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A hypothetical answer to the question of when fisiently
large number of elements confirm that the set is infinite

Apoloniusz Tyszka

Abstract. We present a conjecture on integer arithmetic which impghesthere
is an algorithm that for each recursively enumerableMet N given by a Dio-
phantine representation computes a positive intggd) with the following prop-
erty: if there existsn e M with m > t(M), thenM is infinite.
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Davis-Putnam-Robinson-Matiyasevich theorem statesdbety recursively
enumerable seM C N" has a Diophantine representation, that is

(@,...,a) eEMe—= Ixy,....,. Xn €N W(ay,...,an, X1,..., Xm) =0

for some polynomialVV with integer coéicients, see [1]. We present a conjecture
on integer arithmetic which implies that there is an aldontthat for each recur-
sively enumerable seM C N given by a Diophantine representation computes
a positive integet(M) with the following property: if there existsn € M with

m > t(M), then M is infinite.

Conjecture ([2])). For each integers,, ..., X, there exist integerg,, ..., Y, such
that

2n—1
(2 <X = x| < Inal) A
Vi, ke {l,...,nt (X + X =X = VYi +Yj = Y)) A (S1)
Vi, ke{l,...,nf(X - X =X%=V¥i - Yj = W) (S2)
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Forn > 2, the bound %n_l cannot be decreased because for
2n—1 2n—2 2n—3
(Xg,..., %) =2 ,2c ,2c ,...,25616/4,2)
the conjunction of statementS1) and §2) guarantees that

2n—1 2n—2 2n—3
Vi, .. .¥n) =(0,...,0)V (Y,...,Yn) = (25 ,2¢ ,2¢ ,...,25616,4,2)

For a Diophantine equatioB(xs,...,Xp) = 0, let M denote the maximum
of the absolute values of its ciieients. Let7 denote the family of all polyno-
mialsW(Xy, ..., Xp) € Z[X4,...,Xs] whose all coéficients belong to the interval
[-M, M] and deg{V, ;) < di = deg(, x) for eachi € {1,..., p}. Here we con-
sider the degrees ¥f/(xy, . .., Xp) andD(X,, . . ., Xp) with respect to the variabbe.

It is easy to check that

cardg) = @M + 1)+ 1) ... (dp + 1)

To each polynomial that belongs 0 \ {X;,...,Xp} we assign a new vari-
ablex; with i € {p+ 1,...,card¢")}. Then, D(Xs,...,Xp) = Xy for some
gef{l,...,card(/)}. Let H denote the family of all equations of the form

X =1,%+X =%, X% X=X (,],ke{l,...,card()})

which are polynomial identities ii[x, . . ., Xp]. If some variablex, is assigned to
a polynomialW(x, ..., Xp) € 7, then for each rind< extendingZ the systentH
impliesW(X, . .., Xp) = Xm. This observation proves the following Lemma.

Lemma. The systenH U {Xy+ X4 = Xy} is algorithmically determinable. For each
ring K extendingz, the equatiorD(x, ..., X,) = O is equivalent to the system
H U {xq + Xq = Xg}. Formally, this equivalence can be written as

vxl,...,XpeK(D(Xl,...,Xp):O=>3Xp+1,...,XCard(]')€K

(Xes - s Xps Xpe1s - - -» Xeardgr)) SOIVES the system U {xq + Xq = xq})

Theorem. The Conjecture implies that there is an algorithm that fahe@cur-
sively enumerable se¥1 C N given by a Diophantine representation computes a
threshold numbet(M) € N with the following property: if there existg; € M
with x; > t(M), thenM is infinite.

Proof. There is a polynomialV(x, X, ..., Xyn) With integer coéicients for which
the formula
AXy .. Ay WX, Xg, ..., Xm) =0

definesM in N. By Lagrange’s four-square theorem, the formula
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Haa b’ C’ d’ Xl’ al’ bl’ Cl’ dl’ cees Xm, am, bm, Cm, dm WZ(X’ Xl’ cees Xm)+
(x—a®-b*-c®—d?)?+ (xy—af —b? - —d2)? +.. .+ (Xp—a% — b3 -5 —d2)?> =0
definesM in Z. By the LemmaM is defined inz by a formula

A%, ... A%y Q(X1, Xo, - . ., Xn)

whereQ(Xy, Xz, . . ., X,) is a conjunction of formulae of the form = 1, X + X; = X,
X - Xj =% (i, ke {1,...,n}) andn can be algorithmically computed. We put
t(M) = 22n_1. Assume thatk; € M andx; > t(M). Then, there exist integers
Xo, . .., Xn Satisfying
-1
(22n < X)) A Q(X1, X2, . .+, Xn)

We apply the Conjecture to the tuple (., ..., X,) and obtain an integer tuple
(Y1, Y2, - - - » Yn) Whose elements satisfy

(22n_1 < X < Q
1<Y1) A QY1,Y2,---5Yn)

By repeating this argument and applying induction, we c@atepihe proof.
i

Assuming the Conjecture, we can use the Theorem to proveatpatticular
recursively enumerable s@tl C N is infinite. Of course, we disregard here the
time for findingx; € M with x; > t(M). For example, the largest known twin
prime is much smaller than the threshold number computeth®oset{p € N :
(pis prime)A (p+ 2is prime}.
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