A symmetry result on Reinhardt domains

Vittorio Martino ${ }^{(1)}$

Abstract

We show the following symmetry property of a bounded Reinhardt domain Ω in \mathbb{C}^{n+1} : let $M=\partial \Omega$ be the smooth boundary of Ω and let h be the Second Fundamental Form of M; if the coefficient $h(T, T)$ related to the characteristic direction T is constant then M is a sphere. In Appendix we state the result from an hamiltonian point of view.

1 Introduction

A Reinhardt domain Ω (with center at the origin) is by definition an open subset of \mathbb{C}^{n+1} such that

$$
\begin{equation*}
\text { if } \quad\left(z_{1}, \ldots, z_{n+1}\right) \in \Omega \quad \text { then } \quad\left(e^{i \theta_{1}} z_{1}, \ldots, e^{i \theta_{n+1}} z_{n+1}\right) \in \Omega \tag{1}
\end{equation*}
$$

for all the real numbers $\theta_{1}, \ldots, \theta_{n+1}$. These domains naturally arise in the theory of several complex variables as the logarithmically convex Reinhardt

[^0]domains are the domains of convergence of power series (see for instance [4], [7]). We will suppose from now on that the Reinhardt domain Ω has a smooth boundary (it would be enough C^{2}). The boundary $M:=\partial \Omega$ is then a smooth real hypersurface in \mathbb{C}^{n+1} and thus a CR-manifold of CRcodimension equal to one, with the standard CR structure induced by the holomorphic structure of \mathbb{C}^{n+1}. Thus for every $p \in M$ the tangent space $T_{p} M$ splits in two subspaces: the $2 n$-dimensional horizontal subspace $H_{p} M$, the largest subspace in $T_{p} M$ invariant under the action of the standard complex structure J of \mathbb{C}^{n+1} and the vertical one-dimensional subspace generated by the characteristic direction $T_{p}:=J \cdot N_{p}$, where N_{p} is the unit normal at p. Moreover, if \widetilde{g} is the standard metric on \mathbb{C}^{n+1}, then it holds
$$
T_{p} M=H_{p} M \oplus \mathbb{R} T_{p}
$$
and the sum is \widetilde{g}-orthogonal.
Let us consider the complexified horizontal space
$$
H^{\mathbb{C}} M:=\{Z=X-i J \cdot X: X \in H M\}
$$

The Levi Form l is then the sesquilinear and hermitian operator on $H^{\mathbb{C}} M$ defined in the following way: $\forall Z_{1}, Z_{2} \in H^{\mathbb{C}} M$

$$
\begin{equation*}
l\left(Z_{1}, Z_{2}\right)=\widetilde{g}\left(\widetilde{\nabla}_{Z_{1}} \bar{Z}_{2}, N\right) \tag{2}
\end{equation*}
$$

where $\widetilde{\nabla}$ is the Levi-Civita connection for \widetilde{g}. Moreover by a direct computation it holds

$$
\begin{equation*}
l(Z, Z)=\widetilde{g}\left(\widetilde{\nabla}{ }_{Z} \bar{Z}, N\right)=\widetilde{g}([X, Y], T) \tag{3}
\end{equation*}
$$

where $Y=J \cdot X$. We will say M be (strictly) pseudoconvex if l is (strictly) positive definite as quadratic form.

In analogy with classical curvatures defined in terms of elementary symmetric functions of the eigenvalues of the Second Fundamental Form, one defines the j-th Levi curvatures L^{j} in terms of elementary symmetric functions of the eigenvalues of the Levi Form

$$
L^{j}=\frac{1}{\binom{n}{j}} \sum_{1 \leq i_{1}<\cdots<i_{j} \leq n} \lambda_{i_{1}} \cdots \lambda_{i_{j}},
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of l. In particular when $j=n$ we have the Total-Levi Curvature and when $j=1$ we have the Levi-Mean Curvature L.

Being hypersurfaces in \mathbb{C}^{n+1} real hypersurfaces in $\mathbb{R}^{2 n+2}$, one can also compare the Levi Form with the Second Fundamental Form h of M by using the identity [3]

$$
l(Z, Z)=h(X, X)+h(J(X), J(X)), \quad \forall X \in H M
$$

Thus, a direct calculation leads to the relation between the classical Mean Curvature H and the Levi-Mean Curvature L [12]:

$$
\begin{equation*}
H=\frac{1}{2 n+1}(2 n L+h(T, T)) \tag{4}
\end{equation*}
$$

where $h(T, T)=\widetilde{g}\left(\widetilde{\nabla}_{T} T, N\right)$ is the coefficient of the Second Fundamental Form related to the characteristic direction T.

Definition 1.1. We will call $h(T, T)$ the characteristic curvature of M.
By (4) the characteristic curvature is a sort of complementary of the LeviMean Curvature in computing the Mean Curvature. Moreover, for every hypersurface in $\mathbb{C}^{n+1}, h(T, T)$ is invariant under a biholomorphic (rigid) transformation, as the Levi curvatures are.

Following the pioneering result due to Alexandrov [1] on the classical Mean

Curvature of Euclidean surface, the problem of characterizing compact hypersurfaces with positive constant Levi-Mean Curvature has recently received a great amount of attention. Klingenberg in [8] gave a first positive answer to this problem by showing that if the characteristic direction is a geodesic and the Levi Form is diagonal, then M is a sphere. Monti and Morbidelli in [13] proved a Darboux-type theorem for $n \geq 2$: the unique Levi umbilical hypersurfaces in \mathbb{C}^{n+1} with all constant Levi curvatures are spheres or cylinders. Later on Montanari and the author proved two results of this type: in 11 they relaxed Klingerberg conditions and they proved that if the characteristic direction is a geodesic, then Alexandrov Theorem holds for hypersurfaces with positive constant Levi-Mean Curvature; in 10 they proved some integral formulas for compact hypersurfaces, of independent interest, and then they follow the Reilly approach [14, [15], [16] to prove Isoperimetric estimates and a Alexandrov type theorem, namely: let M be a closed smooth real hypersurface bounding a star-shaped domain in \mathbb{C}^{n+1}, if the j-Levi curvature is a positive constant K and the maximum of the Mean Curvature of M is bounded from above by K then M is a sphere. In a couple of recent papers Hounie and Lanconelli proved Alexandrov type theorems for Reinhardt domains in \mathbb{C}^{2} first and for Reinhardt domain in $\mathbb{C}^{n+1}, n \geq 1$, with an additional rotational symmetry then. In [5] they showed the result for bounded Reinhardt domain of \mathbb{C}^{2}, i.e. for domains Ω such that if $\left(z_{1}, z_{2}\right) \in \Omega$ then $\left(e^{i \theta_{1}} z_{1}, e^{i \theta_{2}} z_{2}\right) \in \Omega$ for all real θ_{1}, θ_{2}. Under this hypothesis, in a neighborhood of a point, there is a defining function F only depending on the radii $r_{1}=\left|z_{1}\right|, r_{2}=\left|z_{2}\right|, F\left(r_{1}, r_{2}\right)=f\left(r_{2}^{2}\right)-r_{1}^{2}$ with f the solution of the ODE

$$
\begin{equation*}
s f f^{\prime \prime}=s f^{\prime 2}-k\left(f+s f^{\prime 2}\right)^{3 / 2}-f f^{\prime} \tag{5}
\end{equation*}
$$

Alexandrov Theorem follows from uniqueness of the solution of (5). Their technique has then been used in [6] to prove an Alexandrov Theorem for bounded Reinhardt domains in \mathbb{C}^{n+1} with an additional rotational symmetry in two complementary sets of variables, for every n.
Here we prove a similar result of symmetry for Reinhardt domains in \mathbb{C}^{n+1} starting from the characteristic curvature rather than the Levi ones.

Theorem 1.2. Let $M:=\partial \Omega$ be the smooth boundary of a bounded Reinhardt domain Ω in \mathbb{C}^{n+1}. If the characteristic curvature $h(T, T)$ is constant then M is a sphere of radius equal to $1 / h(T, T)$.

Let $\left\{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right\}$, with $Y_{k}=J \cdot X_{k}$, be an orthonormal basis of the horizontal space $H M$; keeping in mind the structure of the Second Fundamental Form

$$
h=\left(\begin{array}{ccc}
h\left(X_{k}, X_{k}\right) & h\left(X_{k}, Y_{j}\right) & h\left(X_{k}, T\right) \\
h\left(Y_{j}, X_{k}\right) & h\left(Y_{j}, Y_{j}\right) & h\left(Y_{j}, T\right) \\
h\left(T, X_{k}\right) & h\left(T, Y_{k}\right) & h(T, T)
\end{array}\right)
$$

with k and j running in $1, \ldots, n$, we are making assumption only on the one-dimensional characteristic subspace of the tangent space rather than on the $2 n$-dimensional horizontal one $H M$: moreover when in addition one assumes one of the Levi curvatures be non zero (as in the Alexandrov type results) then $H M$ spans the whole tangent space; in fact the vector fields $\left\{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right\}$ satisfy the Hörmander rank condition.

When there exists a defining function $f: \mathbb{C}^{n+1} \rightarrow \mathbb{R}$

$$
\Omega=\left\{z \in \mathbb{C}^{n+1}: f(z)<0\right\}, \quad M=\partial \Omega=\left\{z \in \mathbb{C}^{n+1}: f(z)=0\right\}
$$

such that $f(z)=g(r)$ depends only on the radii $r=\left(r_{1}, \ldots, r_{n+1}\right)$, where

$$
r_{k}=z_{k} \bar{z}_{k}, \quad k=1, \ldots, n+1
$$

then we can find an explicit formula to compute the characteristic curvature $h(T, T)$. In fact by using the following identities

$$
\begin{gathered}
f_{k}=\bar{z}_{k} g_{k}, \quad f_{\bar{k}}=z_{k} g_{k}, \quad f_{\bar{j} k}=\delta_{j k} g_{k}+z_{j} \bar{z}_{k} g_{j k} \\
|\partial f|^{2}=\sum_{k} r_{k} g_{k}^{2}
\end{gathered}
$$

the unit normal N is

$$
N=-\frac{1}{|\partial f|} \sum_{k}\left(z_{k} g_{k} \partial_{z_{k}}+\bar{z}_{k} g_{k} \partial_{\bar{z}_{k}}\right)
$$

and the characteristic direction T reads as

$$
T=J \cdot N=-\frac{i}{|\partial f|} \sum_{k}\left(z_{k} g_{k} \partial_{z_{k}}-\bar{z}_{k} g_{k} \partial_{\bar{z}_{k}}\right)
$$

Then by a direct computation we have that

$$
\begin{equation*}
h(T, T)=\widetilde{g}\left(\widetilde{\nabla}_{T} T, N\right)=\sum_{k}^{n+1} \frac{r_{k} g_{k}^{3}}{|\partial f|^{3}} \tag{6}
\end{equation*}
$$

Example 1.3 (characteristic curvature of the sphere). Let

$$
g\left(r_{1}, \ldots, r_{n+1}\right)=r_{1}+\ldots+r_{n+1}-R^{2}
$$

be the defining function of the sphere of radius equal to R in \mathbb{C}^{n+1}. By the formula (6) we have that the characteristic curvature of the sphere is

$$
h(T, T)=\frac{1}{R}
$$

Example 1.4 (characteristic curvature of ellipsoidal type domains). Let

$$
g\left(r_{1}, \ldots, r_{n+1}\right)=\frac{r_{1}}{a_{1}^{2}}+\ldots+\frac{r_{n+1}}{a_{n+1}^{2}}-1
$$

be the defining function of an ellipsoid in \mathbb{C}^{n+1} with $\left(a_{1}, \ldots, a_{n+1}\right)$ positive constants. By the formula (6) we have that at a point $p=\left(r_{1}, \ldots, r_{n+1}\right) \in M$ its characteristic curvature is

$$
h_{p}(T, T)=\frac{\sum_{k}^{n+1} \frac{r_{k}}{a_{k}^{6}}}{\left(\sum_{k}^{n+1} \frac{r_{k}}{a_{k}^{4}}\right)^{3 / 2}}
$$

In the next section we will prove the Theorem 1.2, then in the Appendix we will show an Hamiltonian point of view of the result.

2 Proof of Theorem 1.2

Let us identify $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \simeq \mathbb{C}^{n+1}$ so that $z=(x, y)$. First we prove a property of independent interest.

Lemma 2.1. Let Ω be a Reinhardt domain in \mathbb{C}^{n+1} and let

$$
p=\left(z_{1}, \ldots, z_{n+1}\right)=\left(x_{1}, \ldots, x_{n+1}, y_{1}, \ldots, y_{n+1}\right)
$$

the "position vector" of a point on $M:=\partial \Omega$. If T_{p} is the characteristic direction at $p \in M$ then it holds identically

$$
\begin{equation*}
\tilde{g}\left(p, T_{p}\right) \equiv 0 \tag{7}
\end{equation*}
$$

Proof. If M is any smooth hypersurface bounding a domain Ω in \mathbb{C}^{n+1} with defining function $f: \mathbb{C}^{n+1} \rightarrow \mathbb{R}$ such that

$$
\Omega=\left\{z \in \mathbb{C}^{n+1}: f(z)<0\right\}, \quad M=\partial \Omega=\left\{z \in \mathbb{C}^{n+1}: f(z)=0\right\}
$$

then the unit normal N is:

$$
N=-\frac{1}{|\partial f|} \sum_{k=1}^{n+1}\left(f_{\bar{k}} \partial_{z_{k}}+f_{k} \partial_{\bar{z}_{k}}\right)
$$

where $f_{k}=\frac{\partial f}{\partial z_{k}}$, with $k=1, \ldots, n+1$. Thus the characteristic direction T is:

$$
T=J \cdot N=-\frac{i}{|\partial f|} \sum_{k=1}^{n+1}\left(f_{\bar{k}} \partial_{z_{k}}-f_{k} \partial_{\bar{z}_{k}}\right)
$$

By identifying $f(z)=f(x, y)$, from the real point of view we have:

$$
\begin{aligned}
N & =-\frac{1}{|\nabla f|} \sum_{k=1}^{n+1}\left(f_{x_{k}} \partial_{x_{k}}+f_{y_{k}} \partial_{y_{k}}\right) \\
T & =\frac{1}{|\nabla f|} \sum_{k=1}^{n+1}\left(f_{y_{k}} \partial_{x_{k}}-f_{x_{k}} \partial_{y_{k}}\right)
\end{aligned}
$$

Now, if Ω is a Reinhardt domain (with center at the origin) in \mathbb{C}^{n+1} then we can find (at least locally) a defining function $f(z)=g(r)$ depending only on the radii $r=\left(r_{1}, \ldots, r_{n+1}\right)$ where

$$
r_{k}=z_{k} \bar{z}_{k}=x_{k}^{2}+y_{k}^{2}, \quad k=1, \ldots, n+1
$$

So if $g_{k}=\frac{\partial g}{\partial r_{k}}$ we obtain

$$
f_{x_{k}}=2 x_{k} g_{k}, \quad f_{y_{k}}=2 y_{k} g_{k}
$$

with $k=1, \ldots, n+1$. In vectorial notation then we have

$$
\begin{gathered}
T=\frac{1}{|\nabla f|}\left(f_{y_{1}}, \ldots, f_{y_{n+1}},-f_{x_{1}}, \ldots,-f_{x_{n+1}}\right)= \\
=\frac{2}{|\nabla f|}\left(y_{1} g_{1}, \ldots, y_{n+1} g_{n+1},-x_{1} g_{1}, \ldots,-x_{n+1} g_{n+1}\right)
\end{gathered}
$$

and thus it holds identically

$$
\tilde{g}\left(p, T_{p}\right)=\frac{2}{|\nabla f(p)|} \sum_{k=1}^{n+1}\left(x_{k} y_{k} g_{k}(p)-y_{k} x_{k} g_{k}(p)\right) \equiv 0
$$

for every $p \in M$

In other words, the vector position p has generally a normal component and a tangential component; in turn, the tangential component has an horizontal component and a characteristic component: for Reinhardt domains the characteristic component of the vector position p identically vanishes.

Now we can prove the main result.
Proof. (of Theorem (1.2) Let us consider the function:

$$
\varphi: M \rightarrow \mathbb{R}, \quad \varphi(p)=\frac{|p|^{2}}{2}=\frac{\tilde{g}(p, p)}{2}
$$

that represents one half the squared distance of the manifold from the origin.
If $V \in T M$ is a tangent vector field to M then the derivative of φ along V is

$$
V(\varphi(p))=\frac{1}{2} V(\tilde{g}(p, p))=\tilde{g}\left(p, V_{p}\right)
$$

and by Lemma 2.1 we have

$$
T(\varphi)=\tilde{g}(p, T) \equiv 0
$$

Thus, if \widehat{p} is a critical value of φ, then

$$
X_{k}(\varphi)_{\mid \overparen{p}}=Y_{k}(\varphi)_{\left.\right|_{\overparen{p}}}=0
$$

Moreover, φ evaluated at a critical value is

$$
\begin{equation*}
\varphi(\widehat{p})=\frac{|\widehat{p}|^{2}}{2} \tag{8}
\end{equation*}
$$

and the position vector of any critical value \widehat{p} is parallel to the (inner) unit normal direction N at \widehat{p}

$$
\widehat{p}=\tilde{g}\left(\widehat{p}, N_{\widehat{p}}\right) N_{\widehat{p}}=-|\widehat{p}| N_{\widehat{p}}
$$

Differentiating again φ along the characteristic direction T we obtain

$$
0 \equiv T^{2}(\varphi)=T(\tilde{g}(p, T))=\tilde{g}(T, T)+\tilde{g}\left(p, \widetilde{\nabla}_{T} T\right)=1+\tilde{g}\left(p, \widetilde{\nabla}_{T} T\right)
$$

and if \widehat{p} is a critical value for φ then we get

$$
\begin{equation*}
1-|\widehat{p}| \tilde{g}\left(N_{\widehat{p}}, \widetilde{\nabla}_{T} T\right)=1-|\widehat{p}| h_{\widehat{p}}(T, T)=0 \tag{9}
\end{equation*}
$$

where $h_{\widehat{p}}(T, T)$ is the characteristic curvature of M at \widehat{p}.
Since M is a smooth compact hypersurface, then φ admits maximum and minimum which are critical values for φ. If $h(T, T)$ is constant then by (9) we have

$$
|\widehat{p}|=\frac{1}{h_{\widehat{p}}(T, T)}=\frac{1}{h(T, T)}=\text { const } .
$$

Then by (8) φ is constant on M and it holds

$$
(2 \varphi(p))^{1 / 2}=|p|=\frac{1}{h(T, T)}=\text { const } .
$$

for every $p \in M$, and it means that M is a sphere of radius $\frac{1}{h(T, T)}$
The boundedness hypothesis is crucial as the next example shows.
Example 2.2 (characteristic curvature of a cylinder type domain). Let

$$
g\left(r_{1}, r_{2}\right)=r_{1}-R^{2}
$$

be the defining function of a cylinder type domain in \mathbb{C}^{2}. By the formula (6) we have that the its characteristic curvature is constant:

$$
h(T, T)=\frac{1}{R}
$$

3 Appendix

Here we want to look at the Reinhardt domains from an hamiltonian point of view. First we recall that for every hypersurface M in \mathbb{C}^{n+1}, with f as defining function, the characteristic direction of M is exactly the (normalized) hamiltonian vector field for the hamiltonian function f. In fact let
us consider a dynamic system with hamiltonian function (smooth enough) depending on position and momentum variables

$$
H: \mathbb{R}^{n+1} \times \mathbb{R}^{n+1} \rightarrow \mathbb{R}, \quad z=(q, p) \mapsto H(q, p)
$$

and define the Action functional

$$
A(z)=\int_{t_{0}}^{t_{1}}(\langle p, \dot{q}\rangle-H(q, p)) d t, \quad z:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{2 n+2}
$$

The first variation of A on a suitable space of curves leads to the following system of differential equations (Hamilton)

$$
\left\{\begin{array}{l}
\dot{q}_{k}=\frac{\partial H}{\partial p_{k}}(q, p) \tag{10}\\
\dot{p}_{k}=-\frac{\partial H}{\partial q_{k}}(q, p)
\end{array} \quad k=1, \ldots, n+1\right.
$$

Now, a Least Action Principle states that trajectories of motion (in the generalized phase space $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$) are solutions of (10). The isoenergetic surface of H of energy E is the following hypersurface in $\mathbb{R}^{2 n+2}: M=\{z \in$ $\left.\mathbb{R}^{2 n+2}: H(z)=E\right\}$. The conservation of energy principle ensures that if z is a critical point for A, then $z(t) \in M, \forall t \in\left[t_{0}, t_{1}\right]$. The hamiltonian vector field for H is the tangent vector field to M

$$
X_{z}^{H}:=\left(\frac{\partial H}{\partial p}(q, p),-\frac{\partial H}{\partial q}(q, p)\right)=J \cdot \nabla H(q, p)
$$

where

$$
J=\left(\begin{array}{cc}
0 & I_{n+1} \\
-I_{n+1} & 0
\end{array}\right)
$$

is the canonical symplectic matrix in $\mathbb{R}^{2 n+2}$ and in our case it coincides with the standard complex structure in \mathbb{C}^{n+1}.

The Hamilton system (10) rewrites as

$$
\dot{z}=X_{z}^{H}
$$

Now, if one identifies

$$
\mathbb{C}^{n+1} \approx \mathbb{R}^{2 n+2}, \quad z=\left(z_{1}, \ldots, z_{n+1}\right), \quad z_{k}=x+i y \simeq\left(x_{k}, y_{k}\right)
$$

then the hypersurface M defined by

$$
M=\left\{z \in \mathbb{C}^{n+1}: f(z)=0\right\}, \quad f: \mathbb{C}^{n+1} \rightarrow \mathbb{R}
$$

is exactly the isoenergetic surfaces of $H=f+E$. Thus the hamiltonian vector field on M is

$$
X_{z}^{H}=J \cdot \nabla H(z)=J \cdot \nabla f(z)=J \cdot N=T
$$

where $N=\nabla f$ is the normal direction to M and T is the (not normalized) characteristic direction. Moreover the integral curves of X^{H} (the orbits in the phase space) coincide with that ones of T, eventually reparametrized. In this situation the characteristic curvature $h(T, T)$ is the normal curvature of the hamiltonian trajectories on the isoenergetic surface in the generalized phase space $\mathbb{R}^{n+1} \times \mathbb{R}^{n+1}$.

Now, we recall that if Ω is a Reinhardt domain (with center at the origin) in \mathbb{C}^{n+1} then we can find (at least locally) a defining function $f(z)=g(r)$ depending only on the radii $r=\left(r_{1}, \ldots, r_{n+1}\right)$ where

$$
r_{k}=z_{k} \bar{z}_{k}=x_{k}^{2}+y_{k}^{2}, \quad k=1, \ldots, n+1
$$

This means that the hamiltonian function depends only on the quantities $r_{k}=q_{k}^{2}+p_{k}^{2}$ that represent the actions in the pair of variables action-angle. Thus the angle variables are cyclic and then the actions r_{k} (and all the functions depending on them) are conserved quantities along the trajectories of motion. In fact we have that the characteristic direction T is:

$$
T=-\frac{i}{|\partial f|} \sum_{k}\left(z_{k} g_{k} \partial_{z_{k}}-\bar{z}_{k} g_{k} \partial_{\bar{z}_{k}}\right)
$$

then it holds

$$
T\left(r_{k}\right)=0, \quad k=1, \ldots, n+1
$$

Moreover the system (10) reads as

$$
\begin{equation*}
\dot{z}_{k}=-i f_{\bar{k}}=-i z_{k} g_{k} \tag{11}
\end{equation*}
$$

and since $g_{k}(t)=g_{k}(0)$, then the curve

$$
z(t)=z_{k}(0) e^{-i g_{k}(0) t}
$$

is an explicit solution of (11) with initial condition $z_{k}(0)$.
In particular, we have that the following curves

$$
z(t)=z_{k}(0) e^{-i \frac{g_{k}(0)}{|\partial f(0)|} t}
$$

are integral curves of the characteristic direction T.
We explicitly note that the trajectories of the characteristic direction belong to a $(n+1)$-dimensional torus \mathbb{T}^{n+1} (eventually degenerate) identified by

$$
\begin{equation*}
\mathbb{T}^{n+1}=\mathbb{S}^{1} \times \ldots \times \mathbb{S}^{1}=\left\{z \in \Omega:\left|z_{1}\right|=c_{1} \geq 0, \ldots,\left|z_{n+1}\right|=c_{n+1} \geq 0\right\} \tag{12}
\end{equation*}
$$

and this is a particular case of the wellknown Liouville-Arnold Theorem [2]. In other words we have a symplectic toric action group on \mathbb{C}^{n+1} with a fixed point at the origin.

Let us now consider the following explicit formula to compute the j-th Levi curvature of M in term of a defining function f (see [9]):

$$
\begin{equation*}
L^{j}=-\frac{1}{\binom{n}{j}} \frac{1}{|\partial f|^{j+2}} \sum_{1 \leq i_{1}<\cdots<i_{j+1} \leq n+1} \Delta_{\left(i_{1}, \cdots, i_{j+1}\right)}(f) \tag{13}
\end{equation*}
$$

for all $j=1, \ldots, n$, where

$$
\Delta_{\left(i_{1}, \cdots, i_{j+1}\right)}(f)=\operatorname{det}\left(\begin{array}{llll}
0 & f_{\bar{i}_{1}} & \ldots & f_{\bar{i}_{j+1}} \tag{14}\\
f_{i_{1}} & f_{i_{1}, \bar{c}_{1}} & \ldots & f_{i_{1}, \bar{i}_{j+1}} \\
\vdots & \vdots & \ddots & \vdots \\
f_{i_{j+1}} & f_{i_{j+1}, \bar{i}_{1}} & \ldots & f_{i_{j+1}, \bar{i}_{j+1}}
\end{array}\right)
$$

If $f(z)=g(r)$ depends only on the radii $r=\left(r_{1}, \ldots, r_{n+1}\right)$ then by a direct computation we have that $\Delta_{\left(i_{1}, \cdots, i_{j+1}\right)}(g)$ depends only on $\left(r_{i_{1}}, \cdots, r_{i_{j+1}}\right)$. Thus all the j-th Levi curvatures are conserved quantities on every fixed $(n+1)$-dimensional torus \mathbb{T}^{n+1} : in particular they are constant along the trajectories of the characteristic direction T.

Moreover by the formula (6) also the characteristic curvature $h(T, T)$ is constant on every fixed ($n+1$)-dimensional torus. We explicitly recall that $h(T, T)$ (and all the conserved quantities as well) is constant along the trajectories of the characteristic direction T but the value of the constant changes accordingly to the initial condition of the equation (11).

Then our main result Theorem (1.2) states that if the value of the constant $h(T, T)$ is the same on all the trajectories of the characteristic direction T then M is a sphere.

References

[1] A.D. Alexandrov, A characteristic property of spheres, Ann. Mat. Pura Appl., (4) 58, pag. 303-315, 1962
[2] V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag (1989)
[3] A. Bogges, CR Manifolds and the Tangential Cauchy-Riemann Complex, Studies in Advanced Mathematics, 1991
[4] L. HÖrmander, An introduction to complex analysis in several variables, North-Holland (1973)
[5] J.G. Hounie, E. Lanconelli, An Alexander type Theorem for Reinhardt domains of \mathbb{C}^{2}. Recent progress on some problems in several complex variables and partial differential equations, Contemp. Math., Amer. Math. Soc., Providence, RI, 400,129-146, 2006.
[6] J.G. Hounie, E. Lanconelli, A sphere theorem for a class of Reinhardt domains with constant Levi curvature, Forum Mathematicum 2008 20:4, 571-586
[7] M. Jarnicki, P. Pflug, First steps in several complex variables: Reinhardt domains, European Mathematical Society, 2008
[8] W.Klingenberg, Real hypersurfaces in Kähler manifolds, Asian J. Math. 5, no. 1, pag. 1-17, 2001
[9] E. Lanconelli, A. Montanari, Pseudoconvex Fully Nonlinear Partial Differential Operators. Strong Comparison Theorems, J. Differential Equations 202 (2004), no. 2, 306-331
[10] V. Martino, A. Montanari, Integral formulas for a class of curvature PDE's and applications to isoperimetric inequalities and to symmetry problems, Forum Mathematicum, vol. 22/2 (2010); p. 255-267
[11] V. Martino, A. Montanari, On the characteristic direction of real hypersurfaces in \mathbb{C}^{n+1} and a symmetry result, Advances in Geometry, Vol. 10/3, 2010, 371-377
[12] V. Martino, La forma di Levi per ipersuperfici in \mathbb{C}^{N+1} e l'equazione di pseudocurvatura media per grafici reali, PhD Thesis
[13] R. Monti and D. Morbidelli, Levi umbilical surfaces in complex space, J. Reine Angew. Math. Math. 603 (2007) 113-131
[14] R. C. Reilly, Applications of the Hessian operator in a Riemann manifold Indiana Univ. Math. J., 26 (1977) 459-472.
[15] R. C. Reilly, Mean curvature, the Laplacian, and Soap Bubbles Amer. Math. Monthly 89 (1982), no. 3, 180-188, 197-198.
[16] R. C. Reilly, On the Hessian of a function and the curvatures of its graph. Michigan Math. J. 20 (1973), 373-383.

[^0]: ${ }^{1}$ Dipartimento di Matematica, Università di Bologna, piazza di Porta S.Donato 5, 40127 Bologna, Italy. E-mail address: martino@dm.unibo.it

