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The local integration of Leibniz algebras

Simon Covez

Abstract

This article gives a local answer to the coquecigrue problem. Hereby we mean the problem,
formulated by J-L. Loday in [Lod93], is that of finding a generalization of the Lie’s third
theorem for Leibniz algebra. That is, we search a manifold provided with an algebraic structure
which generalizes the structure of a (local) Lie group, and such that the tangent space at a
distinguished point is a Leibniz algebra structure. Moreover, when the Leibniz algebra is a
Lie algebra, we want that the integrating manifold is a Lie group. In his article [Kin07], M.K.
Kinyon solves the particular case of split Leibniz algebras. He shows, in particular, that the
tangent space at the neutral element of a Lie rack is provided with a Leibniz algebra structure.
Hence it seemed reasonable to think that Lie racks give a solution to the coquecigrue problem,
but M.K. Kinyon also showed that a Lie algebra can be integrated into a Lie rack which is not
a Lie group. Therefore, we have to specify inside the category of Lie racks, which objects are
the coquecigrues. In this article we give a local solution to this problem. We show that every
Leibniz algebra becomes integrated into a local augmented Lie rack. The proof is inspired by E.
Cartan’s proof of Lie’s third theorem, and, viewing a Leibniz algebra as a central extension by
some center, proceeds by integrating explicitely the corresponding Leibniz 2-cocycle into a rack
2-cocycle. This proof gives us a way to construct local augmented Lie racks which integrate
Leibniz algebras, and this article ends with examples of the integration of non split Leibniz
algebras in dimension 4 and 5.

Introduction

The main result of this article is a local answer to the coquecigrue problem. By coquecigrue problem,
we mean the problem of integrating Leibniz algebras. This question was formulated by J.-L. Loday
in [Lod93] and consists in finding a generalisation of the Lie’s third theorem for Leibniz algebras.
This theorem establishes that for every Lie algebra g, there exists a Lie group G such that its
tangent space at 1 is provided with a structure of Lie algebra isomorphic to g. Leibniz algebras
are generalisations of Lie algebras, they are their non-commutative analogues. Precisely, a (left)
Leibniz algebra (over R) is an R-vector space g provided with a bilinear map [−,−] : g × g → g

called the bracket and satisfying the (left) Leibniz identity for all x, y and z in g

[x, [y, z]] = [[x, y], z] + [y, [x, z]]

Hence, a natural question is to know if, for every Leibniz algebra, there exists a manifold provided
with an algebraic structure generalizing the group structure, and such that the tangent space in a
distinguished point, called 1, can be provided with a Leibniz algebra structure isomorphic to the
given Leibniz algebra. As we want this integration to be the generalization of the Lie algebra case,
we also require that, when the Leibniz algebra is a Lie algebra, the integrating manifold is a Lie
group.
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One result about this question was given by M.K. Kinyon in [Kin07]. In his article, he solves
the particular case of split Leibniz algebras, that is Leibniz algebras which are isomorphic to the
demisemidirect product of a Lie algebra and a module over this Lie algebra. That is, Leibniz
algebras which are isomorphic to g⊕a as vector space, where the bracket is given by [(x, a), (y, b)] =
([x, y], x.a). In this case, he shows that the algebraic structure which answers the problem is the
structure of a digroup. A digroup is a set with two binary operation ⊢ and ⊣, a neutral element 1
and some compatibility conditions. More precisely, Kinyon shows that a digroup structure induces
a pointed rack structure (pointed in 1), and it is this algebraic structure which gives the tangent
space at 1 a Leibniz algebra structure. Of course, not every Leibniz algebra is isomorphic to a
demisemidirect product, so we have to find a more general structure to solve the problem. One
should think that the right structure is that of a pointed rack, but M.K. Kinyon showed in [Kin07]
that the second condition (Lie algebra becomes integrated into a Lie group) is not always fulfilled.
Thus we have to specify the structure inside the category of pointed racks.

In this article we don’t give a complete answer to the coquecigrue problem in the sense that
we only construct a local algebraic structure and not a global one. Indeed, to define an algebraic
structure on a tangent space at a given point on a manifold, we just need an algebraic structure
in a neighborhood of this point. We will show in chapter 3 that a local answer to the problem
is given by the pointed augmented local racks which are abelian extensions of a Lie group by an
anti-symmetric module.

Our approach to the problem is similar to the one given by E. Cartan in [Car30]. The main idea
comes from the fact that we know the Lie’s first and second theorem on a class of Lie algebras. For
example, every abelian Lie algebra or every Lie subalgebra of the Lie algebra End(V ) is integrable
(using the Lie’s first theorem). More precisely, let g be a Lie algebra, Z(g) its center and g0 the
quotient of g by Z(g). The Lie algebra Z(g) is abelian and g0 is a Lie subalgebra of End(g), thus
there exist Lie groups, respectively Z(g) and G0, which integrate these Lie algebras. As a vector
space, g is isomorphic to the direct sum g0 ⊕Z(g), thus the tangent space at (1, 0) of the manifold
G0 ×Z(g) is isomorphic to g. As a Lie algebra, g is isomorphic to the central extension g0 ⊕ω Z(g)
where ω is a Lie 2-cocycle on g0 with coefficients in Z(g). That is, the bracket on g0 ⊕ω Z(g) is
defined by

[(x, a), (y, b)] =
(
[x, y], ω(x, y)

)
(1)

where ω is an anti-symmetric bilinear form on g0 with value on Z(g) which satisfies the Lie algebra
cocycle identity

ω([x, y], z)− ω(x, [y, z]) + ω(y, [x, z]) = 0

Hence we have to find a group structure on G0 × Z(g) which gives this Lie algebra structure on
the tangent space at (1, 0). It is clear that the bracket (1) is completely determined by the bracket
on g0 and the cocycle ω. Hence, the only thing we have to understand is ω. The Lie algebra g is
a central extension of g0 by Z(g), thus we can hope that the Lie group which integrates g should
be a central extension of G0 by Z(g). To follow this idea, we have to find a group 2-cocycle on G0

with coefficients in Z(g). In this case, the group structure on G0 × Z(g) is given by

(g, a).(h, b) =
(
gh, a+ b+ f(g, h)

)
(2)

where f is a map from G×G→ Z(g) vanishing on (1, g) and (g, 1) and satisfying the group cocycle
identity

f(h, k)− f(gh, k) + f(g, hk)− f(g, h) = 0
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With such a cocycle, the conjugation in the group is given by the formula

(g, a).(h, b).(g, a)−1 =
(
ghg−1, a+ f(g, h)− f(ghg−1, g)

)
(3)

and by imposing a smoothness condition on f in a neighborhood of 1, we can differentiate this
formula twice, and obtain a bracket on g0 ⊕ Z(g) defined by

[(x, a), (y, b)] =
(
[x, y], D2f(x, y)

)

whereD2f(x, y) = d2f(1, 1)((x, 0), (0, y))−d2f(1, 1)((y, 0), (0, x)). Thus, ifD2f(x, y) equals ω(x, y),
we recover the bracket (1). Hence, if we associate to ω a group cocyle f satisfying some smoothness
conditions and such that D2f = ω, then our integration problem is solved. This can be done in
two steps. The first one consists in finding a local Lie group cocycle defined around 1. Precisely, we
want a map f defined on a subset of G0×G0 containing (1, 1) with values in Z(g) which satisfies the
local group cocycle identity (cf. [Est54] for a definition of local group). We can construct explicitely
such a local group cocycle. This construction is the following one (cf. Lemma 5.2 in [Nee04]) :

Let V be an open convex 0-neighborhood in g0 and φ : V → G0 a chart of G0 with φ(0) = 1
and dφ(0) = idg0 . For all (g, h) ∈ φ(V )× φ(V ) such that gh ∈ φ(V ) let us define f(g, h) ∈ Z(g) by
the formula

f(g, h) =

∫

γg,h

ωinv

where ωinv ∈ Ω2(G0, Z(g)) is the invariant differential form on G0 associated to ω and γg,h is the
smooth singular 2-chain defined by

γg,h(t, s) = φ

(
t

(
φ−1

(
gφ
(
sφ−1(h)

)))
+ s

(
φ−1

(
gφ
(
(1− t)φ−1(h)

)))
)

The formula for f defines a smooth function such that D2f(x, y) = ω(x, y). We now only have to
check whether f satisfies the local group cocycle identity. Let (g, h, k) ∈ φ(V )3 such that gh, hk
and ghk are in φ(V ). We have

f(h, k)− f(gh, k) + f(g, hk)− f(g, h) =

∫

γh,k

ωinv −

∫

γgh,k

ωinv +

∫

γg,hk

ωinv −

∫

γg,h

ωinv

=

∫

∂γg,h,k

ωinv

where γg,h,k is a smooth singular 3-chain in φ(V ) such that ∂γg,h,k = gγh,k − γgh,k + γg,hk − γg,h
(such a chain exists because φ(V ) is homeomorphic to the convex open subset V of g0). Thus

f(h, k)− f(gh, k) + f(g, hk)− f(g, h) =

∫

∂γg,h,k

ωinv

=

∫

γg,h,k

ddRω
inv

= 0
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because ωinv is a closed 2-form. Hence, we have associated to ω a local group 2-cocycle, smooth
in a neighborhood in 1, and such that D2f(x, y) = ω(x, y). Thus we can define a local Lie group
structure on G0 × Z(g) by setting

(g, a)(h, b) =
(
gh, a+ g.b+ f(g, h)

)
,

and the tangent space at (1, 0) of this local Lie group is isomorphic to g. If we want a global
structure, we have to extend this local cocycle to the whole group G0. First P.A. Smith ([Smi50,
Smi51]), then W.T. Van Est ([Est62]) have shown that it is precisely this enlargement which may
meet an obstruction coming from both π2(G0) and π1(G0). In finite dimension, π2(G0) = 0, thus
there is no obstruction to integrate Lie algebras. This equality is no longer true in infinite dimension,
hence this obstruction prevents the integration of infinite dimension Lie algebras into global Lie
groups (cf. [Nee02, Nee04]).

To integrate Leibniz algebras into pointed racks, we follow a similar approach. In this context,
we use the fact that we know how to integrate any (finite dimensional) Lie subalgebra of End(V )
for V a vector space. In a similar way as the Lie algebra case, we associate to any Leibniz algebra
an abelian extension of a Lie algebra g0 by an anti-symmetric representation ZL(g). As we have
the theorem for Lie algebras, we can integrate g0 and ZL(g) into the Lie groups G0 and ZL(g),
and, using the Lie’s second theorem, ZL(g) is a G0-module. Then, the main difficulty becomes the
integration of the Leibniz cocycle into a local Lie rack cocycle. In chapter 3 we explain how to
solve this problem. We make a similar construction as in the Lie algebra case, but in this context,
there are several difficulties which appear. One of them is that our cocycle is not anti-symmetric,
so we can’t consider the equivariant form associated to it and integrate this form. To solve this
problem, we will use Proposition 1.1 which, in particular, establishes an isomorphism from the 2-nd
cohomology group of a Leibniz algebra g with coefficients in an anti-symmetric representation aa

to the 1-st cohomology group of g with coefficients in the symmetric representation Hom(g, a)s.
In this way, we get a 1-form that we can now integrate. Another difficulty is to specify on which
domain this 1-form should be integrated. In the Lie algebra case, we integrate over a 2-simplex
and the cocycle identity is verified by integrating over a 3-simplex, whereas in our context we will
replace the 2-simplex by the 2-cube and the 3-simplex by a 3-cube.

Let us describe the content of the article section-wise.

Section 1: Leibniz algebras

This whole section, except the Proposition 1.1, is based on [Lod93, LP93, Lod98]. We first give
the basic definitions we need about Leibniz algebras. Unlike J.-L. Loday and T. Pirashvili, who
work with right Leibniz algebras, we study left Leibniz algebras. Hence, we have to translate
all the definitions needed into our context. As we have seen above, we translate our integration
problem into a cohomological problem, thus we need a cohomology theory for Leibniz algebras
and, a fortiori, a notion of representation. We take the definition of a representation of a Leibniz
algebra given by J.-L. Loday and T. Pirashvili in [LP93]. We end this section by a fondamental
result (Proposition 1.1). This proposition establishes an isomorphism of cochain complexes from
CLn(g, aa) to CLn−1(g, Hom(g, a)s). The important fact in this result is the transfer from an anti-
symmetric representation to a symmetric one. This will be useful when we will have to associate a
local Lie rack 2-cocycle to a Leibniz 2-cocycle.
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Section 2: Lie racks

The notion of rack comes from topology, in particular, the theory of invariants of knots and links (cf.
for example [FR]). It is M.K. Kinyon in [Kin07] who was the first to link racks to Leibniz algebras.
The idea of linking these two structures comes from the case of Lie groups and Lie algebras and
in particular from the construction of the bracket using the conjugation. Indeed, a way to define
a bracket on the tangent space at 1 of a Lie group is to differentiate the conjugation morphism
twice. Let G a Lie group, the conjugation is the group morphism c : G → Aut(G) defined by
cg(h) = ghg−1. If we differentiate this expression with respect to the variable h at 1, we obtain a
Lie group morphism Ad : G→ Aut(g). We can still derive this morphism at 1 to obtain a linear map
ad : g → End(g). Then, we are allowed to define a bracket [−,−] on g by setting [x, y] = ad(x)(y).
We can show that this bracket satisfies the left Leibniz identity, and that this identity is induced
by the equality cg(ch(k)) = ccg(h)(cg(k)). Thus, if we denote cg(h) by g⊲h, the only properties we
use to define a Lie bracket on g are

1. g⊲ : G→ G is a bijection for all g ∈ G.

2. g⊲(h⊲k) = (g⊲h)⊲(g⊲k) for all g, h, k ∈ G

3. g⊲1 = 1 and 1⊲g = g for all g ∈ G.

Hence, we call (left) rack, a set provided with a binary operation ⊲ satisfying the first and the
second condition. A rack is called pointed if there exists an element 1 which satisfies the third
condition. We begin this chapter by giving definitions and examples, for this we follow [FR]. They
work with right racks, hence, as in the Leibniz algebra case, we translate the definitions to left
racks. In particular, we give the most important example called (pointed) augmented rack. This
example presents similarities with crossed modules of groups, and in this case, the rack structure
is induced by a group action.

As in the group case, we want to construct a pointed rack associated to a Leibniz algebra using
an abelian extension. Hence, we need a cohomology theory where the second cohomology group
corresponds to the extension classes of a rack by a module. We take the definitions given by N.
Andruskiewitsch and M. Graña in [AG03].

At the end of this section, we give the definitions of local rack cohomology and (local) Lie rack
cohomology.

Section 3: Lie racks and Leibniz algebras

This section is the heart of this article. It gives the local solution for the coquecigrue problem. To
our knowledge, all the results in this chapter are new, except Proposition 3.1 due to M.K. Kinyon
([Kin07]). First, we recall the link between (local) Lie racks and Leibniz algebras explained by M.K.
Kinyon in [Kin07] (Proposition 3.1). Then, we study the passage from smooth As(X)-modules to
Leibniz representations (Proposition 3.9) and (local) Lie rack cohomology to Leibniz cohomology.
We define a morphism from the (local) Lie rack cohomology of a rack X with coefficients in a
As(X)-module As (resp. Aa) to the Leibniz cohomology of the Leibniz algebra associated to X
with coefficients in as = T0A (resp. aa) (Proposition 3.10).

The end of this section (section 3.4 to 3.7) is on the integration of Leibniz algebras into local Lie
racks. We use the same approach as E. Cartan for the Lie groups case. That is, for every Leibniz
algebra, we consider the abelian extension by the left center and integrate it. This extension is
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caracterized by a 2-cocycle, and we construct (Proposition 3.22) a local Lie rack 2-cocycle integrating
it by an explicit construction similar to the one explained in the Lie group case. This construction
is summarized in our main theorem (Theorem 3.28). We remark that the constructed 2-cocycle
has more structure (Proposition 3.26). That is, the rack cocycle identity is induced by another
one. This other identity permits us to provide our constructed local Lie rack with a structure of
augmented local Lie rack (Proposition 3.31). We end this section with examples of the integration
of non split Leibniz algebras in dimension 4 and 5.

1 Leibniz algebras

As it is written in the introduction, we work with left Leibniz algebras instead of right Leibniz
algebras. The main reason comes from the fact that M.K. Kinyon works in this context in his
article [Kin07]. Indeed, this article is our starting point of the integration problem for Leibniz
algebras. Thus, we have chosen to work in this context.

A (left) Leibniz algebra (over R) is a vector space g (over R) provided with a bracket [−,−] :
g⊗ g → g, which satisfies the left Leibniz identity

[x, [y, z]] = [[x, y], z] + [y, [x, z]].

Remark that an equivalent way to define a left Leibniz algebra is to say that, for all x ∈ g, [x,−] is a
derivation for the bracket [−,−]. The first example of a Leibniz algebra is a Lie algebra. Indeed, if
the bracket is anti-symmetric, then the Leibniz identity is equivalent to the Jacobi identity. Hence,
we have a functor inc : Lie → Leib. This functor has a left adjoint (−)Lie : Leib → Lie which is
defined on the objects by gLie = g/gann, where gann is the two-sided ideal of g generated by the
set {[x, x] ∈ g |x ∈ g}. We can remark that there are other ways to construct a Lie algebra from
a Leibniz algebra. One is to quotient g by the left center ZL(g) = {x ∈ g | [x,−] = 0}, but this
construction is not functorial.

To define a cohomology theory for Leibniz algebras, we need a notion of representation of such
algebraic structure. As we work with left Leibniz algebra, we have to translate the definition given
by J.L. Loday and T. Pirashvili in their article [LP93]. In our context, a representation over a
Leibniz algebra g, becomes a vector space M provided with two linear maps [−,−]L : g⊗M →M
and [−,−]R :M ⊗ g → g, satisfying the following three axioms

[x, [y,m]L]L = [[x, y],m]L + [y, [x,m]L]L (LLM)

[x, [m, y]R]L = [[x,m]L, y]R + [m, [x, y]]R (LML)

[m, [x, y]]R = [[m,x]R, y]R + [x, [m, y]R]L (MLL)

Recall that, for a Lie algebra g, a representation of g is a vector space M provided with a linear
map [−,−] : g ⊗M → M satisfying [[x, y],m] = [x, [y,m]] − [y, [x,m]]. A Lie algebra is a Leibniz
algebra, hence we want that a Lie representation M of a Lie algebra g, is a Leibniz representation
of g. We have two canonical choices for putting a Leibniz representation structure on M . One
possibility is by setting [−,−]L = [−,−] and [−,−]R = −[−,−], and a second one is by setting
[−,−]L = [−,−] and [−,−]R = 0. These Leibniz representations are examples of particular Leibniz
representations. The first one is an example of a symmetric representation, and the second one is
an example of an anti-symmetric representation. A symmetric representation is a Leibniz represen-
tation where [−,−]L = −[−,−]R and an anti-symmetric representation is a Leibniz representation
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where [−,−]R = 0. A Leibniz representation which is symmetric and anti-symmetric is called trivial.

Now, we are ready to define a cohomology theory for Leibniz algebras. The existence of a
cohomology (and homology) theory for these algebras is one of the main motivation for studying
them because, restricted to Lie algebras, this theory gives us new invariants (cf. [Lod93]). For g

a Leibniz algebra and M a representation of g, we define a cochain complex {CLn(g,M), dLn}n∈N

by setting
CLn(g,M) = Hom(g⊗n,M)

and

dLnω(x0, . . . , xn) =

n−1∑

i=0

(−1)i[xi, ω(x0, . . . , x̂i, . . . , xn)]L + (−1)n−1[ω(x0, . . . , xn−1), xn]R

+
∑

0≤i<j≤n

(−1)i+1ω(x0, . . . , xj−1, [xi, xj ], xj+1, . . . , xn)

To prove that dLn+1 ◦ dLn = 0, we use Cartan’s formulas. These formulas are described in [LP93]
in the right Leibniz algebra context, but we can adapt them easily in our context.

Like for many algebraic structures, the second cohomology group of a Leibniz algebra g with
coefficients in a representation M is in bijection with the set of equivalence classes of abelian
extensions of g by M (cf. [LP93]). An abelian extension of a Leibniz algebra g by M is a Leibniz

algebra ĝ such that, M
i
→֒ ĝ

p
։ g is a short exact sequence of Leibniz algebra (where M is

considered as an abelian Leibniz algebra) and the representation structure of M is compatible with
the representation structure induced by this short exact sequence. That is, [m,x]R = i−1[i(m), s(x)]
and [x,m]L = i−1[s(x), i(m)] where s is a section of p and the bracket is that of ĝ (of course, we
have to justify that this representation structure of g on M induced by the short exact sequence
doesn’t depend on s, but we deduce it easily from the fact that the difference of two sections of p
is in i(M)).

There are canonical abelian extensions associated to a Leibniz algebra. The one we will use to
integrate Leibniz algebra is the abelian extension by the left center

ZL(g)
i
→֒ g

p
։ g0

where g0 := g/ZL(g). This is an extension of a Lie algebra by an anti-symmetric representation.
In a sense, a symmetric representation is closer to a Lie representation that of an anti-symmetric
representation. Hence, it is convenient to pass from a anti-symmetric representation to a symmetric
representation. Let g be a Lie algebra and M a Lie representation of g, then we define a Lie
representation structure on Hom(g,M) by setting

(x.α)(y) := x.(α(y)) − α([x, y])

for all x, y ∈ g and α ∈ Hom(g,M). The following proposition establishes an isomorphism from
HLn(g,Ma) to HLn−1(g, Hom(g,M)s), where Ma (resp. Hom(g,M)s) means that M (resp.
Hom(g,M)) is provided with a anti-symmetric (resp. symmetric) g-representation structure.

Proposition 1.1. Let g be a Lie algebra and M a Lie representation of g. We have an isomorphism
of cochain complexes

CLn(g,Ma)
τn

→ CLn−1(g, Hom(g,M)s)

7



given by ω 7→ τn(ω) where

τn(ω)(x1, . . . , xn−1)(xn) = ω(x1, . . . , xn)

Proof : This morphism is clearly an isomorphism ∀n ≥ 0. Moreover, we have

dLτn(ω)(x0, . . . , xn−1)(xn) =

n−2∑

i=0

(−1)i[xi, τ
n(ω)(x0, . . . , x̂i, . . . , xn−1)](xn)

+(−1)n−1[xn−1, τ
n(ω)(x0, . . . , xn−2)](xn)

+
∑

0≤i<j≤n−1

(−1)i+1τn(ω)(x0, . . . , xj−1, [xi, xj ], xj+1, . . . , xn−1)(xn)

=

n−1∑

i=0

(−1)i([xi, ω(x0, . . . , x̂i, . . . , xn−1, xn)]− ω(x0, . . . , x̂i, . . . , xn−1, [xi, xn]))

+
∑

0≤i<j≤n−1

(−1)i+1ω(x0, . . . , xj−1, [xi, xj ], xj+1, . . . , xn−1, xn)

=

n−1∑

i=0

(−1)i[xi, ω(x0, . . . , x̂i, . . . , xn−1, xn)]

+
∑

0≤i<j≤n

(−1)i+1ω(x0, . . . , xj−1, [xi, xj ], xj+1, . . . , xn−1, xn)

= dLω(x0, . . . , xn−1, xn)
= τn+1(dLω)(x0, . . . , xn−1)(xn)

Hence {τn}n≥0 is a morphism of cochain complexes.

�

2 Lie racks

2.1 Definitions and examples

Like in the Leibniz algebras case, we can define left racks and right racks. Because we have made
the choice to work with left Leibniz algebras, we take the definition of left racks. A (left) rack is a
set X provided with a product ⊲ : X ×X → X , which satisfies the left rack identity, that is for all
x, y, z ∈ X :

x⊲(y⊲z) = (x⊲y)⊲(x⊲z),

and such that x⊲− : X → X is a bijection for all x ∈ X . A rack is said to be pointed if there
exists an element 1 ∈ X , called the neutral element, which satisfies 1⊲x = x and x⊲1 = 1 for all
x ∈ X . A rack morphism is a map f : X → Y satisfying f(x⊲y) = f(x)⊲f(y), and a pointed rack
morphism is a rack morphism f such that f(1) = 1.

The first example of a rack is a group provided with the conjugation. Indeed, let G be a
group, we define a rack product ⊲ on G by setting g⊲h = ghg−1 for all g, h ∈ G. Clearly,
g⊲− is a bijection with inverse g−1⊲− and, an easy computation shows that the rack identity
is satisfied. Hence, we have a functor Conj : Group → Rack. This functor has a left adjoint
As : Rack → Group defined on the objects by As(X) = F (X)/ < {xyx−1(x⊲y−1) |x, y ∈ X} >
where F (X) is the free group generated by X , and < {xyx−1(x⊲y−1) |x, y ∈ X} > is the normal
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subgroup generated by {xyx−1(x⊲y−1) |x, y ∈ X}. We can remark that Conj(G) is a pointed
rack. Indeed, we have 1⊲g = g and g⊲1 = 1 for all g ∈ G, where 1 is the neutral element for
the group product. Hence, Conj is a functor from Group to PointedRack. This functor has a
left adjoint Asp : PointedRack → Group, defined on the objects by Asp(X) = As(X)/ < {[1]} >,
where < {[1]} > is the subgroup of As(X) generated by the class [1] ∈ As(X).

A second example, and maybe the most important, is the example of augmented racks. An

augmented rack is the data of a group G, a G-set X , and a map X
p
→ G satisfying the augmentation

identity, that is for all g ∈ G and x ∈ X

p(g.x) = gp(x)g−1.

Then, we define a rack structure on X by setting x⊲y = p(x).y. If there exists an element 1 ∈ X

such that p(1) = 1 and g.1 = 1 for all g ∈ G, then the augmented rack X
p
→ G is said pointed, and

the associated rack (X,⊲) is pointed. We can remark that crossed modules and precrossed modules
of groups are examples of augmented racks.

2.2 Pointed rack cohomology

To define a pointed rack cohomology theory, we need a good notion of pointed rack module. In this
article, we take the definition given by N. Andruskiewitsch and M. Graña in [AG03]. Let X be a
pointed rack, an X-module is an abelian group A, provided with two families of homomorphisms of
the abelian group A, (φx,y)x,y∈X and (ψx,y)x,y∈X , satisfying the following axioms

(M0) φx,y is an isomorphism.

(M1) φx,y⊲z ◦ φy,z = φx⊲y,x⊲z ◦ φx,z

(M2) φx,y⊲z ◦ ψy,z = ψx⊲y,x⊲z ◦ φx,y

(M3) ψx,y⊲z = φx⊲y,x⊲z ◦ ψx,z + ψx⊲y,x⊲z ◦ ψx,y

(M4) φ1,y = idA ∀y ∈ X and ψx,1 = 0 ∀x ∈ X

Remark 2.1. There is a more general definition of (pointed) rack module given by N. Jackson in
[Jac07], but we don’t need this degree of generality. This definition of pointed rack module coincides
with the definition of homogeneous pointed rack module given in [Jac07].

For example, there are two canonical X-module structures on an Asp(X)-module. Indeed, let A be
a Asp(X)-module, that is an abelian group provided with a group morphism ρ : Asp(X) → Aut(A),
the first X-module structure, called symmetric, that we can define on A is given for all x, y ∈ X by

φx,y(a) = ρx(a)

ψx,y(a) = a− ρx⊲y(a).

The second, called anti-symmetric, is given for all x, y ∈ X by

φx,y(a) = ρx(a)

ψx,y(a) = 0.

9



With this definition of module, N. Andruskiewitsch and M. Graña define a cohomology the-
ory for pointed racks. For X a pointed rack and A a X-module, they define a cochain complex
{CRn(X,A), dnR}n∈N by setting

CRn(X,A) = {f : Xn → A | f(x1, . . . , 1, . . . , xn) = 0}

and

dnRf(x1, . . . , xn+1) =
n∑

i=1

(−1)i−1
(
φx1⊲...⊲xi,x1⊲...⊲x̂i⊲...⊲xn+1

(f(x1, . . . , x̂i, . . . , xn+1))− f(x1, . . . , xi⊲xi+1, . . . , xi⊲xn+1)
)

+(−1)nψx1⊲...⊲xn,x1⊲...⊲xn−1⊲xn+1(f(x1, . . . , xn))

This complex is the same as the one defined in [Jac07], but in the left rack context. Adapting the
proof given by N. Jackson in [Jac07], one easily sees that the second cohomology group HR2(X,A)
is in bijection with the set of equivalence classes of abelian extensions of a pointed rack X by a
X-module A. An abelian extension of a pointed rack X by a X-module A is a surjective pointed

rack homomorphism E
p
։ X which satisfies the following axioms

(E0) for all x ∈ X , there is a simply transitively right action of A on p−1(x).

(E1) for all u ∈ p−1(x), v ∈ p−1(y), a ∈ A, we have (u.a)⊲v = (u⊲v).ψx,y(a).

(E2) for all u ∈ p−1(x), v ∈ p−1(y), a ∈ A, we have u⊲(v.a) = (u⊲v).φx,y(a).

and two extensions E1

p1

։ X , E2

p2

։ X are called equivalent, if there exists a pointed rack isomor-

phism E1
θ
→ E2 which satisfies the following axioms

1. p2 ◦ θ = p1.

2. for all x ∈ X,u ∈ p−1(x), a ∈ A, we have θ(u.a) = θ(u).a.

2.3 Lie racks

To generalize Lie groups, we need a pointed rack provided with a differentiable structure compatible
with the algebraic structure. This is the notion of Lie racks. A Lie rack is a smooth manifold X
provided with a pointed rack structure such that the product ⊲ is smooth, and such that for all
x ∈ X cx is a diffeomorphism. We will see in section 3 that the tangent space at the neutral
element of a Lie rack is provided with a Leibniz algebra structure.

Let X be a Lie rack, a X-module A is said smooth if A is a abelian Lie group, and if φ :
X×X×A→ A and ψ : X×X×A→ A are smooth. Then we can define a cohomology theory for Lie
racks with values in a smooth module. For this we define a cochain complex {CRn

s (X,A), d
n
R}n∈N

where CRn
s (X,A) is the set of functions f : Xn → A which are smooth in a neighborhood of

(1, . . . , 1) ∈ Xn and such that f(x1, . . . , 1, . . . , xn) = 0 for all x1, . . . , xn ∈ X . The formula for
the differential dR is the same as the one defined previously. We will see that a Lie rack cocycle
(respectively a coboundary) derives itself in a Leibniz algebra cocycle (respectively coboundary).
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2.4 Local racks

To define a Lie algebra structure on the tangent space at the neutral element of a Lie group, we
can remark that we only use the local Lie group structure in the neighborhood of 1. We will see
that this remark remains true for Lie racks and Leibniz algebras.

A local rack is a set X provided with a product ⊲ defined on a subset Ω of X ×X with values
in X , and such that the following axioms are satisfied:

1. If (x, y), (x, z), (y, z), (x, y⊲z) and (x⊲y, x⊲z) ∈ Ω, then x⊲(y⊲z) = (x⊲y)⊲(x⊲z).

2. If (x, y), (x, z) ∈ Ω and x⊲y = x⊲z, then y = z.

A local rack is said to be pointed if there is a element 1 ∈ X such that 1⊲x and x⊲1 are defined
for all x ∈ X and respectively equals to x and 1. We called this element the neutral element. Then
a local Lie rack is a pointed local rack (X,Ω, 1) where X is a smooth manifold, Ω is a open subset
of X , and ⊲ : Ω → X is smooth. For example, every Lie rack open subset containing the neutral
element is a local Lie rack. Given such a local Lie rack, we can define a associated cohomology
theory.

LetX be a Lie rack, U a subset ofX containing the neutral element 1 and A a smoothX-module.
We define for all n ∈ N, CRn

s (U,A) as the set of maps f : Un−loc → A, smooth in a neighborhood
of the neutral element, and such that f(x1, . . . , 1, . . . , xn) = 0. If A is not anti-symmetric, then
Un−loc is the subset of elements (x1, . . . , xn) of X × Un−1 satisfying xi1⊲ . . .⊲xij ∈ U , for all
i1 < · · · < ij , 2 ≤ j ≤ n. If A is anti-symmetric, Un−loc is the subset of elements (x1, . . . , xn) of
Xn−1×U satisfying xi1⊲ . . .⊲xij⊲xn ∈ U , for all i1 < · · · < ij < n, 1 ≤ j ≤ n−1. One easily checks
that the formula for the differential dR allows us to define a cochain complex {CRn

s (U,A), d
n
R}n∈N.

Then we define U-local Lie rack cohomology of X with coefficients in A as the cohomology of the
cochain complex {CRn

s (U,A), d
n
R}n∈N.

3 Lie racks and Leibniz algebras

3.1 From Lie racks to Leibniz algebras

In this section we construct a functor from the category of Lie racks to the category of Leibniz
algebras. The following proposition is in [Kin07].

Proposition 3.1. Let X be a Lie rack, then T1X is a Leibniz algebra.

Proof : Let X be a Lie rack, we denote by x the tangent space of X at 1. The conjugation ⊲

induces for all x ∈ X an automorphism of Lie racks cx : X → X defined by cx(y) = x⊲y. We define
for all x ∈ X

Adx = T1cx ∈ GL(x).

By definition we have cx⊲y = cx ◦ cy ◦ c
−1
x and c1 = id. Hence it gives us a morphism of Lie racks

Ad : X → GL(x).

We can differentiate Ad at 1, and we obtain a linear map

ad : x → gl(x).

11



Then we define a bracket [−,−] on x = T1X by setting

[u, v] = ad(u)(v).

Now, we have to verify that this bracket satisfies the Leibniz identity, that is

[u, [v, w]] = [[u, v], w] + [v, [u,w]].

To show this identity, we use the rack identity

x⊲(y⊲z) = (x⊲y)⊲(x⊲z).

Let u, v, w ∈ x and γu (resp. γv and γw) be a smooth path in X , such that γu(0) = 1 and
∂

∂s

∣∣∣∣
s=0

γu(s) = u (resp. γv(0) = γw(0) = 1,
∂

∂s

∣∣∣∣
s=0

γv(s) = v and
∂

∂s

∣∣∣∣
s=0

γw(s) = w). We have

∂

∂t

∣∣∣∣
t=0

(γu(r)⊲(γv(s)⊲γw(t))) =
∂

∂t

∣∣∣∣
t=0

((cγu(r) ◦ cγv(s))(γw(t))

= (Adγu(r) ◦Adγv(s))(w)

and

∂

∂t

∣∣∣∣
t=0

((γu(r)⊲γv(s))⊲(γu(r)⊲γw(t))) =
∂

∂t

∣∣∣∣
t=0

((cγu(r)⊲γv(s) ◦ cγu(r))(γw(t))

= (Adγu(r)⊲γv(s) ◦Adγu(r))(w)

= (Adcγu(r)(γv(s)) ◦Adγu(r))(w).

Moreover, if we differentiate with respect to the variable s

∂

∂s

∣∣∣∣
s=0

((Adγu(r) ◦Adγv(s))(w)) = (Adγu(r) ◦ ad(v))(w)

and
∂

∂s

∣∣∣∣
s=0

(Adcγu(r)(γv(s)) ◦Adγu(r))(w) = (ad(Adγu(r)(v)) ◦Adγu(r))(w).

And if we differentiate with respect to the variable r, we obtain

∂

∂r

∣∣∣∣
r=0

(Adγu(r) ◦ ad(v))(w) = ad(u)(ad(v)(w))

and
∂

∂r

∣∣∣∣
r=0

(ad(Adγu(r)(v)) ◦Adγu(r))(w) = ad(ad(u)(v))(w) + ad(v)(ad(u)(w))

Hence, by identification, we have the Leibniz identity.

�

Proposition 3.2. Let f : X → Y be a morphism of Lie racks, then T1f : T1X → T1Y is a
morphism of Leibniz algebras.
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Proof : The fact that f is a morphism of Lie rack implies that f(1) = 1 and f(x⊲y) = f(x)⊲f(y)
for all x, y ∈ X . Let u, v ∈ x and γu (resp. γv) be a smooth path in X pointed at 1 such that
∂

∂s

∣∣∣∣
s=0

γu(s) = u (resp.
∂

∂s

∣∣∣∣
s=0

γv(s) = v). We have

∂

∂t

∣∣∣∣
t=0

(f(γu(s)⊲γv(t))) = T1f(Adγu(s)(v))

and
∂

∂t

∣∣∣∣
t=0

(f(γu(s))⊲f(γv(t))) = Adf(γu(s))(T1f(v)).

Now, if we differentiate with respect to the variable s, we have

∂

∂s

∣∣∣∣
s=0

(T1f(Adγu(s)(v))) = T1f([u, v])

and
∂

∂s

∣∣∣∣
s=0

(Adf(γu(s))(T1f(v))) = [T1f(u), T1f(v)].

This means that T1f is a morphism of Leibniz algebras.

�

Example 3.3 (Group). Let G be a Lie group, then we get in this way the canonical Lie algebra
structure on T1G.

Example 3.4 (Augmented rack). Let X
p
→ G be an augmented Lie rack, then T1X

T1p
→ T1G is a

Lie algebra in the category of linear maps (see [LP98]). This structure induces a Leibniz algebra
structure on T1X which is isomorphic to the one induces by the Lie rack structure on X .

We remark that a local smooth structure around 1 is sufficient to provide T1X with a Leibniz
algebra structure.

Proposition 3.5. Let X be a local Lie rack, then T1X is a Leibniz algebra.

3.2 From Asp(X)-modules to Leibniz representations

Let X be a rack. An Asp(X)-module is an abelian group A provided with a morphism of groups
φ : Asp(X) → Aut(A). By adjointness, this is the same thing as a morphism of pointed racks
φ : X → Conj(Aut(A)).

Definition 3.6. Let X be a Lie rack, a smooth As(X)-module is an Asp(X)module A such that

1. A is an abelian Lie group.

2. φ : X ×A→ A is smooth.
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Recall that, given a Leibniz algebra g, a g-representation a is a vector space provided with two
linear maps

[−,−]L : g⊗ a → a

and
[−,−]R : a⊗ g → a,

satisfying the axioms (LLM), (LML) and (MLL) given in section 1.
There are two particular classes of modules. The first, that we called symmetric, are the modules

where [−,−]L = −[−,−]R. The second, that we called anti-symmetric, are the modules where
[−,−]R = 0. Given a Leibniz algebra g and a a vector space equipped with a morphism of Leibniz
algebra φ : g → End(a), we can put two structures of g-representation on a. One is symmetric and
defined by

[x, a]L = φx(a) and [a, x]R = −φx(a), ∀x ∈ g, a ∈ a,

and the other is anti-symmetric and defined by

[x, a]L = φx(a) and [a, x]R = 0, ∀x ∈ g, a ∈ a.

Moreover, given a rack X and A a (smooth) As(X)-module, we can put two structures of
(smooth) X-module on A. One is called symmetric and defined by

φx,y(a) = φx(a) and ψx,y(a) = a− φx⊲y(a), ∀x, y ∈ X, a ∈ A,

and the other is called anti-symmetric and defined by

φx,y(a) = φx(a) and ψx,y(a) = 0, ∀x, y ∈ X, a ∈ A.

These constructions are similar to each other because one is the infinitesimal version of the
other. Indeed, let (A, φ, ψ) be a smooth symmetric X-module. We have by definition two smooth
maps

φ : X ×X ×A→ A and ψ : X ×X × A→ A

with φ1,1 = id, ψ1,1 = 0. Thus the differentials of these maps at (1, 1) give us two maps

ǫ : X ×X → Aut(a); ǫ(x, y) = T1φx,y

and
χ : X ×X → End(a);χ(x, y) = T1ψx,y.

These maps are smooth, so we can differentiate them at (1, 1) to obtain

T(1,1)ǫ : x⊕ x → End(a)

and
T(1,1)χ : x⊕ x → End(a).

Then we put
[−,−]L : g⊗ a → a; [u,m]L = T(1,1)ǫ(u, 0)(m)

and
[−,−]R : a⊗ g → a; [m,u]R = T(1,1)χ(0, u)(m).
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Lemma 3.7. The linear map [−,−]L satisfies the axiom (LLM).

Proof : We want to show that for all u, v ∈ x,m ∈ a

[u, [v,m]L]L = [[u, v],m]L + [v, [u,m]L]L.

By hypothesis, φ satisfies the following relation for all x, y, z ∈ X

φx,y⊲z ◦ φy,z = φx⊲y,x⊲z ◦ φx,z,

and if we take z = 1, we obtain
φx,1 ◦ φy,1 = φx⊲y,1 ◦ φx,1,

and so
T1φx,1 ◦ T1φy,1 = T1φx⊲y,1 ◦ T1φx,1,

that is
ǫ(x, 1) ◦ ǫ(y, 1) = ǫ(x⊲y, 1) ◦ ǫ(x, 1).

Let u, v ∈ x and γu (resp. γv) be a smooth path in X pointed at 1 such that
∂

∂s

∣∣∣∣
s=0

γu(s) = u

(resp.
∂

∂s

∣∣∣∣
s=0

γv(s) = v). We have

∂

∂t

∣∣∣∣
t=0

(ǫ(γu(s), 1) ◦ ǫ(γv(t), 1)) = ǫ(γu(s), 1) ◦
∂

∂t

∣∣∣∣
t=0

ǫ(γv(t), 1)

= ǫ(γu(s), 1) ◦ [v,−]L

and

∂

∂s

∣∣∣∣
s=0

(ǫ(γu(s), 1) ◦ [v, 0]L) = (
∂

∂s

∣∣∣∣
s=0

ǫ(γu(s), 1)) ◦ [v,−]L

= [u,−]L ◦ [v,−]L

= [u, [v,−]L]L.

On the other hand, we have

∂

∂t

∣∣∣∣
t=0

(ǫ(γu(s)⊲γv(t), 1) ◦ ǫ(γu(s), 1)) = [Adγu(s)(v),−]L ◦ ǫ(γu(s), 1)

and

∂

∂s

∣∣∣∣
s=0

([Adγu(s)(v),−]L ◦ ǫ(γu(s), 1)) =
∂

∂s

∣∣∣∣
s=0

([Adγu(s)(v),−]L) ◦ ǫ(1, 1)

+ [Adγu(0)(v),−]L ◦
∂

∂s

∣∣∣∣
s=0

(ǫ(γu(s), 1))

= [[u, v],−]L + [v,−]L ◦ [u,−]L

= [[u, v],−]L + [v, [u,−]]L.

Hence by identification
[u, [v,−]L]L = [[u, v],−]L + [v, [u,−]]L.

That is, [−,−]L satisfies (LLM).
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�

Lemma 3.8. If (A, φ, ψ) is symmetric, then [−,−]L = −[−,−]R and if (A, φ, ψ) is anti-symmetric,
then [−,−]R = 0.

Proof : Suppose that (A, φ, ψ) is anti-symmetric, then ψ = 0, and it is clear that [−,−]R = 0.
Now, suppose that (A, φ, ψ) is symmetric, that is ψx,y(a) = a − φx⊲y,1(a). We have χ(x, y) =

T1ψx,y = id− ǫ(x⊲y, 1). Let u ∈ x and γu be a path in X pointed at 1 such that
∂

∂s

∣∣∣∣
s=0

γu(s) = u.

We have

[−, u]R = T(1,1)χ(0, u)

=
∂

∂s

∣∣∣∣
s=0

χ(1, γu(s))

=
∂

∂s

∣∣∣∣
s=0

(id− ǫ(γu(s), 1))

= −
∂

∂s

∣∣∣∣
s=0

ǫ(γu(s), 1)

= −[u,−]L.

�

Finally, we have shown the following proposition:

Proposition 3.9. Let X be a Lie rack, let x be its Leibniz algebra, let A be an abelian Lie group
and let a be its Lie algebra. If (A, φ, ψ) is a smooth symmetric (resp. anti-symmetric) X-module,
then (a, [−,−]L, [−,−]R) is a symmetric (resp. anti-symmetric) x-module.

3.3 From Lie rack cohomology to Leibniz cohomology

Proposition 3.10. Let X be a Lie rack and let A be a smooth As(X)-module. We have morphisms
of cochains complexes

CRn
p (X,A

s)s
δn

→ CLn(x, as)

and
CRn

p (X,A
a)s

δn

→ CLn(x, aa),

given by δn(f)(a1, . . . , an) = dnf(1, . . . , 1)((a1, 0, . . . , 0), . . . , (0, . . . , 0, an)) (where dnf is the n-th
differential of f).

Proof : Let f ∈ CRn
p (X,A

s) and (x0, . . . , xn) ∈ Xn+1. We have

dRf(x0, . . . , xn) =

n+1∑

i=1

(−1)i−1φx1⊲...⊲xi
(f(x1, . . . , x̂i, . . . , xn+1))−f(x1, . . . , xi⊲xi+1, . . . , xi⊲xn+1)

Let (γ0(t0), . . . , γn(tn)) be a family of paths γi :]− ǫi,+ǫi[→ V such that

γi(0) = 1 and
∂

∂ss=0
γi(s) = xi.
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We want to show that
δn+1(dnRf) = dnL(δ

n(f)).

We have by definition

δn+1(dnRf)(a0, . . . , an) =
∂n+1

∂t0 . . . ∂tn

∣∣∣∣
ti=0

df(γ0(t0), . . . , γn(tn)).

Lemma 3.11. ∀i ∈ {1, . . . , n}

∂n+1

∂t0 . . . ∂tn

∣∣∣∣
|ti=0

φγ0(t0)⊲...⊲γi(ti)(f(γ0(t0), . . . , γi−1(ti−1), γi+1(ti+1), . . . , γn(tn))) = ai.dn(f)(a0, . . . , âi, . . . , an)

Proof :

Notation:
(t0, . . . , ti) 7→ φγ0(t0)⊲...⊲γi(ti)

will be denoted by
(t0, . . . , ti) 7→ A(t0, . . . , ti)

and
(t0, . . . , t̂i, . . . , tn) 7→ f(γ0(t0), . . . , γi−1(ti−1), γi+1(ti+1), . . . , γn(tn))

will be denoted by
(t0, . . . , t̂i, . . . , tn) 7→ m(t0, . . . , t̂i, . . . , tn)

We have

∂n+1

∂t0 . . . ∂tn

∣∣∣∣
tk=0

A(t0, . . . , ti)(m(t0, . . . , tn)) =
∂n

∂t0 . . . ∂tn−1

∣∣∣∣
tk=0

(
∂

∂tn

∣∣∣∣
tn=0

A(t0, . . . , ti)(m(t0, . . . , 0))

+
∂n

∂t0 . . . ∂tn−1

∣∣∣∣
tk=0

(A(t0, . . . , ti)(
∂

∂tn

∣∣∣∣
tn=0

m(t0, . . . , tn)))

=
∂n

∂t0 . . . ∂tn−1

∣∣∣∣
tk=0

(A(t0, . . . , ti)(
∂

∂tn

∣∣∣∣
tn=0

m(t0, . . . , tn)))

because by definition we have f(x0, . . . , 1, . . . , xn) = 0.
Thus by the same argument we have

∂n+1

∂t0 . . . ∂tn

∣∣∣∣
tk=0

A(t0, . . . , ti)(m(t0, . . . , tn)) =
∂

∂ti

∣∣∣∣
ti=0

A(0, . . . , 0, ti)(
∂n

∂t0 . . . ∂tn

∣∣∣∣
tk=0

m(t0, . . . , tn))

Hence
∂n+1

∂t0 . . . ∂tn

∣∣∣∣
ti=0

A(t0, . . . , tn)(m(t0, . . . , tn)) = xi.dn(f)(x0, . . . , x̂i, . . . , xn)

�

Lemma 3.12. ∀i ∈ {1, . . . , n}

∂n+1

∂t0 . . . ∂tn

∣∣∣∣
ti=0

f(γ0(t0), . . . , γi(ti)⊲γi+1(ti+1), . . . , γi(ti)⊲γn(tn)) =

n∑

k=i+1

δnf(a0, . . . , [ai, ak], . . . , an)
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Proof : We have
∂n+1

∂t0 . . . ∂tn

∣∣∣∣
ti=0

f(γ0(t0), . . . , γi(ti)⊲γi+1(ti+1), . . . , γi(ti)⊲γn(tn)) which is equal

to

∂

∂ti

∣∣∣∣
ti=0

dnf(1, . . . , 1)((a0, 0, . . . , 0), . . . , (0, . . . , Adγi(ti)(ai+1), . . . , 0), . . . , (0, . . . , 0, Adγi(ti)(an))

Moreover, this is equal to

n∑

k=i+1

dnf(1, . . . , 1)((a0, 0, . . . , 0), . . . , (0, . . . , [ai, ak], . . . , 0), . . . , (0, . . . , 0, an))

and this expression is equal to

n∑

k=i+1

δnf(a0, . . . , [ai, ak], . . . , an).

�

Hence

δn+1(dnRf)(a0, . . . , an) =

n∑

i=0

(−1)i
(
ai.δ

n(f)(a0, . . . , âi, . . . , an)−

n∑

k=i+1

δnf(a0, . . . , [ai, ak], . . . , an)
)

=
n∑

i=0

(−1)iai.δ
n(f)(a0, . . . , âi, . . . , an) +

∑

0≤i<k≤n

(−1)i+1δnf(a0, . . . , [ai, ak], . . . , an)

that is
δn+1(dnRf) = dnL(δ

n(f))

This is exactly the same proof as for the case where A is anti-symmetric.

�

We remark that we only need a local cocyle identity around 1. Thus we have

Proposition 3.13. Let X be a Lie rack, let U be a 1-neighborhood in X and let A be a smooth
As(X)-module. We have morphisms of cochain complexes

CRn
p (U,A

s)
δn

→ CLn(x, as)

and
CRn

p (U,A
a)

δn

→ CLn(x, aa),

given by δn(f)(a0, . . . , an) = dnf(1, . . . , 1)((a1, 0, . . . , 0), . . . , (0, . . . , 0, an)).

3.4 From Leibniz cohomology to local Lie rack cohomology

In this section, we study two cases of Leibniz cocyles integration. This section will be used in the
following section to integrate a Leibniz algebra into a local augmented Lie rack.

First, we study the integration of a 1-cocycle in ZL1(g, as) into a Lie rack 1-cocycle in ZR1
p(G, a

s)s,
where G is a simply connected Lie group with Lie algebra g and a a representation of G.

Secondly, we use the result of the first part to study the integration of a 2-cocycle in ZL2(g, aa)
into a local Lie rack 2-cocycle in ZR2

p(U, a
a)s, where U is a 1-neighborhood in a simply connected

Lie group G with Lie algebra g, and a a representation of G. It is this second part that we will use
to integrate Leibniz algebras.
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3.4.1 From Leibniz 1-cocycles to Lie rack 1-cocycles

Let G be a simply connected Lie group and a a representation of G. We want to define a morphism
I1 from ZL1(g, as) to ZR1

p(G, a
s)s which sends BL1(g, as) into BR1

p(G, a
s)s. For this, we put

I1(ω)(g) =

∫

γg

ωeq,

where ω ∈ ZL1(g, as), γ : G × [0, 1] → G is a smooth map such that γg is a path from 1 to g, γ1
is the constant path equal to 1, and ωeq is the closed left equivariant differential form in Ω1(G, a)
defined by

ωeq(g)(m) = g.(ω(TgLg−1(m))).

By definition, it is clear that I1(ω)(1) = 0.
For the moment, I1(ω) depends on γ, but because ω is a cocycle and G is simply connected,

the dependence with respect to γ disappears.

Proposition 3.14. I1 does not depend on γ.

Proof : Let γ, γ′ : G × [0, 1] → G such that γg(0) = γ′g(0) = 1 and γg(1) = γ′g(1) = g. We are
going to show that

∫

γg

ωeq =

∫

γ′

g

ωeq.

We have
∫
γg
ωeq−

∫
γ′

g
ωeq =

∫
γg−γ′

g
ωeq. As H1(G) = 0 and ∂(γg−γ

′
g) = 0, there exists σg : [0, 1]2 →

G such that γg − γ′g = ∂σg. So

∫

γg

ωeq −

∫

γ′

g

ωeq =

∫

γg−γ′

g

ωeq

=

∫

∂σg

ωeq

=

∫

σg

ddRω
eq

= 0.

Hence I1 does not depend on γ.

�

Proposition 3.15. I1 sends cocycles to cocycles and coboundaries to coboundaries.
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Proof : First, let ω ∈ ZL1(g, as), we have

dRI(ω)(g, h) = g.I(ω)(h)− I(ω)(g⊲h)− (g⊲h).I(ω)(g) + I(ω)(g)

= g.

∫

γh

ωeq −

∫

γg⊲h

ωeq − (g⊲h).

∫

γg

ωeq +

∫

γg

ωeq

=

∫

γh

g.ωeq −

∫

γg⊲h

ωeq −

∫

γg

(g⊲h).ωeq +

∫

γg

ωeq

=

∫

gγh

ωeq −

∫

γg⊲h

ωeq −

∫

(g⊲h)γg

ωeq +

∫

γg

ωeq

=

∫

gγh−γg⊲h−(g⊲h)γg+γg

ωeq.

As H1(G) = 0 and ∂(gγh − γg⊲h − (g⊲h)γg + γg) = 0, there exists γg,h : [0, 1]2 → G such that
∂γg,h = gγh − γg⊲h − (g⊲h)γg + γg. Hence, we have

dRI(ω)(g, h) =

∫

∂γg,h

ωeq

=

∫

γg,h

ddRω
eq

= 0.

Hence ZL1(g, as) is sent to ZR1
p(G, a

s)s.

Secondly, let ω ∈ BL1(g, as). There exists β ∈ a such that ω(m) = m.β. We have

I(ω)(g) =

∫

γg

ωeq

=

∫

γg

(dLβ)
eq

=

∫

γg

ddRβ
eq

= βeq(g)− βeq(1)

= g.β − β

= dRβ(g).

Hence BL1(g, as) is sent to BR1
p(G, a

s)s.

�

Proposition 3.16. I1 is a left inverse for δ1.

Proof : Let ω ∈ ZL1(g, as). Let ϕ : U → g be a local chart around 1 such that ϕ(1) = 0 and
dϕ−1(0) = id.
We define for x ∈ g the smooth map αx :]− ǫ,+ǫ[→ U by setting

αx(s) = ϕ−1(sx),
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and we define for all s ∈]− ǫ,+ǫ[, the smooth map γαx(s) : [0, 1] → U by setting

γαx(s)(t) = ϕ−1(tsx).

We have

δ1(I1(ω))(x) =
∂

∂s

∣∣∣∣
s=0

I1(ω)(αx(s))

=
∂

∂s

∣∣∣∣
s=0

∫

γαx(s)

ωeq

=
∂

∂s

∣∣∣∣
s=0

∫

[0,1]

γ∗αx(s)
ωeq

=
∂

∂s

∣∣∣∣
s=0

∫

[0,1]

ωeq(γαx(s)(t))(
∂

∂t

∣∣∣∣
t=0

γαx(s)(t))dt.

Moreover,
∂

∂t

∣∣∣∣
t=0

γαx(s)(t) =
∂

∂t

∣∣∣∣
t=0

ϕ−1(stx) = sx, thus

δ1(I1(ω))(x) =
∂

∂s

∣∣∣∣
s=0

∫

[0,1]

ωeq(γαx(s)(t))(sx)dt

=

∫

[0,1]

∂

∂s

∣∣∣∣
s=0

ωeq(γαx(s)(t))(sx)dt

=

∫

[0,1]

∂

∂s

∣∣∣∣
s=0

ωeq(ϕ−1(tsx))(sx)dt

=

∫

[0,1]

∂

∂s

∣∣∣∣
s=0

(ϕ−1)∗ωeq(tsx)(sx)dt

=

∫

[0,1]

∂

∂s

∣∣∣∣
s=0

s(ϕ−1)∗ωeq(tsx)(x)dt

=

∫

[0,1]

(ϕ−1)∗ωeq(0)(x)dt

= ω(x)

∫

[0,1]

dt

= ω(x).

Hence δ1 ◦ I1 = id.

�

Remark 3.17. In fact, I1(ω) is also a Lie group 1-cocyle. Indeed, the formula to define I1(ω) is
the same as the one defined by K.H. Neeb in Section 3 of [Nee04], and in this article he shows that
I1(ω) is a group cocycle. The following calculation shows that this group cocycle identity satisfied
by I1(ω) implies the rack cocycle identity satisfied by I1(ω). Indeed, I1(ω) is a group cocycle, thus
we have

dGpI
1(ω)(g, h)− dGpI

1(ω)(g⊲h, g) = 0.
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Moreover, we have

dGpI
1(ω)(g, h)− dGpI

1(ω)(g⊲h, g) = g.I1(ω)(h)− I1(ω)(gh) + I1(ω)(g)− g⊲h.I1(ω)(g)

+ I1(ω)(gh)− I1(ω)(g⊲h)

= dRI
1(ω)(g, h).

Thus dRI
1(ω)(g, h) = 0, and we see clearly that the rack cocycle identity is implied by the group

cocycle identity. We will use this remark in Proposition 3.26.

3.4.2 From Leibniz 2-cocycles to Lie local rack 2-cocycles

Let G be a simply connected Lie group, let U be a 1-neigbourhood in G such that log is defined on
U and let a be a representation of G. In Proposition 3.13 we have defined for all n ∈ N the maps

HRn
s (U, a

a)
[δn]
−→ HLn(g, aa).

In the next section, we will see that a Leibniz algebra can be integrated into a local Lie rack since
the morphism [δ2] is surjective. More precisely, if we can construct a left inverse for [δ2], then it
gives us an explicit method to construct the local Lie rack which integrates the Leibniz algebra.

In this section, we define a morphism [I2] from HL2(g, aa) to HR2
s(U, a

a), and we show that it
is a left inverse for [δ2]. To construct the map [I2], we adapt an integration method of Lie algebra
cocycles into Lie group cocycles by integration over simplex. This method is due to W.T. Van Est
([Est54]) and used by K.H. Neeb ([Nee02, Nee04]) for the infinite dimensional case.

Definition of I2

We want to define a map from ZL2(g, aa) to ZR2
p(U, a

a)s such that BL2(g, aa) is sent to
BR2

p(U, a
a)s. In the previous section, we have integrated a Leibniz 1-cocycle on a Lie algebra g with

coefficients in a symmetric module as. In Proposition 1.1, we have shown that there is an isomor-
phism between CL2(g, aa) and CL1(g, Hom(g, a)s), which sends ZL2(g, aa) to ZL1(g, Hom(g, a)s)
and BL2(g, aa) to BL1(g, Hom(g, a)s). Hence, we can define a map

I : ZL2(g, aa) → ZR1
p(G,Hom(g, a)s)s,

which sends BL2(g, aa) into BR1
p(G,Hom(g, a)s)s. This is the composition

ZL2(g, aa)
τ2

→ ZL1(g, Hom(g, a)s)
I1

→ ZR1
p(G,Hom(g, a)s)s.

Now, we want to define a map from ZR1
p(G,Hom(g, a)s)s to ZR2

p(U, a
a). Let β ∈ CR1

p(G,Hom(g, a)s)s,
β has values in the representation Hom(g, a), so for all g ∈ G, we can consider the equivariant dif-
ferential form β(g)eq ∈ Ω1(G, a) defined by

β(g)eq(h)(m) := h.(β(g)(ThLh−1(m))).

Then we define an element in CR2
p(U, a

a) by setting

f(g, h) =

∫

γg⊲h

(β(g))eq ,
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where γ : G × [0, 1] → G is a smooth map such that for all g ∈ G, γg is a path from 1 to g in G
and γ1 = 1.
For the moment, an element of ZR1

p(G,Hom(g, a)s)s is not necessarily sent to an element of
ZR2

p(U, a
a)s. To reach our goal, we have to specify the map γ, and we define it by setting

γg(s) = exp(s log(g)).

Then, we define I2 : ZL2(g, aa) → CR2
p(U, a

a)s by setting for all (g, h) ∈ U2−loc (cf. notation in
Section 2.4)

I2(ω)(g, h) =

∫

γg⊲h

(I(ω)(g))eq .

By definition, it is clear that I2(ω)(g, 1) = I2(ω)(1, g) = 0.

Properties of I2

Proposition 3.18. I2 sends ZL2(g, aa) into ZR2
p(U, a

a)s.

To prove this proposition we need some lemmas.

Lemma 3.19. For all (g, h) ∈ U2−loc, we have γg⊲h = g⊲γh.

Proof : Let (g, h) ∈ U2−loc, by definition we have

γg⊲h(s) = exp(s(log(g⊲h))).

By naturality of the exponential, and a fortiori of the logarithm, we have

exp(s(log(g⊲h))) = exp(sAdg(log(h)))

= exp(Adg(s log(h)))

= cg(exp(s log(h)))

= cg(γh(s)).

Hence γg⊲h = g⊲γh.

�

Lemma 3.20. Let G be a Lie group, let a be a representation of G and ω ∈ Hom(g, a). We have
for all g ∈ G

g.(ωeq) = c∗g((g.ω)
eq).

Proof : Let g, h ∈ G and x ∈ ThG, we have:

(c∗g((g.ω)
eq))(h)(x) = (g.ω)eq(g⊲h)(dhcg(x))

= (g⊲h).(g.ω)(dg⊲hLg⊲h−1(dhcg(x)))

= (g⊲h).(g.ω)(dh(cg ◦ Lh−1)(x))

= (g⊲h).(g.(ω(Ad(g−1)(dh(cg ◦ Lh−1)(x)))))

= gh.(ω(dh(cg−1 ◦ cg ◦ Lh−1)(x)))

= g.(h.(ω(dhLh−1(x))))

= g.(ωeq(h)(x)).

Hence c∗g((g.ω)
eq) = g.(ω)eq.
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�

Proof of proposition : Let ω ∈ ZL2(g, aa) and (g, h, k) ∈ U3−loc. We have

dR(I
2(ω))(g, h, k) = g.I2(ω)(h, k)− I2(ω)(g⊲h, g⊲k)− (g⊲h).I2(ω)(g, k) + I2(ω)(g, h⊲k)

= g.

∫

γh⊲k

(I(ω)(h))eq −

∫

γg⊲(h⊲k)

(I(ω)(g⊲h))eq − (g⊲h).

∫

γg⊲k

(I(ω)(g))eq

+

∫

γg⊲(h⊲k)

(I(ω)(g))eq

=

∫

γh⊲k

g.((I(ω)(h))eq)−

∫

γg⊲(h⊲k)

(I(ω)(g⊲h))eq −

∫

γg⊲k

(g⊲h).((I(ω)(g))eq)

+

∫

γg⊲(h⊲k)

(I(ω)(g))eq .

Because of Lemma 3.20, we have

dR(I
2(ω))(g, h, k) =

∫

γh⊲k

c∗g((g.I(ω)(h))
eq)−

∫

γg⊲(h⊲k)

I(ω)(g⊲h)eq −

∫

γg⊲k

c∗g⊲h(((g⊲h).I(ω)(g))
eq)

+

∫

γg⊲(h⊲k)

I(ω)(g)eq

=

∫

cg◦γh⊲k

(g.I(ω)(h)eq −

∫

γg⊲(h⊲k)

I(ω)(g⊲h)eq −

∫

cg⊲h◦γg⊲k

((g⊲h).I(ω)(g))eq

+

∫

γg⊲(h⊲k)

I(ω)(g)eq,

and because of Lemma 3.19, we have

dR(I
2(ω))(g, h, k) =

∫

γg⊲(h⊲k)

(g.I(ω)(h))eq −

∫

γg⊲(h⊲k)

I(ω)(g⊲h)eq −

∫

γg⊲(h⊲k

((g⊲h).I(ω)(g))eq

+

∫

γg⊲(h⊲k)

I(ω)(g)eq

=

∫

γg⊲(h⊲k)

(g.I(ω)(h))eq − I(ω)(g⊲h)eq − ((g⊲h).I(ω)(g))eq + I(ω)(g)eq

=

∫

γg⊲(h⊲k)

(g.I(ω)(h)− I(ω((g⊲h)− (g⊲h).I(ω)(g) + I(ω)(g))eq

=

∫

γg⊲(h⊲k)

dR(I(ω))(g, h)

= 0.

Hence ZL2(g, aa) is sent to ZR2
p(U, a

a)s.

�

Proposition 3.21. I2 sends BL2(g, aa) into BR2
p(U, a

a)s.
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Proof : Let ω ∈ BL2(g, aa), there exists an element β ∈ CL1(g, aa) such that ω = dLβ. We have

I(ω)(g) = I1(τ2(ω))(g)

=

∫

γg

(τ2(ω))eq

=

∫

γg

(τ2(dLβ))
eq .

The fact that {τn}n∈N is a morphism of cochain complexes implies that

I(ω)(g) =

∫

γg

(d(τ1(β)))eq

=

∫

γg

ddR((τ
1(β))eq)

=

∫

∂γg

(τ1(β))eq

= g.β − β.

Hence for (g, h) ∈ U2−loc we have using Lemma 3.20

I2(ω)(g, h) =

∫

γg⊲h

(I(ω)(g))eq

=

∫

γg⊲h

((g.β)− β)eq

=

∫

γg⊲h

(g.β)eq −

∫

γg⊲h

βeq

=

∫

γg⊲h

(c∗g−1(g.(βeq)))−

∫

γg⊲h

βeq

=

∫

c
g−1◦γg⊲h

g.(βeq)−

∫

γg⊲h

βeq

= g.

∫

c
g−1◦γg⊲h

βeq −

∫

γg⊲h

βeq

= g.

∫

γh

βeq −

∫

γg⊲h

βeq

= dR(I
1(β))(g, h).

Hence BL2(g, aa) is sent to BR2
p(U, a)s.

�

Proposition 3.22. I2 is a left inverse for δ2.

Proof : Let x, y ∈ g, and Ix (resp Iy) be an interval in R such that ǫx(s) = exp(sx) (resp
ǫy(s) = exp(sy)) be defined for all s ∈ Ix (resp for all s ∈ Iy). The map ǫx⊲ǫy : Ix × Iy → G is
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continuous, thus there exists W an open subset of Ix× Iy such that (ǫx⊲ǫy)(W ) ⊆ U . Hence, there
exists an interval J ⊆ Ix ∩ Iy such that ǫx(s)⊲ǫy(t) ∈ U for all (s, t) ∈ J × J .

We have to show
δ2 ◦ I2 = id.

Let ω ∈ ZL2(g, aa). By definition, we have

δ2(I2(ω))(x, y) =
∂2

∂s∂t

∣∣∣∣
s,t=0

I2(ω)(ǫx(s), ǫy(s))

=
∂2

∂s∂t

∣∣∣∣
s,t=0

∫

γǫx(s)⊲ǫy(t)

(I(ω)(ǫx(s)))
eq

=
∂

∂s

∣∣∣∣
s=0

(
∂

∂t

∣∣∣∣
t=0

∫

γǫy(t)

c∗ǫx(s)(I(ω)(ǫx(s)))
eq).

First, we compute
∂

∂t

∣∣∣∣
t=0

∫

γǫy(t)

c∗ǫx(s)(I(ω)(ǫx(s)))
eq

For the sake of clarity, we put α = c∗ǫx(s)(I(ω)(ǫx(s)))
eq and βt = γǫy(t). We have

∂

∂t

∣∣∣∣
t=0

∫

β

α =
∂

∂t

∣∣∣∣
t=0

∫

[0,1]

β∗α

=
∂

∂t

∣∣∣∣
t=0

∫

[0,1]

ft(r)dr

=

∫

[0,1]

∂

∂t

∣∣∣∣
t=0

ft(r)dr,

where ft(r) = α(βt(r))(β
′
t(r)).

We have
∂

∂t

∣∣∣∣
t=0

ft(r) = (
∂

∂t

∣∣∣∣
t=0

α(βt(r)))β
′
0(r) + (α(β0(r)))(

∂

∂t

∣∣∣∣
t=0

β′
t(r)).

Moreover, we have
α(β0(r)) = α(1),

β′
0(r) = 0,

and
∂

∂t

∣∣∣∣
t=0

β′
t(r) = y.

So we have
∂

∂t

∣∣∣∣
t=0

∫

β

α =

∫

[0,1]

α(1)(x)dr = α(1)(y)

and

δ2(I2(ω))(x, y) =
∂

∂s

∣∣∣∣
s=0

(c∗ǫx(s)(I(ω)(ǫx(s)))
eq)(1)(y).
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Furthermore we have

c∗ǫx(s)(I(ω)(ǫx(s))
eq)(1)(y) = (I(ω)(ǫx(s)))

eq(cǫx(s)(1))(Adǫx(s)(y))

= I(ω)(ǫx(s))(Adǫx(s)(y))

= (

∫

γǫx(s)

τ2(ω)eq)(Adǫx(s)(y)).

If we put
∫
γǫx(s)

τ2(ω)eq = σ(s) and Adǫx(s)(y) = λ(s), we have

∂

∂s

∣∣∣∣
s=0

((

∫

γǫx(s)

τ2(ω)eq)(Adǫx(s)(y))) =
∂

∂s

∣∣∣∣
s=0

σ(s)(λ(s))

= σ′(0)(λ(0)) + σ(0)(λ′(0)).

We have
σ(0) = 0,

λ(0) = y,

and
σ′(0) = τ2(ω)(x).

Thus
∂

∂s

∣∣∣∣
s=0

(( ∫

γǫx(s)

τ2(ω)eq
)(
Adǫx(s)(y)

))
= τ2(ω)(x)(y).

Hence δ2(I2(ω))(x, y) = ω(x, y).

�

Remark 3.23. Suppose that we have a Leibniz 2-cocycle ω which is also a Lie 2-cocycle. In this
case, we can integrate ω into a local Lie rack cocycle, but also into a local Lie group cocycle (cf.
Introduction). Then it is natural to ask if the two constructions are related to each other.

Proposition 3.24. Let G be a Lie group, let g be its Lie algebra, let a be a representation of G,
ω ∈ Λ2(g, a) and γ1, γ2 smooth paths in G pointed in 1. Then

∫

γ1

( ∫

γ2

(τ2(ω))eq
)eq

=

∫

γ1γ2

ωeq

where γ1γ2 : [0, 1]2 → G; (s, t) 7→ γ1(t)γ2(s).

Proof : On the one hand, we have

∫

γ1γ2

ωeq =

∫

[0,1]2
(γ1γ2)

∗ωeq

=

∫

[0,1]2
ωeq(γ1γ2)(

∂

∂s
γ1(t)γ2(s),

∂

∂t
γ1(t)γ2(s))dsdt,
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and this expression is equal to
∫

[0,1]2
γ1(t)γ2(s).ω

(
dγ2(s)Lγ2(s)−1(

∂

∂s
γ2(s)), Adγ2(s)−1(dγ1(t)Lγ1(t)−1(

∂

∂t
γ1(t)))

)
dsdt. (4)

On the other hand, we have
∫

γ1

( ∫

γ2

(τ2(ω))eq
)eq

=

∫

[0,1]

γ∗1 (

∫

γ2

(τ2(ω)eq)eq)

=

∫

[0,1]

(

∫

γ2

(τ2(ω))eq)eq(γ1(t))(
∂

∂t
γ1(t))dt

=

∫

[0,1]

γ1(t).(

∫

γ2

(τ2(ω))eq)(dγ1(t)Lγ1(t)−1(
∂

∂t
γ1(t)))dt

=

∫

[0,1]

γ1(t).(

∫

[0,1]

(τ2(ω))eq(γ2(s))(
∂

∂s
γ2(s)))(dγ1(t)Lγ1(t)−1(

∂

∂t
γ1(t)))dt.

This expression is equal to
∫

[0,1]

γ1(t).(

∫

[0,1]

γ2(s).(τ
2(ω))(dγ2(s)Lγ2(s)−1(

∂

∂s
γ2(s)))ds)(dγ1(t)Lγ1(t)−1(

∂

∂t
γ1(t)))dt,

which is equal to
∫

[0,1]

γ1(t).(

∫

[0,1]

γ2(s).ω(dγ2(s)Lγ2(s)−1(
∂

∂s
γ2(s)), Adγ2(s)−1(·))ds)(dγ1(t)Lγ1(t)−1(

∂

∂t
γ1(t)))dt.

Using the Fubini theorem, we show that this expression is equal to (4).

�

If we apply this result to the case where γ1(s) = γg⊲h(s) = exp(s log(g⊲h)) and γ2(s) = γg(s) =
exp(s log(g)) for (g, h) ∈ U2−loc, then we obtain

Corollary 3.25. If ω ∈ ZL2(g, aa) ∩ Z2(g, a), then for all g, h ∈ U2−loc such that gh ∈ U2−loc we
have

I2(ω)(g, h) = ι2(ω)(g, h)− ι2(ω)(g⊲h, g), (5)

with

ι2(ω)(g, h) =

∫

γg,h

ωeq,

and where γg,h is a smooth singular 2-chain in G such that ∂γg,h = γg − γgh + gγh.

We can remark that I2 is more than a local Lie rack cocycle. Precisely, if ω is in ZL2(g, aa) then
the local rack cocycle identity satisfied by I2(ω), comes from another identity satisfied by I2(ω).
Indeed, I2 is defined using I, and to verify that I2 sends Leibniz cocycles into local rack cocycles,
we have used Proposition 3.15. This proposition establishes that I1 sends Lie cocycles into rack
cocycle. But, we have remarked (Remark 3.17) that the rack cocycle identity satisfied by I1(ω),
comes from the group cocycle identity. Hence, we can think that we forgot structure on I2(ω).
The following proposition points out the identity satisfied by I2(ω) which induced the local rack
identity.
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Proposition 3.26. If ω ∈ ZL2(g, aa), then I2(ω) satisfies the identity

g.I2(ω)(h, k)− I2(ω)(gh, k) + I2(ω)(g, h⊲k) = 0, ∀(g, h, k) ∈ U3−loc.

Moreover, this identity induces the local rack cocycle identity.

Proof : Let ω ∈ ZL2(g, aa) and (g, h, k) ∈ U3−loc we have:

g.I2(ω)(h, k)− I2(ω)(gh, k) + I2(ω)(g, h⊲k) = g.

∫

γh⊲k

(I(ω)(h))eq −

∫

γ(gh)⊲k

(I(ω)(gh))eq

+

∫

γg⊲(h⊲k)

(I(ω)(g))eq

=

∫

γh⊲k

g.((I(ω)(h))eq)−

∫

γg⊲(h⊲k)

(I(ω)(gh))eq

+

∫

γg⊲(h⊲k)

(I(ω)(g))eq

=

∫

γh⊲k

c∗g((g.I(ω)(h))
eq)−

∫

γg⊲(h⊲k)

(I(ω)(gh))eq

+

∫

γg⊲(h⊲k)

(I(ω)(g))eq

g.I2(ω)(h, k)− I2(ω)(gh, k) + I2(ω)(g, h⊲k) =

∫

cg◦γh⊲k

(g.I(ω)(h))eq −

∫

γg⊲(h⊲k)

(I(ω)(gh))eq

+

∫

γg⊲(h⊲k)

(I(ω)(g))eq

=

∫

γg⊲(h⊲k)

(g.I(ω)(h))eq −

∫

γg⊲(h⊲k)

(I(ω)(gh))eq

+

∫

γg⊲(h⊲k)

(I(ω)(g))eq

=

∫

γg⊲(h⊲k)

(g.I(ω)(h))eq − (I(ω)(gh))eq + I(ω)(g)eq

=

∫

γg⊲(h⊲k)

(g.I(ω)(h)− I(ω)(gh) + I(ω)(g))eq

=

∫

γg⊲(h⊲k)

d(I(ω))(g, h)

= 0.

Hence I2(ω) satisfies the wanted identity.
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Moreover, let (g, h, k) ∈ U3−loc, we have

dR(I
2(ω))(g, h, k) = g.(I2(ω)(h, k))− I2(ω)(g⊲h, g⊲k)− (g⊲h).I2(ω)(g, k) + I2(ω)(g, h⊲k)

= g.(I2(ω)(h, k))− I2(ω)(g⊲h, g⊲k)− (g⊲h).I2(ω)(g, k) + I2(ω)(g, h⊲k)

− I2(ω)(gh, k) + I2(ω)(gh, k)

=
(
g.(I2(ω)(h, k))− I2(ω)(gh, k) + I2(ω)(g, h⊲k)

)

−
(
(g⊲h).I2(ω)(g, k)− I2(ω)(gh, k) + I2(ω)(g⊲h, g⊲k)

)

= 0− 0

= 0.

Hence I2(ω) is a local Lie rack cocycle.

�

We will see in the next section that this identity makes it possible to integrate a Leibniz algebra
into a local augmented Lie rack.

3.5 From Leibniz algebras to local Lie racks

In this section, we present the main theorem of this article. In Proposition 3.1 we have seen that
the tangent space at 1 of a (local) Lie rack is provided with a Leibniz algebra structure. Conversely,
we now show that every Leibniz algebra can be integrated into an augmented local Lie rack. Our
construction is explicit, and by this construction, a Lie algebra is integrated into a Lie group. Con-
versely, we show that an augmented local Lie rack whose tangent space at 1 is a Lie algebra is
necessarily a (local) Lie group. That is, there is a structure of Lie group on this augmented local
Lie rack, and the conjugation on the augmented local Lie rack is the conjugation in the group.

The idea of the proof is simple and uses the knowledge of the Lie’s first theorem and Lie’s
second theorem. Let g be a Leibniz algebra. First, we decompose the vector space g into a direct
sum of Leibniz algebras g0 and a that we know how to integrate. As we know the theorem for Lie
subalgebras of endomorphisms of a finite dimensional vector space V , the factors are integrable if
g is isomorphic (as a vector space) to an abelian extension of a Lie subalgebra g0 of End(V ) by a
g0-representation a. Hence g is isomorphic to a ⊕ω g0, the Leibniz algebra a is abelian so becomes
integrated into a, and g0 is a Lie subalgebra of End(V ) so becomes integrated into a simply con-
nected Lie subgroup G0 of Aut(V ). Now, we have to understand how to patch a and G0. That is,
we have to understand how the gluing data ω becomes integrated into a gluing data f between a

and G0. It is the local Lie rack cocycle I2(ω), constructed in the preceding section, which answers
this question. Hence, we showed that a Leibniz algebra g becomes integrated into a local Lie rack
of the form a×f G0.

Let g be a Leibniz algebra, there are several ways to see g as an abelian extension of a Lie
subalgebra g0 of End(V ) by a g0-representation a. Here, we take the abelian extension associated
to the (left) center of g. By definition the left center is

ZL(g) = {x ∈ g | [x, y] = 0 ∀y ∈ g}.

30



The left center ZL(g) is an ideal in g and we can consider the quotient of g by ZL(g). By definition,
ZL(g) is the kernel of the adjoint representation adL : g → End(g), x 7→ [x,−]. Thus this quotient
is isomorphic to a Lie subalgebra of End(g). We denote this quotient by g0. Hence, to a Leibniz
algebra g there is a canonical abelian extension given by

ZL(g)
i
→֒ g

p
։ g0.

This extension gives a structure of g0-representation to ZL(g), and by definition of ZL(g), this
representation is anti-symmetric. The equivalence class of this extension is caracterised by a coho-
mology class in HL2(g0, ZL(g)). Hence there is ω ∈ ZL2(g0, ZL(g)) such that the abelian extension

ZL(g)
i
→֒ g

p
։ g0 is equivalent to

ZL(g)
i
→֒ g0 ⊕ω ZL(g)

π
։ g0.

Here g0 is a Lie subalgebra of End(g), so becomes integrated into a simply connected Lie subgroup
G0 of Aut(g), and ZL(g) is an abelian Lie algebra, so becomes integrated into itself. ZL(g) is a
g0-representation (in the sense of Lie algebra) and G0 is simply connected, thus by the Lie’s second
theorem, ZL(g) is a smooth G0-module (in the Lie group sense) and we can provide ZL(g) with an
anti-symmetric smooth G0-module structure. The cocycle ω ∈ ZL2(g, ZL(g)) becomes integrated
into the local Lie rack cocycle I2(ω) ∈ ZR2

p(G0, ZL(g))s, and we can put on the cartesian product
G0 × ZL(g) a structure of local Lie rack by setting

(g, a)⊲(h, b) = (g⊲h, φg,h(b) + ψg,h(a) + I2(ω)(g, h)),

where φg,h(b) = g.b and ψg,h(a) = 0. That is we have

(g, a)⊲(h, b) = (g⊲h, g.b+ I2(ω)(g, h))).

It is clear by construction that this local Lie rack has its tangent space at 1 provided with a Leibniz
algebra structure isomorphic to g. Finally, we showed the following theorem
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Theorem 3.27. Every Leibniz algebra g can be integrated into a local Lie rack of the form

G0 ×I2(ω) a
a,

with conjugation

(g, a)⊲(h, b) = (g⊲h, g.b+ I2(ω)(g, h)), (6)

and neutral element (1, 0), where G0 is a Lie group, a a G0-module and ω ∈ ZL2(g0, a
a). Con-

versely, every local Lie rack of this form has its tangent space at 1 provides with a Leibniz algebra
structure.

We ask more in our original problem. Indeed, we ask that, using the same procedure, a Lie
algebra becomes integrated into a Lie group. That is, we have to show that when g is a Lie algebra,
then G0 ×ZL(g) is provided with a Lie group structure, and the conjugation on G0 ×I2(ω) ZL(g) is
induced by the rack product in Conj(G0 × ZL(g)).

Let g be a Lie algebra, the left center ZL(g) is equal to the center Z(g). The abelian extension

ZL(g)
i
→֒ g

p
։ g0 provides ZL(g) with an anti-symmetric structure but also a symmetric structure,

so a trivial structure. This extension becomes a central extension and the cocycle ω ∈ ZL2(g0, Z(g))
is also in Z2(g0, Z(g)). On the hand, with ω we can construct a local Lie rack cocycle I2(ω), and on
the other hand, we can construct a Lie group cocycle ι2(ω). Hence, using the formula (5) relating
I2(ω) and ι2(ω), the conjugation in G0 ×I2(ω) Z(g) can be written

(g, a)⊲(h, b) = (g⊲h, I2(ω)(g, h)) = (g⊲h, ι2(ω)(g, h)− ι2(ω)(g⊲h, g)),

and a easy calculation shows that this is the formula for the conjugation in the group G0×ι2(ω)Z(g),
where the product is defined by

(g, a)(h, b) = (gh, ι2(g, h)).

Conversely, suppose that a local Lie rack of the form G0 ×I2(ω) a
a has its tangent space at 1,

g0 ⊕ω aa, provided with a Lie algebra structure. Necessarily, a is a trivial g0-representation and
ω ∈ Z2(g0, a). Hence, as before we have the formula (5) relating I2(ω) and ι2(ω) and the conjugation
defined by the formula (6) is induced by the conjugation coming from the group structure on
G0 ×ι2(ω) a. Finally, we have the following refinement of Theorem 3.27.

Theorem 3.28. Every Leibniz algebra g becomes integrated into a local Lie rack of the form

G0 ×I2(ω) a
a,

with conjugation

(g, a)⊲(h, b) = (g⊲h, g.b+ I2(ω)(g, h)), (7)

and neutral element (1, 0), where G0 is a Lie group, a a representation of G0 and ω ∈ ZL2(g0, a
a).

Conversely, every local Lie rack of this form has its tangent space at 1 provided with a Leibniz
algebra structure.

Moreover, in the special case where g is a Lie algebra, the above construction provides G0×I2(ω)a
a

with a rack product coming from the conjugation in a Lie group. Conversely, if the tangent space
at 1 of G0 ×I2(ω) a

a is a Lie algebra, then G0 ×I2(ω) a
a can be provided with a Lie group structure,

and the conjugation induced by the Lie group structure is the one defined by (7).
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3.6 From Leibniz algebras to local augmented Lie racks

Let g0 be a Lie algebra, a a g-representation and ω ∈ ZL2(g0, a
a). In Proposition 3.18, we showed

that I2(ω) is a local Lie rack cocycle. We showed also that it satisfies the identity

g.I2(ω)(h, k)− I2(ω)(gh, k) + I2(ω)(g, h⊲k) = 0 (8)

for all (g, h, k) ∈ U3−loc.
Hence the natural question is

What is the algebraic structure on G0 ×I2(ω) a
a encoded by this identity?

We will see that the answer is the structure of a local augmented Lie rack.

Definition 3.29. Let G be a group. A local G-set is a set X provides with a map ρ defined on a
subset Ω of G×X with values in X such that the followings axioms are satisfied

1. If (h, x), (gh, x), (g, ρ(h, x)) ∈ Ω, then ρ(g, ρ(h, x)) = ρ(gh, x).

2. For all x ∈ X, we have (1, x) ∈ Ω and ρ(1, x) = x.

A local topological (resp.(smooth)) G-set is a topological set (resp. smooth manifold) X with a
structure of a local G-set such that

1. Ω is an open subset of X.

2. ρ : Ω → X is continuous (resp. smooth).

A fixed point is an element x0 ∈ X such that for all g ∈ G, (g, x0) ∈ Ω and ρ(g, x0) = x0.

In the following proposition, we show that the identity (8) provides G0×I2(ω)a
a with a structure

of a local G0-set.

Proposition 3.30. G0 ×I2(ω) a
a is a local smooth G0-set, and (1, 0) is a fixed point.

Proof : We define an open subset Ω and a smooth map ρ by

1. Ω = {(g, (h, b)) ∈ G0 × (G0 ×I2(ω) a
a)|(g, h) ∈ U2−loc}.

2. ρ(g, (h, b)) = (g⊲h, g.b+ I2(ω)(g, h)).

Let (h, (k, z)), (gh, (k, z)), (g, ρ(h, (k, z))) ∈ Ω. This is equivalent to the condition (h, k), (gh, k), (g, h⊲k) ∈
U2−loc, that is (g, h, k) ∈ U3−loc. We have

ρ(g, ρ(h, (k, z))) = ρ(g, (h⊲k, h.z + I2(ω)(h, k)))

= (g⊲(h⊲k), g.(h.z) + g.I2(ω)(h, k) + I2(ω)(g, h⊲k)).

Using the identities (2) and (gh)⊲k = g⊲(h⊲k), we have

ρ(g, ρ(h, (k, z))) = ((gh)⊲k, (gh).z + I2(ω)(gh, k))

= ρ(gh, ρ(k, z)).

Thus ρ(g, ρ(h, (k, z))) = ρ(gh, ρ(k, z)).
Moreover, we have ρ(1, (k, z)) = (1⊲k, 1.z + I2(ω)(1, k)) = (k, z) and ρ(g, (1, 0)) = (g⊲1, g.0 +
I2(ω)(g, 1)) = (1, 0). Hence G0 ×I2(ω) a

a is a local smooth G0-set and (1, 0) is a fixed point for this
local action.
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We remark that we can reconstruct the rack product in G0 ×I2(ω) a
a from the formula of the

G0-action. Indeed, we have

(g, a)⊲(h, b) = g.(h, b) = p(g, a).(h, b),

where p is the projection on the first factor G0 ×I2(ω) a
a

p
։ G0. Furthermore, p(1, 0) = 1 and p is

equivariant. Indeed, let (g, (h, y)) ∈ Ω, we have p(ρ(g.(h, y))) = p(g⊲h, g.y+ I2(ω)(g, h)) = g⊲h =
g.p(h, y). Hence we showed the following proposition

Proposition 3.31. G0 ×I2(ω) a
a

p
։ G0 is a local augmented Lie rack.

Hence we can rewrite our main theorem

Theorem 3.32. Every Leibniz algebra g becomes integrated into a local augmented Lie rack of the
form

G0 ×I2(ω) a
a

p
։ G0,

with local action
g.(h, b) = (g⊲h, g.b+ I2(ω)(g, h)),

and neutral element (1, 0), where G0 is a Lie group, a a representation of G0 and ω ∈ ZL2(g0, a
a).

Conversely, every local augmented Lie rack of this form has its tangent space at 1 provided with a
Leibniz algebra structure.

Moreover, in the special case where g is a Lie algebra, the above construction provides G0×I2(ω)a
a

with a rack product coming from the conjugation in a Lie group. Conversely, if the tangent space
at 1 of G0 ×I2(ω) a

a is a Lie algebra, then G0 ×I2(ω) a
a can be provided with a Lie group structure,

and the conjugation induced by the Lie group structure is the one defined by (7).

3.7 Examples of non split Leibniz algebra integrations

3.7.1 In dimension 4

Example 3.33. Let g = R
4. We define a bilinear map on g by

[e1, e1] = e4

[e1, e2] = e4

[e2, e1] = −e4

[e2, e2] = e4

[e3, e3] = e4

We have

[(x1, x2, x3, x4), (y1, y2, y3, y4)] = (0, 0, 0, x1y1 + x1y2 − x2y1 + x2y2 + x3y3)

Proposition 3.34. (g, [−,−]) is a Leibniz algebra.
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Proof : We have

[(x1, x2, x3, x4), [(y1, y2, y3, y4), (z1, z2, z3, z4)]] = (0, 0, 0, 0),

and
[(y1, y2, y3, y4), [(x1, x2, x3, x4), (z1, z2, z3, z4)]] = (0, 0, 0, 0),

and
[[(x1, x2, x3, x4), (y1, y2, y3, y4)], (z1, z2, z3, z4)] = (0, 0, 0, 0).

Hence the bracket [−,−] satisfies the Leibniz identity.

�

To follow the method explained above, we have to determine the left center ZL(g), the quotient
g0 of g by ZL(g) denoted g0, the action of g0 on ZL(g) and the Leibniz 2-cocycle describing the
abelian extension ZL(g) →֒ g ։ g0.

Let x ∈ ZL(g), for y = (1, 0, 0, 0), y = (0, 1, 0, 0) or y = (0, 0, 1, 0) in g, we have [x, y] = 0. This
implies that x1 = x2 = x3 = 0. Conversely, every element in g with the first three coordinates
equal to 0 is in ZL(g). Hence ZL(g) =< e4 > and g0 ≃< e1, e2, e3 >. The bracket on g0 is equal to
zero, hence g0 is an abelian Lie algebra. The action of g0 on ZL(g) is given by

ρx(y) = [(x1, x2, x3, 0), (0, 0, 0, y4)] = (0, 0, 0, 0),

and the Leibniz 2-cocycle is given by

ω(x, y) = [(x1, x2, x3, 0), (y1, y2, y3, 0)] = (0, 0, 0, x1y1 + x1y2 − x2y1 + x2y2 + x3y3).

Now, we have to determine the Lie group G0 associated to g0, the action of G0 on ZL(g) inte-
grating ρ : g0 → End(ZL(g)) (the action of g0 on ZL(g)), and the Lie rack cocycle integrating ω.

The Lie algebra g0 is abelian, thus a Lie group integrating g0 is G0 = g0. Moreover, ρ is zero,
hence the Lie group action of G0 on ZL(g) which integrates ρ is the trivial action. The facts that
ρ is zero and g0 abelian, imply that d1L : CL1(g0, ZL(g)) → CL2(g0, ZL(g)) is zero. Hence, because
gann = ZL(g), g is non split. That is, g is not isomorphic to the direct sum of a Lie algebra h

and a Lie representation V over h provided with the bracket [(x, v), (y, w)] = ([x, y], x.w) (see the
introduction). What remains to be done is the integration of the cocycle ω. A formula for f , a Lie
rack cocycle integrating ω, is

f(a, b) =

∫

γb

(

∫

γa

τ2(ω)eq)eq,

where γa(s) = sa and γb(t) = tb. Let a ∈ G0 and x, y ∈ g0. We have
∫

γa

τ2(ω)eq =

∫

[0,1]

τ2(ω)eq(γa(s))(
∂

∂s

∣∣∣∣
s=0

γa(s))ds

=

∫

[0,1]

Φγa(s)(τ
2(ω)(a))ds

=

∫

[0,1]

τ2(ω)(a)ds

= τ2(ω)(a).
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Thus

f(a, b) =

∫

γb

(τ2(ω)(a))eq

=

∫

[0,1]

γ∗b (τ
2(ω)(a))eq

=

∫

[0,1]

τ2(ω)(a))eq(γb(t))(
∂

∂t

∣∣∣∣
t=0

γb(t))dt

=

∫

[0,1]

τ2(ω)(a))(b)dt

= τ2(ω)(a)(b)

= ω(a, b).

Hence, the conjugation in G0 ×f ZL(g) = R
4 is given by

(a1, a2, a3, a4)⊲(b1, b2, b3, b4) = (b1, b2, b3, a1b1 + a2b2 + a3b3 + a1b2 − a2b1 + b4).

We have

∂2

∂s∂t |s,t=0
(sa1, sa2, sa3, sa4)⊲(tb1, tb2, tb3, tb4) =

∂2

∂s∂t |s,t=0
(tb1, tb2, tb3, st(a1b1 + a2b2 + a3b3 + a1b2 − a2b1), tb4)

= (0, 0, 0, a1b1 + a2b2 + a3b3 + a1b2 − a2b1)

= [(a1, a2, a3, a4), (b1, b2, b3, b4)].

Thus (R4,⊲) integrates (R4, [−,−]).

Example 3.35. Let g = R
4. We define a bilinear map on g by

[e1, e1] = e2

[e1, e2] = e3

[e1, e3] = e4

We have
[(x1, x2, x3, x4), (y1, y2, y3, y4)] = (0, x1y1, x1y2, x1y3)

Proposition 3.36. (g, [−,−]) is a Leibniz algebra.

Proof : We have

[(x1, x2, x3, x4), [(y1, y2, y3, y4), (z1, z2, z3, z4)]] = [(x1, x2, x3, x4), (0, y1z1, y1z2, y1z3)]

= (0, 0, x1y1z2, x1y1z3),

and
[(y1, y2, y3, y4), [(x1, x2, x3, x4), (z1, z2, z3, z4)]] = (0, 0, x1y1z2, x1y1z3),

and
[[(x1, x2, x3, x4), (y1, y2, y3, y4)], (z1, z2, z3, z4)] = 0.

Hence the bracket [−,−] satisfies the Leibniz identity.
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�

To follow the method explained above, we have to determine the left center ZL(g), the quotient
g0 of g by ZL(g) denoted g0, the action of g0 on ZL(g) and the Leibniz 2-cocycle describing the
abelian extension ZL(g) →֒ g ։ g0.

Let x ∈ ZL(g), for y = (1, 0, 0, 0), y = (0, 1, 0, 0) or y = (0, 0, 1, 0) in g, we have [x, y] = 0. This
implies that x1 = 0. Conversely, every element in g with the first coordinate equals to 0 is in ZL(g).
Hence ZL(g) =< e2, e3, e4 > and g0 ≃< e1 >. The bracket on g0 is equal to zero, hence g0 is an
abelian Lie algebra. The action of g0 on ZL(g) is given by

ρx(y) = [(x1, 0, 0, 0), (0, y2, y3, y4)] = (0, 0, x1y2, x1y3),

and the Leibniz 2-cocycle is given by

ω(x, y) = [(x1, 0, 0, 0), (y1, 0, 0, 0)] = (0, x1y1, 0, 0).

Moreover, we have [x, x] = (0, x21, x1x2, x1x3), hence gann = ZL(g). This Leibniz algebra is not split
because for α ∈ Hom(g0,R) and x, y ∈ g0, we have dLα(x, y) = ρx(α(y)) = (0, 0, x1α(y)2, x1α(y)3).

Now, we have to determine the Lie group G0 associated to g0, the action of G0 on ZL(g) inte-
grating ρ : g0 → End(ZL(g)) (the action of g0 on ZL(g)), and the Lie rack cocycle integrating ω.

The Lie algebra g0 is abelian, thus a Lie group integrating g0 is G0 = g0. Moreover, a simple
calculation shows that the Lie group action of G0 on ZL(gg) defined by

φx(y) = y + ρx(y),

integrates ρ. What remains to be done is the integration of the cocycle ω. A formula for f , a Lie
rack cocycle integrating ω, is

f(a, b) =

∫

γb

(

∫

γa

τ2(ω)eq)eq,

where γa(s) = sa and γb(t) = tb. Let a ∈ G0 and x, y ∈ g0. We have
∫

γa

τ2(ω)eq =

∫

[0,1]

τ2(ω)eq(γa(s))(
∂

∂s

∣∣∣∣
s=0

γa(s))ds

=

∫

[0,1]

Φγa(s)(τ
2(ω)(a))ds

=

∫

[0,1]

φγa(s) ◦ τ
2(ω)(a)ds

=

∫

[0,1]




0
a
sa2

0


 ds

=




0
a
0
0


+

1

2




0
0
a2

0
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=




0
a

1
2a

2

0


 .

Thus

f(a, b) =

∫

γb

(




0
a

1
2a

2

0


)eq

=

∫

[0,1]

γ∗b (




0
a

1
2a

2

0


)eq .

f(a, b) =

∫

[0,1]




0
a

1
2a

2

0




eq

(γb(t))(
∂

∂t

∣∣∣∣
t=0

γb(t))dt

=

∫

[0,1]

φγb(t)(




0
a

1
2a

2

0


 (b))dt

=

∫

[0,1]

abe2 + (tab2 +
1

2
a2b)e3 +

1

2
ta2b2e4dt

= abe2 +
1

2
(ab2 + a2b)e3 +

1

4
a2b2e4.

Hence, the conjugation in G0 ×f ZL(g) = R
4 is given by

(a1, a2, a3, a4)⊲(b1, b2, b3, b4) = (b1, a1b1, a1b2 +
1

2
(a1b

2
1 + a21b1), a1b3 +

1

4
a21b

2
1).

We have

∂2

∂s∂t |s,t=0
(sa1, sa2, sa3, sa4)⊲(tb1, tb2, tb3, tb4) =

∂2

∂s∂t |s,t=0
(tb1, sta1b1, sta1b2 +

1

2
(st2a1b

2
1 + s2ta21b1),

sta1b3 + s2t2
1

4
a21b

2
1)

= (0, a1b1, a1b2, a1b3)

= [(a1, a2, a3, a4), (b1, b2, b3, b4)].

Thus (R4,⊲) integrates (R4, [−,−]).
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3.7.2 In dimension 5

Example 3.37. Let g = R
5. We define a bilinear map on g by

[e1, e1] = [e1, e2] = e3

[e2, e1] = [e2, e2] = [e1, e3] = e4

[e1, e4] = [e2, e3] = e5

We have

[(x1, x2, x3, x4), (y1, y2, y3, y4)] = (0, 0, x1(y1 + y2), x2(y1 + y2) + x1y3, x1y4 + x2y3).

Proposition 3.38. (g, [−,−]) is a Leibniz algebra.

Proof : We have

[(x1, x2, x3, x4), [(y1, y2, y3, y4), (z1, z2, z3, z4)]] = (0, 0, 0, x1y1(z1+z2), x1(y2(z1+z2)+y1z3)+x2y1(z1+z2)),

and

[(y1, y2, y3, y4), [(x1, x2, x3, x4), (z1, z2, z3, z4)]] = (0, 0, 0, x1y1(z1+z2), x1(y2(z1+z2)+y1z3)+x2y1(z1+z2)),

and
[[(x1, x2, x3, x4), (y1, y2, y3, y4)], (z1, z2, z3, z4)] = (0, 0, 0, 0).

Hence the bracket [−,−] satisfies the Leibniz identity.

�

To follow the method explained above, we have to determine the left center ZL(g), the quotient of
g by ZL(g) denoted g0, the action of g0 on ZL(g) and the Leibniz 2-cocycle describing the abelian
extension ZL(g) →֒ g ։ g0.

Let x ∈ ZL(g), for y = (0, 0, 1, 0, 0) in g, we have [x, y] = 0. This implies that x1 = x2 =
0. Conversely, every element in g with the first two coordinates equal to 0 is in ZL(g). Hence
ZL(g) =< e3, e4, e5 > and g0 ≃< e1, e2 >. The bracket on g0 is equal to zero, hence g0 is an
abelian Lie algebra. The action of g0 on ZL(g) is given by

ρx(y) = [(x1, x2, 0, 0, 0), (0, 0, y3, y4, y5)] = (0, 0, 0, x1y3, x1y4 + x2y3),

and the Leibniz 2-cocycle is given by

ω(x, y) = [(x1, x2, 0, 0, 0), (y1, y2, 0, 0, 0)] = (0, 0, x1(y1 + y2), x2(y1 + y2), 0).

Moreover, we have [x, x] = (0, 0, x1(x1 + x2), x2(x1 + x2) + x1x3, x1x4 + x2x3), hence taking
x = (1, 0, 0, 0, 0), (0, 1, 0, 0, 0) and (0, 1, 1, 0, 0), we see easily that gann = ZL(g). This Leibniz al-
gebra is not split because for α ∈ Hom(g, ZL(g)) and x, y ∈ g0, we have dLα(x, y) = ρx(α(y)) =
(0, 0, 0x1α(y)3, x1α(y)4 + x2α(y)3).
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Now, we have to determine the Lie group G0 associated to g0, the action of G0 on ZL(g) inte-
grating ρ : g0 → End(ZL(g)) (the action of g0 on ZL(g)), and the Lie rack cocycle integrating ω.

The Lie algebra g0 is abelian, thus a Lie group integrating g0 is G0 = g0. To integrate the action
ρ, we use the exponential exp : End(ZL(g)) → Aut(ZL(g)). Indeed, for all x ∈ g0, we have

ρx =




0 0 0
x1 0 0
x2 x1 0


 .

Hence, we define a Lie group morphism φ : G0 → Aut(ZL(g)) by setting

φx = exp(ρx) =




1 0 0
x1 1 0

x2 +
1
2x

2
1 x1 0


 .

It is easy to see that d1φ = ρ. What remains to be done is the integration of the cocycle ω. A
formula for f , a Lie rack cocycle integrating ω, is

f(a, b) =

∫

γb

(

∫

γa

τ2(ω)eq)eq,

where γa(s) = sa and γb(t) = tb. Let a ∈ G0 and x, y ∈ g0. We have

∫

γa

τ2(ω)eq =

∫

[0,1]

τ2(ω)eq(γa(s))(
∂

∂s

∣∣∣∣
s=0

γa(s))ds

=

∫

[0,1]

Φγa(s)(τ
2(ω)(a))ds

=

∫

[0,1]

φγa(s) ◦ τ
2(ω)(a)ds

=

∫

[0,1]




1 0 0
sa1 1 0

sa2 +
1
2 (sa1)

2 sa1 0





a1 a1
a2 a2
0 0


 ds

=

∫

[0,1]




a1 a1
sa21 + a2 sa21 + a2

2sa1a2 +
1
2s

2a31 2sa1a2 +
1
2s

2a31


 ds.

Thus
∫

γa

τ2(ω)eq =




a1 a1
1
2a

2
1 + a2

1
2a

2
1 + a2

a1a2 +
1
6a

3
1 a1a2 +

1
6a

3
1


 .
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Hence

f(a, b) =

∫

γb

(

∫

γa

τ2(ω)eq)eq

=

∫

γb




a1 a1
1
2a

2
1 + a2

1
2a

2
1 + a2

a1a2 +
1
6a

3
1 a1a2 +

1
6a

3
1




eq

=

∫

[0,1]

γ∗b




a1 a1
1
2a

2
1 + a2

1
2a

2
1 + a2

a1a2 +
1
6a

3
1 a1a2 +

1
6a

3
1




eq

=

∫

[0,1]




a1 a1
1
2a

2
1 + a2

1
2a

2
1 + a2

a1a2 +
1
6a

3
1 a1a2 +

1
6a

3
1




eq

(γb(t))(
∂

∂t

∣∣∣∣
t=0

γb(t))dt

=

∫

[0,1]

φγb(t)(




a1 a1
1
2a

2
1 + a2

1
2a

2
1 + a2

a1a2 +
1
6a

3
1 a1a2 +

1
6a

3
1


 (b))dt.

We have

φγb(t)(




a1 a1
1
2a

2
1 + a2

1
2a

2
1 + a2

a1a2 +
1
6a

3
1 a1a2 +

1
6a

3
1


 (b)) =




1 0 0
tb1 1 0

tb2 +
1
2 (tb1)

2 tb1 0






a1 a1
1
2a

2
1 + a2

1
2a

2
1 + a2

a1a2 +
1
6a

3
1 a1a2 +

1
6a

3
1



(
b1
b2

)

=




a1(b1 + b2)
(tb1a1 + a2 +

1
2a

2
1)(b1 + b2)

(a1a2 +
1
6a

3
1 +

1
2 tb1a

2
1 + tb2a1 + tb1a2 +

1
2 (tb1)

2a1)(b1 + b2)


 .

Thus

f(a, b) =




a1(b1 + b2)
(12b1a1 + a2 +

1
2a

2
1)(b1 + b2)

(a1a2 +
1
6a

3
1 +

1
4b1a

2
1 +

1
2b2a1 +

1
2b1a2 +

1
6 (b1)

2a1)(b1 + b2)


 .

and the conjugation in G0 ×f ZL(g) = R
5 is given by




a1
a2
a3
a4
a5




⊲




b1
b2
b3
b4
b5




=




b1
b2

b3 + a1(b1 + b2)
a1b3 + b4 + (12b1a1 + a2 +

1
2a

2
1)(b1 + b2)

(a2 +
1
2a

2
1)b3 + a1b4 + b5 + (a1a2 +

1
6a

3
1 +

1
4b1a

2
1 +

1
2b2a1 +

1
2b1a2 +

1
6 (b1)

2a1)(b1 + b2)



.

With a simple computation we verify that

∂2

∂s∂t

∣∣∣∣
s,t=0

(sa1, sa2, sa3, sa4, sa5)⊲(tb1, tb2, tb3, tb4, tb5) = [(a1, a2, a3, a4, a5), (b1, b2, b3, b4, b5)].

Thus (R5,⊲) integrates (R5, [−,−]).
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