subseteq \mathbb{N}$ given by a Diophantine representation computes a positive integer $t(\mathcal{M})$ with the following property: if there exists $m \in \mathcal{M}$ with $m > t(\mathcal{M})$, then \mathcal{M} is infinite.

Conjecture ([2]). For each integers x_1, \ldots, x_n there exist integers y_1, \ldots, y_n such that

$$(2^{2^{n-1}} < |x_1| \Longrightarrow |x_1| < |y_1|) \land$$
$$(\forall i, j, k \in \{1, \dots, n\} (x_i + x_j = x_k \Longrightarrow y_i + y_j = y_k)) \land$$
(S1)

$$\forall i, j, k \in \{1, \dots, n\} (x_i \cdot x_j = x_k \Longrightarrow y_i \cdot y_j = y_k)$$
(S2)

For $n \ge 2$, the bound $2^{2^{n-1}}$ cannot be decreased because for

$$(x_1, \dots, x_n) = (2^{2^{n-1}}, 2^{2^{n-2}}, 2^{2^{n-3}}, \dots, 256, 16, 4, 2)$$

the conjunction of statements (S1) and (S2) guarantees that

$$(y_1, \dots, y_n) = (0, \dots, 0) \lor (y_1, \dots, y_n) = (2^{2^{n-1}}, 2^{2^{n-2}}, 2^{2^{n-3}}, \dots, 256, 16, 4, 2)$$

For a Diophantine equation $D(x_1, \ldots, x_p) = 0$, let M denote the maximum of the absolute values of its coefficients. Let \mathcal{T} denote the family of all polynomials $W(x_1, \ldots, x_p) \in \mathbb{Z}[x_1, \ldots, x_p]$ whose all coefficients belong to the interval [-M, M] and deg $(W, x_i) \leq d_i = \deg(D, x_i)$ for each $i \in \{1, \ldots, p\}$. Here we consider the degrees of $W(x_1, \ldots, x_p)$ and $D(x_1, \ldots, x_p)$ with respect to the variable x_i . It is easy to check that

$$\operatorname{card}(\mathcal{T}) = (2M+1)^{(d_1+1)} \cdot \dots \cdot (d_p+1)$$

To each polynomial that belongs to $\mathcal{T} \setminus \{x_1, \ldots, x_p\}$ we assign a new variable x_i with $i \in \{p + 1, \ldots, \operatorname{card}(\mathcal{T})\}$. Then, $D(x_1, \ldots, x_p) = x_q$ for some $q \in \{1, \ldots, \operatorname{card}(\mathcal{T})\}$. Let \mathcal{H} denote the family of all equations of the form

$$x_i = 1, x_i + x_j = x_k, x_i \cdot x_j = x_k \ (i, j, k \in \{1, \dots, \text{card}(\mathcal{T})\})$$

which are polynomial identities in $\mathbb{Z}[x_1, \ldots, x_p]$. If some variable x_m is assigned to a polynomial $W(x_1, \ldots, x_p) \in \mathcal{T}$, then for each ring K extending \mathbb{Z} the system \mathcal{H} implies $W(x_1, \ldots, x_p) = x_m$. This observation proves the following Lemma.

Lemma. The system $\mathcal{H} \cup \{x_q + x_q = x_q\}$ is algorithmically determinable. For each ring K extending \mathbb{Z} , the equation $D(x_1, \ldots, x_p) = 0$ is equivalent to the system $\mathcal{H} \cup \{x_q + x_q = x_q\}$. Formally, this equivalence can be written as

$$\forall x_1, \dots, x_p \in \mathbf{K} \left(D(x_1, \dots, x_p) = 0 \iff \exists x_{p+1}, \dots, x_{\operatorname{card}(\mathcal{T})} \in \mathbf{K} \right)$$
$$(x_1, \dots, x_p, x_{p+1}, \dots, x_{\operatorname{card}(\mathcal{T})}) \text{ solves the system } \mathcal{H} \cup \{x_q + x_q = x_q\}$$

Theorem. The Conjecture implies that there is an algorithm that for each recursively enumerable set $\mathcal{M} \subseteq \mathbb{N}$ given by a Diophantine representation computes a threshold number $t(\mathcal{M}) \in \mathbb{N}$ with the following property: if there exists $x_1 \in \mathcal{M}$ with $x_1 > t(\mathcal{M})$, then \mathcal{M} is infinite.

Proof. There is a polynomial $W(x, x_1, ..., x_m)$ with integer coefficients for which the formula

 $\exists x_1 \ldots \exists x_m \ W(x, x_1, \ldots, x_m) = 0$

defines \mathcal{M} in \mathbb{N} . By Lagrange's four-square theorem, the formula

 $\exists a, b, c, d, x_1, a_1, b_1, c_1, d_1, \dots, x_m, a_m, b_m, c_m, d_m \quad W^2(x, x_1, \dots, x_m) + (x - a^2 - b^2 - c^2 - d^2)^2 + (x_1 - a_1^2 - b_1^2 - c_1^2 - d_1^2)^2 + \dots + (x_m - a_m^2 - b_m^2 - c_m^2 - d_m^2)^2 = 0$ defines \mathcal{M} in \mathbb{Z} . By the Lemma, \mathcal{M} is defined in \mathbb{Z} by a formula

$$\exists x_2 \ldots \exists x_n \ \Omega(x_1, x_2, \ldots, x_n)$$

where $\Omega(x_1, x_2, ..., x_n)$ is a conjunction of formulae of the form $x_i = 1, x_i + x_j = x_k$, $x_i \cdot x_j = x_k$ $(i, j, k \in \{1, ..., n\})$ and *n* can be algorithmically computed. We put $t(\mathcal{M}) = 2^{2^{n-1}}$. Assume that $x_1 \in \mathcal{M}$ and $x_1 > t(\mathcal{M})$. Then, there exist integers $x_2, ..., x_n$ satisfying

$$(2^{2^{n-1}} < x_1) \land \Omega(x_1, x_2, \ldots, x_n)$$

We apply the Conjecture to the tuple $(x_1, x_2, ..., x_n)$ and obtain an integer tuple $(y_1, y_2, ..., y_n)$ whose elements satisfy

$$(2^{2^{n-1}} < x_1 < y_1) \land \Omega(y_1, y_2, \dots, y_n)$$

By repeating this argument and applying induction, we complete the proof.

Assuming the Conjecture, we can use the Theorem to prove that a particular recursively enumerable set $\mathcal{M} \subseteq \mathbb{N}$ is infinite. Of course, we disregard here the time for finding $x_1 \in \mathcal{M}$ with $x_1 > t(\mathcal{M})$. For example, the largest known twin prime is much smaller than the threshold number computed for the set $\{p \in \mathbb{N} : (p \text{ is prime}) \land (p + 2 \text{ is prime})\}$.

References

- [1] Yu. V. Matiyasevich, *Hilbert's tenth problem*, MIT Press, Cambridge, MA, 1993.
- [2] A. Tyszka, Two hypothetical properties of integer arithmetic and their consequences for Diophantine problems, http://arxiv.org/abs/0901.2093.

Apoloniusz Tyszka Technical Faculty Hugo Kołłątaj University Balicka 116B, 30-149 Kraków, Poland E-mail address: rttyszka@cyf-kr.edu.pl