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Abstract

In this paper, we prove that a set of N points in R2 has at least c N

logN
distinct

distances, thus obtaining the sharp exponent in a problem of Erdös. We follow the
set-up of Elekes and Sharir which, in the spirit of the Erlangen program, allows us to
study the problem in the group of rigid motions of the plane. This converts the problem
to one of point-line incidences in space. We introduce two new ideas in our proof. In
order to control points where many lines are incident, we create a cell decompostion
using the polynomial ham sandwich theorem. This creates a dichotomy: either most
of the points are in the interiors of the cells, in which case we immediately get sharp
results, or alternatively the points lie on the walls of the cells, in which case they
are in the zero set of a polynomial of suprisingly low degree, and we may apply the
algebraic method. In order to control points where only two lines are incident, we use
the flecnode polynomial of the Rev. George Salmon to conclude that most of the lines
lie on a ruled surface. Then we use the geometry of ruled surfaces to complete the
proof.

1 Introduction

In 1946, Paul Erdös posed the question: how few distinct distances are determined by N
points in the plane. [E] By choosing the points to lie in a lattice, one can achieve as few
as O( N√

logN
). But the only lower bound he was then able to show was that the number of

distances was & N
1

2 . (Throughout this paper, we use the notation A & B to mean that
there is a universal constant C > 0 with A ≥ CB.)

Various authors have improved this exponent 1
2
. These include but are not limited to [M],

[CSzT], [SoTo],[T]. Most recently, it was shown in [KT], that the number of distances is

& N
48−14e
55−16e

−ǫ for any ǫ > 0. Note that the exponent

48− 14e

55− 16e
≈ 0.8641

falls far short of the lattice upper bound.
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Erdös’ problem inspired the Szemerédi-Trotter incidence theorem of [SzT] which is the
most basic and important result in extremal incidence geometry.

For a more thorough presentation of the history of the subject see the forthcoming book
[GIS].

Incidence theory took a rather dramatic turn more recently with the advent of the algebraic
method introduced by Dvir in his paper [D] which settled the finite field Kakeya problem.
Suddenly it became possible to solve completely problems where previously only incremen-
tal gains in the exponent were possible. The authors in [GK] solved the Joints problem,
a basic question in three dimensional incidence theory using Dvir’s idea. Previously only
incremental progress had been possible because techniques like cell decompositions, pro-
jections, and cuttings were being used. These kind of ideas were introduced in the seminal
paper [CEGSW], where it was shown among other things that they could be used to prove
the Szemerédi Trotter theorem.

But while cell methods were extremely powerful in the plane, they seemed inadequate
in space because they did not well account for the possibility that the lines all lie in a
hypersurface and that the problem is somehow lower dimensional. On the other hand,
the algebraic method seemed to work magically. It guaranteed that the lines all lay in
a hypersurface, an algebraic surface of high degree, but for the joints problem not too
high.

An exciting development occurred when Elekes and Sharir [ES] pointed out advances in
three-dimensional point line incidence theory could shed light on the Erdös problem. They
reduced Erdós’ problem to a sequence of incidence questions with a parameter k which
counted the number of lines incident at a point. (In their set-up, they had curves, not lines,
but this can be repaired with a coordinate change in the group of rigid motions.)

Unfortunately, Elekes and Sharir were unable to complete their program for various tech-
nical reasons. For k = 2, they had only one and not two polynomials that vanished on the
lines and we are able to rectify this problem by invoking Salmon’s flecnode polynomial and
using the nineteenth century theory of ruled surfaces.

Conversely for k large, they were unable to apply the algebraic method because their lines
did not need to lie in a sufficiently low degree surface. This is a serious problem and
helps explain why their incidence conjecture does not hold unrestrictedly in finite fields.
They realized that the problem was fundamentally topological and resorted to cell-type
techniques which seemed to condemn them to incremental exponents.

In the present paper, we prove
Theorem 1.1. A set of N points in the plane determines & N

logN distinct distances.

Our most dramatic contribution is to introduce a new kind of cell decomposition produced
by the polynomial ham sandwich theorem. This procedure has what turns out to be the
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advantage of not always resulting in a decomposition. Instead there is a dichotomy. One
possibility is that we get an extremely efficient decomposition providing us with exactly
the incidence theorems we would like. The alternative is that the procedure fails in which
case most of our lines lie in the zero set of a polynomial of fairly low degree. This is an
acceptable alternative because it allows us to apply the algebraic method.

We have now largely described the plan of the paper. There are some other technicalities
which the reader should not take too seriously. These involve pigeonholing. When dealing
with dichotomies, there are two types of objects and we often must prune our set of lines.
One danger is that one will prune too many. Usually one can overcome that danger by
proceeding inductively, but it is a little difficult in this paper because the sets of lines have
certain restrictions which one must reestablish in the inductive step. Most of the technical
estimates in the paper deal with these issues.

Acknowledgements: The first author is partially supported by NSF grant DMS-0635607
and by the Monell Foundation. The second author is partially supported by NSF grant
DMS-1001607. He would like to thank Michael Larsen for some very helpful discussions
about algebraic geometry. He would also like to thank the Institute of Advanced Study for
the use of its magnificent duck pond during a visit which resulted in this paper.

2 Elekes-Sharir framework

Our goal in this paper will be to obtain a lower bound on the set of pairwise distances
d(P ) between the points of a set

P ⊂ R2

with
|P | = N.

Elekes and Sharir [ES] created a framework that connects d(P ) with problems of incidence
geometry in 3-dimensional space. They first observed that to obtain a lower bound on the
size of d(P ), it suffices to obtain an upper bound on a set of quadruples. We let Q(P ) be
the set of quadruples, (p1, p2, p3, p4) ∈ P 4 satisfying

d(p1, p2) = d(p3, p4). (2.1)

Henceforth, we refer to the elements of Q(P ) as distance quadruples.

By applying the Cauchy-Schwarz inequality, we easily obtain

|d(P )| ≥ N4

|Q(P )| . (2.2)
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To prove Theorem 1.1, it suffices to bound |Q(P )| . N3 logN .

Now we consider what it means for a quadruple (p1, p2, p3, p4) to be a distance quadruple
in terms of the group G of positively oriented rigid motions of the plane.
Proposition 2.1. The quadruple (p1, p2, p3, p4) is a distance quadruple if and only if there
is g ∈ G so that g(p1) = p3 and g(p2) = p4.

Note that the g given by the proposition is unique. All positively oriented rigid motions
taking p1 to p3 can be obtained from the translation from p1 to p3 by applying a rotation
R about the point p3. There is a unique such rotation sending p2 + p3 − p1 into p4.

Elekes and Sharir introduce the sets Lpq ⊂ G given by

Lpq = {g ∈ G : g(p1) = p2}.

Then by the proposition we have that (p1, p2, p3, p4) is a distance quadruple if and only
if Lp1p3 ∩ Lp2p4 6= ∅. So the number of quadruples |Q(P )| is the number of intersecting
pairs of Lpq’s. We can count the number of intersecting pairs by considering elements of
G where the intersections occur. We let Gk ⊂ G be the rigid motion that lie in at least
k and at most 2k of the sets {Lpq}p,q∈P . Each rigid motion in Gk contributes roughly k2

quadruples.

|Q(P )| .
∞
∑

j=1

(2j)2G2j .

There are only N2 sets Lpq, and so this sum only has . logN terms. Elekes and Sharir
conjectured that |Gk| . N3k−2, which implies that each term in the sum is bounded by
N3.

Elekes and Sharir refer to the sets Lpq as helices. We shall now see that by a good choice
of the parametrization of G, we may actually view them as lines in R3.

Let G′ denote the open subset of the orientable rigid motion group G given by rigid motions
which are not translations. Each element of G′ has a unique fixed point (x, y) and an angle
θ of rotation about the fixed point with 0 < θ < 2π. We define the map

ρ : G −→ R3

by

ρ(x, y, θ) = (x, y, cot
θ

2
).

Proposition 2.2. Let p = (px, py) and q = (qx, qy) be points in R2. Then with ρ as above,
the set ρ(Lpq ∩G′) is a line in R3.
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Proof. Noting that the fixed point of any transformation taking p to q must lie on the
perpindicular bisector of p and q, the reader will easily verify that the set ρ(Lpq ∩G′) can
be parametrized as

(
px + qx

2
,
py + qy

2
, 0) + t(

qy − py
2

,
px − qx

2
, 1). (2.3)

We will for the remainder of the paper be concerned with L, the set of lines in R3 given
by {ρ(Lpq ∩ G′)}p,q∈P . A rigid motion in G′ ∩ Gk corresponds to a point in R

3 which lies
in at least k and at most 2k lines of L.

We record some genericity properties of the set of lines L. (These are all observed in one
form or another in the Elekes-Sharir paper as well.)
Proposition 2.3. No more than N lines of L meet at a single point. No more than N
lines of L lie in a single plane. No more than O(N) lines of L lie in a single regulus (doubly
ruled surface.)

Proof. For each p ∈ P , we consider the subset Lp ⊂ L given by

Lp = {ρ(Lpq ∩G′)}q∈P .

To prove the first two assertions, note that from the definition of Lpq no two of the lines
may intersect and from equation 2.3 that the lines of Lp all have different directions so
that they must be pairwise skew. Therefore no two intersect at a point and no two lie in
the same plane. Thus any set of lines meeting at a point or lying in a plane must come
from different Lp’s and this limits their number to N .

The situation for the third assertion is slightly more complicated. We define the set of lines
L
′
p = {ρ(Lpq ∩ G′}q∈R2 . (We have Lp ⊂ L

′
p.) If a regulus contains more than O(1) lines

of L′
p, then all the lines in one ruling of the regulus are contained in L

′
p. If p1 6= p2, then

L
′
p1 and L

′
p2 are disjoint. So if a regulus has more than O(1) lines from one of its rulings

in Lp1, then none of the lines in that ruling lie in any other Lp2 . Thus for any regulus R
there may be at most two exceptional points p for which Lp contains up to N lines lying
in the regulus, but all other Lp contribute at most O(1), leaving a total of O(N).

In light of the preceding, we may break down the proof of our main theorem into the
following theorems of incidence geometry.
Theorem 2.4. Let L be any set of N2 lines in R3 for which no more than N lie in a
common plane and no more than O(N) lie in a common regulus. Then the number of
points of intersection of two lines in L is O(N3).
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Theorem 2.5. Let L be any set of N2 lines in R3 for which no more than N lie in a
common plane, and let k be a number 3 ≤ k ≤ N . Let Qk be the set of points where at
least k lines and not as many as 2k lines meet. Then

|Qk| = O(
N3

k2
).

Elekes and Sharir essentially conjectured these two theorems (Conjecture 1 in [ES]), and
they essentially proved Theorem 2.5 in the case k = 3.

The theorems 2.4 and 2.5 together imply theorem 1.1 by giving an upper bound on the
number of distance quadruplets (p1, p2, p3, p4). The reader should note that because of our
choice of parametrization, Theorems 2.4 and 2.5 do not say anything about the distance
quadruples coming from translations, but these are in fact the quadruplets where

p3 − p1 = p4 − p2,

so that they are actually additive quadruplets and clearly bounded by N3 since fixing three
points defines the fourth. Counting the quadruples coming from translation separately, we
see that

|Q(P )| . N3 +

∞
∑

j=1

22jQ2j .

In light of the first part of propostion 2.3, we need only consider j with 2j ≤ N and we
can use the theorems to bound the sum by

|Q(P )| . N3 +

logN
∑

j=1

N3 . N3 logN.

This, of course, implies the main theorem. Thus, in the remainder of the paper, we shall
devote ourselves to proving the two theorems.

3 Flecnodes

Our goal in this section is to prove Theorem 2.4. We will do this by purely algebraic
methods following essentially the proof strategy of [GK]. That is, we will show that an
important subset of our lines lies in the zero set of a fairly low degree polynomial p. What
requires a new idea is the next step. We need a polynomial q derived from p with similar
degree on which the lines also vanish. With that information we will apply a variant of
Bezout’s lemma.
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Lemma 3.1. Let p(x, y, z) and q(x, y, z) be polynomials on R3 of degrees m and n respec-
tively. If there is a set of mn+ 1 distinct lines simultaneously contained in the zero set of
p and the zero set of q then p and q have a common factor.

Thus we will conclude that p and the derived polynomial q must have a common factor
and we will arrive at some geometrical conclusion from this based on the way that q was
derived. In the paper [GK], the derived polynomials that we used were the gradient of p
and the algebraic version of the second fundamental form of the surface given by p = 0.
These were good choices because when three or more lines were incident at each point,
we knew on geometric grounds that one or the other would vanish at each point, because
the point would be either singular or flat. However, here we are faced with points at
which only two lines intersect, and so we must make a more clever choice of the derived
polynomial.

We begin with the definition of a flecnode. Given an algebraic surface in R3 given by the
equation p(x, y, z) = 0 where p is a polynomial of degree d at least 3, a flecnode is a point
(x, y, z) where a line agrees with the surface to order three. To find all such points, we
might solve the system of equations:

p(x, y, z) = 0; ∇vp(x, y, z) = 0; ∇2
vp(x, y, z) = 0; ∇3

vp(x, y, z) = 0

These are four equations for six unknowns, (x, y, z) and the components for the direction
v. However the last three equations are homogeneous in v and may be viewed as three
equations in five unknowns (and the whole system as 4 equations in 5 unknowns.) We may
reduce the last three equations to a single equation in three unknowns (x, y, z). We write
the reduced equation as

Fl(p)(x, y, z) = 0.

The polynomial Fl(p) is of degree 11d − 24. It is called the flecnode polynomial of p and
vanishes at any flecnode of any level set of p. (See [Salm] Art. 588 pages 277-78.)

The term flecnode was apparently first coined by Cayley. The polynomial FL(p) was
discovered by the Rev. George Salmon, but its most important property to us was com-
municated to him by Cayley.
Proposition 3.2. The surface p = 0 is ruled if and only if Fl(p) is everywhere vanishing
on it.

One direction of the proposition is obvious. If the surface is ruled, there is a line contained
in the surface at every point. If the line is contained in the surface, it certainly agrees
to order 3. The reverse direction is more computational. It is indicated in a footnote to
[Salm] Art. 588 page 278. One sees that setting FL(p)=0 is a way of rewriting a differential
equation on p which implies ruledness. Proposition 3.2 was used in a famous paper of Segre
[Seg]. For a generalization to manifolds in higher dimensions see [Land].

An immediate corollary of the proposition is
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Corollary 3.3. Let p = 0 be a degree d hypersurface in Rd. Suppose that the surface
contains more than 11d2 − 24d lines. Then p has a ruled factor.

Proof. By lemma 3.1, since both p and FL(p) vanish on the same set of more than 11d2−24d
lines, they must have a common factor q. Thus FL(q) = 0 at points of q = 0 which are
regular for p. Thus FL(q) = 0 identically on q = 0.

Now we would like to consider ruled surfaces of degree less than N . Thus our surfaces are
the sets

p(x, y, z) = 0

for a polynomial p (which we may choose square free) of degree less than N . We may
uniquely factorize the polynomial into irreducibles:

p = p1p2 . . . pm.

We say that p is plane-free and regulus-free if the zero sets of none of the factors is a plane
or a regulus. Thus if p is plane-free and regulus-free, the zero-set of each of the factors is
an irreducible algebraic singly-ruled surface. We now state the main geometrical lemma
for proving Theorem 2.4.
Lemma 3.4. Let p be a polynomial of degree less than N so that p = 0 is ruled and so
that p is plane-free and regulus-free. Let L1 be a set of lines contained in the surface p = 0
with |L1| . N2. Let Q1 be the set of points of intersection of lines in L1. Then

|Q1| . N3.

Proof. We must first notice that not every line contained in the ruled surface is necessarily
a generator of the ruled surface. However, for any pj , an irreducible component of p having
degree dj, it must be that a line which is not a generator intersects every generator of the
surface. Choosing three generators l1, l2, l3 which are pairwise skew (if such do not exist
then the component is a plane, which by hypothesis is impossible), we see that every line
which is not a generator must lie in a particular regulus which is the union of all lines
intersecting l1, l2, l3. Since we know that p is regulus-free, we know that there are at most
2dj such lines contained in the zero set of pj by Lemma 3.1. Summing over j we see that
there are at most 2N lines which are not generators in L1. We call these non-generators
L2, and we let L3 denote the remaining lines in L1. There are at most 2N3 intersections
between a line in L2 and a line in L3 and there are at most 4N2 intersections between lines
in L2.

Thus we need only consider intersections between lines in L3. Fix a line l in L3. We will
prove that it intersects ≤ N other lines in L3. Hence the number of intersections between
lines in L3 is ≤ N3. Each line of L3 is a generator of our ruled surface. The generators
within one irreducible component of the ruled surface don’t intersect each other. We only
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have to estimate the number of intersections between l and generators of other components.
It may happen that l lies in some other components. If l lies in another component, then
it must be a generator of that component (otherwise l would be in L2). If l is a generator
in another component then it doesn’t intersect any other generators from that component.
So we can ignore those components. So we only need to consider the intersections between
l and components that don’t contain l. A component of degree dj intersects l at most
dj times. Each of those points lies in only one generator of the component. So there are
≤ dj intersections between l and generators of that component. So the total number of
intersections between l and other lines in L3 is ≤ ∑

dj ≤ N .

Now we are ready to begin the proof of Theorem 2.4. We assume we have a set L of at
most N2 lines for which no more than N lie in a plane and no more than N lie in a regulus.
We suppose, by way of contradiction, that for Q, a positive real number sufficiently large,
there are QN3 points of intersection of lines of L and we assume that this is an optimal
example, so that for no M < N do we have a set of M2 lines so that no more than M lie in
a plane and no more than M lie in a regulus is it the case that there are more than QM3

intersections. (N need not be an integer.)

We now apply a degree reduction argument similar to the one in [GK]. We let L
′ be the

subset of L consisting of lines which intersect at least QN
10

lines of L. Since the lines not

in L
′ participate in at most QN3

10
intersections. Thus there are at least 9QN3

10
intersections

between lines of L′. Moreover L′ has αN2 lines with 0 < α < 1.

Now we select a random subset L
′′ of the lines of L′ choosing lines independently with

probability 100
Q . With positive probability, there will be no more than 200αN2

Q lines in L
′′

and each line of L′ will intersect N
20

lines of L′′. Now pick R
√
αN√
Q

points on each line of L′′.

(R is a constant which is sufficiently large but universal.) Call the set of all of the points

S. There are O(Rα
3
2N3

Q
3
2

) points in S, so we may find a polynomial p of degree O(R
1
3 α

1
2 N

Q
1
2

)

which vanishes on every point of S. With R sufficiently large, p must vanish identically
on every line of L′′. Since each line of L′ meets N

20
lines of L′′, it must be that p vanishes

identically on each line of L′. Thus ends the degree reduction argument and we will now
study the relatively low degree polynomial p.

We may factor p = p1p2 where p1 is the product of the ruled irreducible factors of p and p2

is the product of unruled irreducible factors of p. Each of p1 and p2 is of degree O(α
1
2N

Q
1
2

).

(We have suppressed the R dependence since R is universal.) We break up the set of lines
of L

′ into the disjoint subsets L1 consisting of those lines in the zero set of p1 and L2

consisting of all the other lines in L
′.

There are no more than O(N3) points of intersection between lines of L1 and L2 since each
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line of L2 contains no more than O(α
1
2 N

Q
1
2

) points where p1 is zero. Thus we are left with two

(not mutually-exclusive) cases which cover all possibilities. There are either 3QN3

10
points

of intersection between lines of L1 or there are 3QN3

10
points of intersection between lines

of L2. We will handle these separately.

Suppose there are 3QN3

10
intersections between lines of L1. We factor p1 = p3p4 where p3

is plane-free and regulus-free and p4 is a product of planes and reguli. We break L1 into
disjoint sets L3 and L4, with L3 consisting of lines in the zero set of p3 and L4 consisting of
all other lines of L1. As before there O(N3) points of intersection between lines of L3 and
L4 since lines of L4 are not in the zero set of p3. Moreover there are at most O(N3) points
of intersection between lines of L4 because they lie in at most N planes and reguli each
containing at most N lines. (We just see that each line has at most O(N) intersections with
planes and reguli it is not contained in and there are at most O(N2) points of intersection
between lines internal to each plane and regulus.) However there cannot be more than
O(N3) points of intersection between lines of L3 by applying the key lemma 3.4. (Here we
used that p3 is plane-free and regulus-free.)

Thus we must be in the second case, where many of the points of intersection are between
lines of L2, all of which lie in the zero set of p2 which is totally unruled. Recall that p2 is of

degree O(α
1
2 N

Q
1
2

). Thus by Corollary 3.3, its zero-set contains no more than O(αN
2

Q ) lines.

We would like to now invoke the fact that the example we started with was optimal and
reach a contradiction. But we can’t quite do that. Our set L2 has βN

2 lines with β = O( αQ)
and we only know that there are no more than N lines in any plane or regulus, whereas
we need to know that there are no more than

√
βN lines. If this is the case we are done.

If not we construct a subset L5 as follows. If there is a plane or regulus containing more
than

√
βN lines of L2, we put those lines in L5 and remove them from L2. We repeat as

needed labelling the remaining lines L6. Since we removed O(N) planes and reguli, there
are O(N3) points of intersection between lines of L5. Since no lines of L6 belong to any
plane or regulus of L5 there are fewer than O(N3) points of intersection between lines of

L5 and L6. Now we apply optimality of our original example to rule out more than O(N
3

Q
1
2

)

points of intersection between lines of L6. Thus we have reached a contradiction.

4 Cell decompositions

In this section, we prove an estimate for incidences of lines when not too many lines lie in
a plane.
Theorem 4.1. Let k ≥ 3. Let L be a set of L lines in R

3 with at most B lines in any
plane. Let S be the set of points in R

3 intersecting at least k lines of L. Then the following
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inequality holds:

|S| ≤ C[L3/2k−2 + LBk−3 + Lk−1].

Theorem 4.1 implies Theorem 2.5 by setting L = N2 and B = N .

To get a sense of the right-hand side, we consider some examples.

Example 1. Choose L/k points. Let L consist of k lines through each point. The set L
has a k-fold incidence at each of the L/k points. (We can also arrange that no three lines
lie in a plane.)

Example 2. Choose L/B planes. Put B lines in each of the planes. The B lines in each
plane can be arranged to create B2k−3 k-fold incidences. (See the examples in [SzT].) This
set of lines has a total of LBk−3 k-fold incidences.

Example 3. Let G0 denote the integer lattice {(a, b, 0)} with 1 ≤ a, b ≤ L1/4. Let G1

denote the integer lattice {(a, b, 1)} with 0 ≤ a, b ≤ L1/4. Let L denote all the lines from a
point of G0 to a point of G1. (This set of lines appears when we take P to be a square grid
in R

2 and consider the corresponding incidence problem in the Elekes-Sharir framework.)
Any plane contains at most L1/4 points of either grid and so at most L1/2 lines of L.
Theorem 4.2. Let L be the set of lines in Example 3. For any k in the range 2 ≤ k ≤
(1/4)L1/2, the number of k-fold incidences of L is & (logL)−1L3/2k−2.

Proof. Consider a point x in R
3 contained in the slab 0 < x3 < 1. We define a map

Fx : R2 → R
2 by saying that Fx(a, b) = (c, d) if the line from (a, b, 0) through x hits (c, d, 1).

We define G to be the integral grid in the plane given by {(a, b)} with 1 ≤ a, b ≤ L1/4.
The number of lines from L which pass through x is exactly the cardinality of Fx(G) ∩G.
Now any intersection of two lines from L will have rational coordinates, so we can assume
the coordinates of x are rational. Let us say that the x3 coordinate of x is p/q, written in
lowest terms. By a similar triangles argument, Fx(G) is a square grid with spacing q−p

p .
The maximum possible number of intersections between a grid with this spacing and a grid
with unit spacing is ∼ L1/2q−2. Let us say that the middle half of G, written Gmiddle ⊂ G,
is the integral grid {(a, b)} with (1/4)L1/4 ≤ a, b ≤ (3/4)L3/4. If Fx maps a vertex from
Gmiddle into G, then the number of intersections between Fx(G) and G is ∼ L1/2q−2. If
we fix p and q, then the number of choices of x = (x1, x2, p/q) so that Fx(Gmiddle) ∩ G is
non-empty is ∼ L1/2q2.

Now we fix k ≤ (1/4)L1/2. We pick q in the range L1/4k−1/2 ≤ q ≤ 2L1/4k−1/2. For each
q we pick p coprime to q. For each p, q, we pick x as above. For each x, Fx(G) ∩ G has
& L1/2q−2 ∼ k elements. Therefore, each x lies in ∼ k lines of L. So the number of k-fold
incidences of L is at least

11



∼
2L1/4k−1/2

∑

q=L1/4k−1/2

φ(q)L1/2q2 ∼ Lk−1

2L1/4k−1/2
∑

q=L1/4k−1/2

φ(q).

Here φ(q), Euler’s totient function, is the number of integers 0 < p < q which are coprime
to q. When q is prime φ(q) = q − 1. There are & (logL)−1L1/4k−1/2 primes q in our sum,
and so the number of k-fold incidences is & (logL)−1L3/2k−2.

Remark. It looks likely that
∑2Q

q=Q φ(q) & Q2, which would imply that the number of

k-fold incidences in Example 3 is & L3/2k−2 with no log term.

Before starting the proof of Theorem 4.1, let us describe why it looks difficult. Elekes and
Sharir essentially proved this theorem when k = 3 using the algebraic method. Using the
degree reduction argument from Section 3, one can prove that most of the points lie in a
surface of degree . L2S−1k−2. For k = 3, one can then apply the algebraic method using
this surface to prove the desired inequality. But when k is large, this degree is not low
enough to run the algebraic method successfully. To use the algebraic method, we need
the points and lines to lie in a surface of degree L2S−1k−3. (In the section below called
the algebraic case, we explain how to prove the conclusion once the points lie in a surface
of degree . L2S−1k−3. By examining that section, one can check that when the degree is
any higher than this, we get a worse conclusion.)

Theorem 4.1 also does not hold over finite fields. Let Fp denote the field with p elements.
Let L denote all of the lines in F 3

p , and let S denote all of the points in F 3
p . Each point

lies in ∼ p2 lines, so we can take k = p2. There are at most ∼ p2 lines in a plane, so we
can take B = 2p2. The set of lines in F 3

p has ∼ p4 elements. If the theorem held, we would
expect |S| ≤ Cp2. But |S| = p3. The fact that the theorem is false over finite fields and
the fact that the degree in the last paragraph is too high seem related: since the theorem
is false in finite fields, it probably has no purely algebraic proof.

The situation we just described is similar to the Szemeredi-Trotter theorem, which we now
recall.
Theorem 4.3. (Szemeredi-Trotter, [SzT] ) If L is a set of L lines in the plane and S is
a set of S points in the plane, and each point lies in at least k lines of L, then

S ≤ C[L2k−3 + Lk−1].

The Szemeredi-Trotter theorem is also false over finite fields: let L be all of the lines
in F 2

p , and let S be all of the points in F 2
p . All of the proofs of the Szemeredi-Trotter

theorem use in some way the topology of R2. For example, the proof in [CEGSW] uses
a cell decomposition of R2. They consider some (carefully chosen) lines in R

2, and the
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complement of the lines is a union of connected components which are the cells. They then
consider how many lines intersect each cell. Anyway, this argument involves the topology
of R2: a set of lines in F 2

p does not divide their complement into cells.

This analogy suggests using topological methods to attack Theorem 4.1, imitating some of
the proofs of Szemeredi-Trotter. However, the topological methods have not been able to
prove sharp estimates in 3-dimensional incidence problems. For example, one may consider
the joints problem, which is closely related to the case k = 3 of Theorem 4.1.
Theorem 4.4. (Joints theorem, Guth-Katz, [GK]) A set of L lines in R

3 determines
. L3/2 joints. A joint is a point where three non-coplanar lines of the set intersect.

The joints theorem was proven using the algebraic method. Before that, it was attacked
using topological and cell-decomposition ideas related to the proofs of Szemeredi-Trotter.
These ideas made interesting progress in papers like [SW] and [FS]. For example, in [FS],
Feldman and Sharir proved that the number of joints is at most O(L1.62). However, no
argument of this kind has gotten a sharp result for joints.

To summarize, Theorem 4.1 combines the difficulties of the joints problem and the Szemeredi-
Trotter theorem. The proof requires a combination of algebra and topology. A key tool will
be the polynomial ham sandwich theorem, which we will use to build a cell decomposition
of R3 where the walls of the cells are defined by a polynomial of degree . L2S−1k−3. Our
cell decomposition creates a dichotomy. If most of the points lie in the interiors of the cells,
then we can prove our inequality using the cellular method as in [CEGSW]. If most of the
points lie in the walls of the cells, then the points lie in an algebraic surface of low degree,
and we can prove our inequality using the algebraic method as in [GK] or [EKS].

We now quote the polynomial ham sandwich theorem of Stone and Tukey. It was proved
in [ST]. For more discussion see [G].

We say that an algebraic hypersurface p(x1, . . . , xn) = 0 bisects a set U of finite but positive
volume if the volume of U ∩ {p < 0} and U ∩ {p > 0} is the same.
Theorem 4.5. Let U1, . . . , UM be any finite volume subsets of Rn having positive volume
with M =

(n+d
n

)

− 1. Then there is a real algebraic hypersurface of degree at most d that
bisects each Ui.

We would now like to adapt theorem 4.5 to finite sets of points. Given a set of points S,
we say that a polynomial p bisects it if at least half the points in S are in {p ≥ 0} and at
least half the points in S are in {p ≤ 0}. Note that some of the points can be on the zero
set. It is only important that there is not an absolute majority on one side or the other.
We now give a discrete version of the ham sandwich theorem.
Corollary 4.6. Let S1, . . . , SM be disjoint finite set of points in Rn with M =

(

n+d
n

)

− 1.
Then there is a real algebraic hypersurface of degree at most d that bisects each Ui.

Proof. Fix ǫ > 0 to be the minimum distance between any of the points in the sets Sj .

13



For any ǫ
2
> δ > 0 define Uj,δ to be the union of closed δ balls centered at points of Sj .

We obtain a polynomial pδ of degree d which bisects the Uj,δ by Theorem 4.5. We find a
sequence {δj} converging to 0 so that pδj converge in the space of polynomials of degree d.
We let p be the limiting polynomial.

Let V +
j be the set of points at distance ≤ δj from the set where pδj ≥ −δj and V −

j be the
set of points at distance ≤ δj from the set where pδj ≤ δj . Clearly for each j and i, we

have that V +
j and V −

j contain at least half the points in each Si.

Now, we can work in the set K defined as the union of all the ǫ-balls centered around
points in any of the Si’s. Clearly K is compact so pδj is converging uniformly on K. Thus
if we let V + and V − be the sets where p ≥ 0 and p ≤ 0 respectively, we have that

V + = closure(

∞
⋂

m=1

∞
⋃

j=m

V +
j )

and

V − = closure(

∞
⋂

m=1

∞
⋃

j=m

V −
j )

Thus p bisects each Si.

An important special case of Theorem 4.1 is the uniform case where each point has ∼ k
lines through it and each line contains about the same number of points. We will first
prove the theorem under some uniformity hypotheses. Later we will reduce the general
theorem to this case by simple arguments.
Lemma 4.7. Let k ≥ 3. Let L be a set of L lines in R

3 with at most B lines in any plane.
Let S be a set of S points in R

3 so that each point intersects between k and 2k lines of L.

Also, we assume that there are ≥ 1
100

L lines in L which each contain ≥ 1
100

SkL−1 points
of S.

Then S ≤ C[L3/2k−2 + LBk−3 + Lk−1].

Proof. If S ≤ Lk−1, then we are done. So from now on, we assume that S > Lk−1.

Next we apply the Szemeredi-Trotter theorem. As stated the Szemeredi-Trotter theorem
applies to lines and points in R

2. But if we take a generic projection from R
3 to R

2 we will
get a set of lines with at least as many k-fold incidences. Therefore, the Szemeredi-Trotter
theorem also applies to lines in R

3 and we get S . L2k−3+Lk−1. Since we know S > Lk−1,
we can conclude that S . L2k−3.
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We define d = AL2S−1k−3, where A is a large constant that we will choose later. Because
of the Szemeredi-Trotter bound, we can assume d ≥ 1, and so we can assume that d is an
integer by slightly adjusting our choice of A. If S is close to the Szemeredi-Trotter bound
then d is close to 1.

Now we come to the main idea of the paper. We are going to divide R3 into ∼ d3 cells using
an algebraic surface of degree ≤ d using the discrete ham sandwich theorem, Corollary 4.6.
Either many points of S will lie in the interiors of the cells, or else many points will lie
in the algebraic surface. If many points lie in the interiors of the cells, we will prove our
estimate using the cell method of incidence geometry as in [CEGSW]. If many points lie
in the algebraic surface, we will prove our estimate using the algebraic method as in [GK]
and [EKS].

First we produce our cell decomposition by repeatedly using Corollary 4.6. We will define
a sequence of polynomials p1, . . . , pJ as follows. We choose p1 to bisect S. Some of the
points of S live in the zero set of p1. The remainder can be subdivided in S+ and S−
living respectively in sets where p1 is strictly positive or strictly negative. Then we apply
corollary 4.6 again to find p2 which bisects S+ and S−. The degree of pj is . 2j/3. Then

we define p to be the product of these polynomials. It has degree .
∑J

j=1 2
j/3 . 2J/3. We

choose J so that 2J ∼ d3 but so the degree of p is ≤ d. The zero set of p, which we call
Z, divides R3 into ≤ 2J . d3 cells. (A cell is defined by giving the sign of p1, p2, ... , pj .
There are 2j different cells. Each cell is an open set of R3. Some cells may be empty. The
boundary of any cell is contained in Z.) Because we bisect the points at every step, each
cell contains ≤ S2−J . Sd−3 points of S.

What we do next depends on how many points lie in the interiors of cells and how many
points lie in Z. If there are ≥ 10−8S points of S in the interiors of cells, we say we are in
the cellular case. Otherwise, we say we are in the algebraic case.

Cellular case

Since the interiors of the cells contain & S points, and since we have . d3 cells each with
. Sd−3 points, there must be & d3 cells with & Sd−3 points in the interior of each. We
call these cells “full cells”.

If a full cell has ≤ k points in it, then we compute S . L3/2k−2. (We have Sd−3 . k.
Plugging in for d, SL−6S3k9 . k. Rearranging, S4 . L6k−8. )

On the other hand, if every full cell has > k points in it, we will reach a contradiction
because there are too many intersections between the lines L and the surface Z.

Consider a full cell, and let Scell denote the number of points of S in the interior of the
cell and Lcell the number of lines of L which intersect the interior of the cell. Using
Szemeredi-Trotter, we see that
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Scell . L2
cellk

−3 + Lcellk
−1.

Because Scell ≥ k, the first term on the right-hand side is dominant and we see that

Sd−3 . Scell . L2
cellk

−3.

Rearranging, we get a lower bound for the number of lines in the cell:

Lcell & S1/2d−3/2k3/2.

Now each of these lines intersects Z in the boundary of the full cell. There are ∼ d3 full
cells, so the total number of intersections between lines of L and Z is

& S1/2d3/2k3/2.

On the other hand, Z has degree . d. If l is a line of L which goes through the interior
of some cell, then l does not lie in Z, and so l intersects Z . d times. Therefore, the total
number of intersections between lines of L not lying in Z and Z is . Ld. Comparing the
last two estimates, we see that

S1/2d3/2k3/2 . Ld.

Rearranging and plugging in the definition of d, we see that A . 1. Now we choose A
sufficiently large compared to the constants in our argument and we get a contradiction.

Algebraic case

The arguments in the algebraic case are very similar to those in [GK] and [EKS]. We
will give a self-contained presentation, but the reader may consult these papers for longer
explanations of certain points.

Now we may assume that < 10−8S points of S lie in the interiors of the cells. We let S1

denote the subset of S lying in Z. We know that |S \S1| < 10−8S.

Now we define L1 to be the set of lines in L which contain at least 10−8SkL−1 points of
S1.

If this number 10−8SkL−1 is . d, then we compute that S . L3/2k−2, and we are done.
(Plugging in the definition of d, we would have, SkL−1 . L2S−1k−3 and so S2 . L3k−4. )
So we can assume that each line of L1 meets > d points of S1 ⊂ Z. Therefore, every line
in L1 lies in Z.
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We have slightly pruned our lines and points, but the pair (L1,S1) still contains many
high incidence points. Each line l in L \L1 contains < 10−8SkL−1 incidences with S1. So
the total number of incidences between L \ L1 and S1 is ≤ 10−8Sk. Each point of S1 has
≥ k incidences with lines in L. Define S2 to be the subset of S1 that intersects at least
(4/5)k lines of L1. If p is a point in S1 \S2, then p must intersect at least (1/5)k lines
from L \ L1. Therefore,

|S1 \S2|(1/5)k ≤ 10−8Sk.

In other words, |S1 \S2| ≤ (1/2)10−7S, and so |S \S2| ≤ 10−7S.

Now each point of S2 ⊂ Z is a special point of the variety Z. A point x ∈ S2 has
≥ (4/5)k ≥ 12/5 > 2 lines of L1 passing through it. (Here we use k ≥ 3.) These lines lie
in the variety Z. If the lines are not coplanar, then x is a singular point of Z. (If x were
a regular point of Z, all the lines would have to lie in the tangent plane to Z at x.) If x
is non-singular, then the lines of L1 thru x are coplanar. In this case, x is a flat point of
Z: a non-singular point at which the second fundamental form of Z is zero. If the second
fundamental form were non-zero, then the non-trivial quadratic surface that agrees with
Z to order 2 at the point x would have to contain > 2 lines, and this is impossible. We
write S2 = Ssing ∪Sflat.

Now we define L2 ⊂ L to be the set of lines containing ≥ (1/200)SkL−1 points of S2.
Since S2 ⊂ S1, a line in L2 contains ≥ 10−8SkL−1 points of S1, and so L2 ⊂ L1.

Our uniformity hypothesis will allow us to prove that L2 is not too small. Recall that we
assumed there are ≥ 1

100
L lines in L which each contain ≥ 1

100
SkL−1 points of S. Not

all of these lines need to contain ≥ 1
200

SkL−1 points of S2, but most of them do. There
are only 10−7S points in S \ S2. Each of these points lies in ≤ 2k lines of L. So they
contribute only 2 ·10−7Sk incidences. So there are still at least 1

200
lines in L which contain

at least 1
200

SkL−1 points of S2. In other words, L2 contains at least (1/200)L lines.

We define Lsing ⊂ L2 to be the set of lines in L2 containing at least (1/400)SkL−1 points
of Ssing. Similarly, we define Lflat ⊂ L2 to be the set of lines in L2 containing at least
(1/400)SkL−1 points of Sflat. Each line in L2 is either in Lsing or in Lflat, maybe both.
So either |Lsing| ≥ (1/400)L or |Lflat| ≥ (1/400)L. We call these cases the singular subcase
and the flat subcase. They are subcases of the algebraic case.

The singular subcase

Recall that Z is the vanishing set of a polynomial p of degree ≤ d. We can assume that p is
square-free. We recall that the singular set of Z is defined to be the set of points x where
p(x) = 0 and ∇p(x) = 0. Recall that ∇p(x) is the gradient vector (∂1p(x), ∂2p(x), ∂3p(x)).
Because p is square-free, the singular part of Z is a subvariety of dimension ≤ 1. Its
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1-dimensional part has degree ≤ 6d2, and so the singular part of Z contains ≤ 6d2 lines.
This estimate is a consequence of Bezout’s theorem - see Lemma 3.1. See [GK] for a more
detailed explanation.

Each line in Lsing contains & SkL−1 singular points of Z. If the number of singular points
on a line is ≤ d, then we compute S . L3/2k−2. (We have SkL−1 . d . L2S−1k−3. Hence
S2 . L3k−4. ) So we may assume each line of Lsing contains > d singular points of Z.
Now p vanishes at each of these points, so it vanishes on the entire line. Also, each ∂ip is
a polynomial of degree < d, and it vanishes at the singular points, so it vanishes on the
entire line. So we conclude that every line in Lsing is contained in the singular set of Z.

Since Lsing contains & L lines, and the singular set of Z contains . d2 lines, we can
conclude that L . d2 . L4S−2k−6. Rearranging we get S2 . L3k−6 and so S . L3/2k−3.

The flat subcase

Recall that a non-singular point x ∈ Z is called flat if the second fundamental form of Z
vanishes at x. This definition is not very algebraic at first sight, but it can be turned into
an algebraic condition.

Lemma 4.8. Let x be a non-singular point of the variety Z defined by p(x) = 0. Then x
is flat if and only if the following three polynomials vanish at x:

∇ej×∇pp×∇p, j = 1, 2, 3.

Here, ej are the coordinate vectors of R3, and × denotes the cross product of vectors. For
more explanation, see Section 3 of [GK].

We define the variety Zflat as {x|p(x) = 0,∇ej×∇pp×∇p(x) = 0, j = 1, 2, 3}. The variety
Zflat is the closure of the set of flat non-singular points of Z.

Each of the polynomials in Lemma 4.8 has degree ≤ 3d. (Recall that our polynomial p has
degree ≤ d.) Therefore, if a line contains more than 3d flat points of Z then the line lies
in Zflat.

Each line in Lflat contains & SkL−1 flat points of Z. If one of the lines has ≤ 3d flat points,
then SkL−1 . d and we conclude S . L3/2k−2 as above. So we may assume that every
line of Lflat lies in Zflat.

Now the variety Z has several irreducible components. Some may be planes and others are
not planes. We write Z = Zplane ∪ Z ′ where Zplane is a union of planes and Z ′ is a union
of irreducible surfaces which are not planes. Each line in Z lies in one of the irreducible
components of Z - in particular it lies either in Zplane or in Z ′.
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If an entire irreducible component is flat, then the component is a plane. So the variety
Zflat contains Zplane, but its intersection with Z ′ has dimension ≤ 1. The 1-dimensional
part of the variety Zflat has degree . d2, and so it contains . d2 lines. In particular Zflat

contains . d2 lines in Z ′.

If half the lines in Lflat lie in Z ′, then (1/800)L . d2 . L4S−2k−6, and we conclude
S . L3/2k−3. So from now on, we may assume that half the lines in Lflat lie in Zplane.

Now Zplane is a union of ≤ d planes. We are now in the case that these planes contain
≥ (1/800)L lines. One of the planes must contain & L/d lines. By assumption, any plane
contains at most B lines of L. Therefore, L/d . B. Plugging in the value of d, we see that
L−1Sk3 . B and so S . BLk−3.

We now prove a more general case of Lemma 4.7, where we no longer assume that many
lines have roughly the average number of points.
Theorem 4.9. Let k ≥ 3. Let L be a set of L lines in R

3 with ≤ B lines in any plane.
Let S be a set of S points so that each point meets between k and 2k lines of L.

Then S ≤ C[L3/2k−2 + LBk−3 + Lk−1].

Proof. Let L1 be the subset of lines in L which contain ≥ (1/100)SkL−1 points of S. If
|L1| ≥ (1/100)L, then we have all the hypotheses of Lemma 4.7, and we may conclude

S ≤ C0[L
3/2k−2 + LBk−3 + Lk−1].

We are going to prove that S obeys this same estimate, with the same constant, regardless
of the size of L1. The proof will go by induction on the number of lines.

From now on we assume that |L1| ≤ (1/100)L. We define S
′ ⊂ S to be the set of points

with ≥ (9/10)k incidences with lines of L1. The number of incidences between S and L\L1

is ≤ (1/100)Sk. Therefore, the size of S′ is at least (9/10)S.

A point of S′ has at least (9/10)k incidences with L1 and at most 2k incidences with L1.
This is a slightly larger range than we have considered before. In order to do induction,
we need to reduce the range. We observe S′ = S

′
+∪S

′
−, where S

′
+ consists of points with

≥ k incidences to L1 and S
′
− consists of points with ≤ k incidences with L1. We define S1

to be the larger of S′
+ and S

′
−. It has ≥ (9/20)S points in it.

If we picked S1 = S
′
+ then we define k1 = k. If we picked S1 = S

′
− then we define k1

to be the smallest integer ≥ (9/10)k. Each point in S1 has at least k1 and at most 2k1
incidences with lines of L1. Also, k1 is an integer ≥ (9/10)k ≥ 27/10, so k1 ≥ 3.
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The set of lines L1 and the set of points S1 obey all the hypotheses of Theorem 4.9 (using
k1 in place of k and using the same B). There are fewer lines in L1 than in L. Doing
induction on the number of lines, we may assume that our result holds for these sets. If
we denote |L1| = L1 and |S1| = S1, we get

S1 ≤ C0[L
3/2
1 k−2

1 +BL1k
−3
1 + L1k

−1
1 ].

Now S ≤ (20/9)S1. Also, L1 ≤ (1/100)L. And k1 ≥ (9/10)k.

Therefore,

S ≤ (20/9)S1 ≤ [(20/9)(1/100)(10/9)3 ]C0[L
3/2k−2 + LBk−3 + Lk−1].

The bracketed product of fractions is < 1, and so S obeys the desired bound.

Finally, we can prove Theorem 4.1. This is an easy argument given Theorem 4.9.

Proof. Let k ≥ 3. Suppose that L is a set of L lines with ≤ B in any plane. Suppose that
S is a set of points, each intersecting at least k lines of L.

We subdivide the points S = ∪∞
j=0Sj, where Sj consists of the points incident to at least

2jk lines and at most 2j+1k lines. We define kj to be 2jk. Then Theorem 4.9 applies to
(L,Sj , kj , B), and we conclude that

|Sj | ≤ C0[L
3/2k−2

j + LBk−3
j + Lk−1

j ]

≤ 2−jC0[L
3/2k−2 + LBk−3 + Lk−1].

Now S ≤ ∑

j |Sj | ≤ 2C0[L
3/2k−2 + LBk−3 + Lk−1].
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