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We study ultracold bosons in a one-dimensional rotating ldttice with a weak potential barrier well below
unit filling. Due to the potential barrier the eigenstates superpositions of different quasi-momenta. At the
critical rotation frequency where the single-particlectpem of the uniform system is doubly degenerate, the
ground-state wave function is a condensate for weak iniera@ NOON-state for intermediate interaction, and
a center-of-mass superposition for strong interaction.défeonstrate that the energy gap in the last regime is
independent of the number of particles only if the barriexuSiiciently narrow, i.e. a single-site barrier, and de-
creases exponentially for more realistic barrier potéstlzat necessarily have finite widths. We also provide the
signatures of the different superposition states in mouomerttistribution and noise correlation measurements.

PACS numbers: 67.85.Hj; 03.75.Gg; 03.75.Gg

Ultracold bosons in rotating ring traps are a fascinatingsu ~ We use both exact diagonalization of systems with small
ject of research because the particles in this system cam fornumbers of atoms and sites, along with the Bose-Fermi map-
various multi-particle superposition states. Some ofdtes  ping in the Tonks-Giradeau regime to fully characterize the
perposition states may play a central role in studies of thground-state wave function of this many-body system. We
guantum-to-classical transition [1] or in applicationglsias find that the nature of the lowest-energy superpositiore stat
entanglement-enhanced metrology [2]. at the critical rotation frequency with a weak barrier peten

Most of the work in this area has focussed on NOON-tial depends on the strength of the interactions. For weak in
state production in uniform ring lattices [3, 4] and superla teractions it is a Bose-Einstein condensate. For interatedi
tices [5]. In these systems there are critical rotationdesg ~ strength it is a strongly-correlated NOON-state. For gjron
cies at which the single-particle spectrum is degeneratesgo  interactions, where the particles are locked togethes, st
even weak interactions lead to strong correlations between perposition of two center-of-mass motional states.
particles. The energy gap between ground and excited states The latter limit appears most attractive for generatingsup
for these systems does, as one might expect for multi-pertic positions with many particles as the energy gap is indep@nde
transitions, decrease exponentially with the number ofipar Of the number of particles. This independence of the number
cles. This does, of course, limits the schemes proposedito geof particles however depends critically on the large momen-
erate these quasi-momentum NOON-states to operate withtdm transfer that a sharp potential barrier is able to previd
modest number of atoms [4, 6]. As soon as we consider a Gaussian potential with finite width,

Very recently, the authors of Ref! [7] showed that for strongth€ energy gap decreases exponentially with increasing num
interactions the ground state of a Lieb-Liniger model with Per of particles. Any real potential in an experiment wilvea
a delta-function potential barrier is a superposition atet @ finite width and this gives a limit to the number of particles
with different total (angular) momentum of the particless A thatcan actually participate in the superposition stateally,
the energy gap in this model is independent of the number o€ Present the experimental signatures of the differergrsup
particles involved, the production of superposition statith ~ Position states in momentum distribution and noise correla
larger number of particles seems feasible. This is a remarilons measurements.
able result, and we wished to examine the extent to which the Hamiltonian.We consider a system of ultracold bosons
result would apply to systems with a more realistic poténtia With massM confined in a 1D ring lattice oL sites with

With this in mind, we shall present our results for the naturgattice constand. The ring is rotated in its plane with angular

of the different superposition states that occur for utitdc velocity 2. In the rotating frame the Hamiltonian s [4, 8]

bosons in rotating ring lattices with a weak potential tkearri R L UL

We focus on systems at a critical rotation frequency whese th /= — J ) (ei"d;de + H.c.) + 5 ) gl —1)
single-particle spectrum of the uniform ring is doubly dege J=1 2 J=1

erate. We study systems with less than one atom per site in L

order to avoid the superfluid-to-Mott-insulator transitifor + Z Vi, (1)

strong interactions and introduce a weak potential battigtr
breaks rotational (or translational) invariance and l¢adsi-
perposition states of different quasi-momenta. wheren; = &;dj anda; are the number and bosonic annihi-
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lation operators of a particle at sijed = MQLd?/h is the  of the single-particle density-matrix (SPDM@ZT&J-) has one
phase twist induced by rotatiod, is the hopping energy be- eigenvalue of sizéV which signals condensation.
tween nearest-neighbor sité5the on-site interaction energy,  As soon as the interactions overcome the energy splitting
andV; describes the potential barrier at sjte induced by the potential barrier, the almost degeneratesman

To understand the effect of rotation on the atoms in the rindbody states are strongly mixed leading to correlations eetw
lattice, we write the many-body Hamiltonianl (1) in terms of the atoms. We discussed this mechanism in detail in the con-
the quasi-momentum operat(ﬁ;,s: \% 2521 djef%iqj/L, text of NOON-state production in rotating ring lattices and

: superlattices. [9] as well as quantum vortex nucleation.[10]

Neglecting the effect of the weak potential barrier, the-non
interacting many-body spectrum at the critical phase tigist

where2rq/dL is the quasi-momentum and=0,...,L — 1
an integer. In this basis the Hamiltoni@nh (1) has the forrd]3,

-1 -1 N +1-fold degenerate. Most of the degeneracy is lifted by the
H = E.bb, + v ngTglg[ o] modL interactions in first order of perturbation theory, but tretes
Tt 2L e (b5)N10) and (61)N|0) remain de
q=0 4.5.1=0 0 1 generate. In the presence
I—1 of the potential barrier these two states are coupled at some
+ V.. bt h ) higher order of perturbation theory (even if the system is-no
(4.9 7=0 e commensurate), the degeneracy is lifted, and the groute sta
" is the quasi-momentum NOON-state [7]
vv_hereEq =-2J cos_(27rq/L—9) are the single—parti_cle ener- DN — ()N
gies,V,q is the Fourier transform of the single-particle poten- ) = 0120y, (4)
tial Vo = + 3, V;e2mi(e=4)3/L, and the modulus is taken V2

because in collision processes the quasi-momentum is CORyhjje the momentum distribution is almost unchanged with
serveq up to an integer multiple of the reciprocal latticetoe respect to the non-interacting case, the momentum noise
27r/d, i.e. modulo Umklapp processes. In absence of a pOte’Eorrelations<ﬁqﬁq,> — (i) {Rg') pick up the large fluctua-

tial barrier, i.e.V; = 0, the single-particle spectrumis twofold {i5ns in the NOON-staté [4). The distribution of total quasi
degenerate fof = 7/L which we will refer to as the critical momentumP (K is bimodal, and the SPDM has two large
rotation frequency or critical phase twist. . eigenvalues of siz&//2 indicating fragmentation of the con-
Grqund state at the critical phase twistn _the following _ densate. Finally, the overlap with the many-body quasi-
we will focus on the ground state at the critical phase twistyomentum basis states unambiguously proofs that the ground
for a small single-site potential barriev( = 0 for j # 0,  gtate is indeed the quasi-momentum NOON-sfdte (4).
l.e.Vyy = Vo < J). Note that a single-site barrier leads to | passing we note that the presence of NOON-states can
consta}nt momentum transfer in the first Brillouin zone. be observed in time-of-flight expansion after inducing many
In Fig.[1 we show our results for the many-body spectrumyody oscillations with a quench in the rotation frequendy [5
a_md de_talled char_acterlza_\tlor_w of the ground-state wave-fun Their frequency is given by twice the energy gap which in the
tion using exact diagonalization of a small systemfor= 3 regime of intermediate interactions is exponentially $rimal
atoms onL = 5 lattice sites. We can clearly distinguish three the number of particles|[3] 4].
regimes: weak, intermediate, and strong interactions. Let us now discuss the novel strongly-interacting regime. |
In the non-interacting systen/ = 0, all bosons occupy absence of the potential barrier, i1§. = 0, quasi-momentum
the lowest-energy single-particle state. In the preseftigeo s g good quantum number. Strong interactidiig.[ — oo)
potential barrier}y # 0, translation symmetry is broken and |ead to fermionization of the bosons within each subspace of
guasi-momentum ceases to be good quantum number. Foltgtal quasi-momentur. In this regime the many-body en-
weak barrier}y < J, the ground state of the single-particle ergy spectrum is equal to the single-particle spectrumh(wit
Hamiltonian is an equal superposition of the quasi-momantu (anti-)periodic boundary conditions for (even) odd [11])
statesg = 0) and|g = 1), and the many-body ground state is which is degenerate at the critical phase twist. The paténti
N barrier then breaks translation symmetry and couples the tw
bl — b degenerate ground states; =) and|y£="), which are the
|tho) = 7 0) (3)  ground states of the quasi-momentum subspacesAvith 0
and K = N. We thus call the ground-state wave function a
center-of-mass superposition

where|0) is the many-body vacuum. This is corroborated
by our exact-diagonalization results in the wquly—imﬁrag =0y — |pK=N)

regime: the momentum distribution {&,) = (b}b,) = N/2 [Yoo) = /2 : Q)

for ¢ = {0,1} and(n,) = 0 otherwise. The distribution

of total momentunP(K), i.e. the probability that the many- Compared to the regime of intermediate interactions the two
body system has total quasi-moment2ud/dL is binomial.  largest eigenvalues of the SPDM are smaller in the strongly-
It can be calculated fronP(K) = " |K,n)(K,n|, where interacting limit pointing to the fact that the center-okss
|K,n)(K,n| is the projector on the Fock state wiffi total  superposition[(5) is only a partially-fragmented statenc8i
quasi-momentum quantum number ands a shorthand for many quasi-momentum basis states contributelto (5) the over
the remaining quantum numbets [7]. Finally, the spectrumap with a quasi-momentum NOON-staié (4) is also smaller.
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FIG. 1: Energy spectrum and characterization of the graiate wave function folV = 3 particles onL. = 5 sites at the critical phase
twist as a function of the interaction parametéf.J: (a) many-body energy spectrum, (b) momentum distributfay}, (c) momentum noise
correlations(iigfig ) — (ig)(Rg'), (d) Spectrum of single-particle density mattix/ ), (e) distribution of total quasi-momentuf(K) (as
defined in the text), and (f) overlap with the many-body Faeltes in the quasi-momentum baBig—o, . . ., ng=r—1). Note that in (b), (c),
(e) and (f) most curves are doubly degenerate.

The distribution of total quasi-momentum is not sensitivecles, a consequence of the constant momentum transfer in the
to the difference between the statgk (4) ddd (5). State (5) ifirst Brillouin zone for a single-site barrier (see below).
a superposition involving the center-of-mass coordin&td o On the contrary, non-local observables, such as the two-
particles and might be valuable for studies of the quantm-t point correlator, (ala;), needed to compute the quasi-
classical transition, similar to experiments on the diffan  momentum distribution or SPDM, are mapped onto a string
of large molecules [12], moving mirrors driven by radiatio- of fermionic o erators‘gcﬁd) - <é‘r_(_1)zj>k>ié£éké-> for
pressure forcel [13] and electrons in superconducting flux . Maki P ¢ g fJW' K's th ‘
gubits [14]. However, stat€](5) does not possess the iritggu J = 1. MaKing extensive use (,), VICK'S eqrefn,A one can
many-body correlations present in stdfe (4) which are rbedd " €XPress this quantity as a Toplitz det.erm_mmjma =
for application such as entanglement-enhanced metrologyy a 3 det(G;,i], whereG ; is aj —i by j —i matrix with elements
other quantum-information tasks. (G = 2<él+l,7léj+l> — d;r—1. We can compute these

Larger systems in the Tonks-Giradeau limit.the Tonks- determinants numerically for relatively large system size
Giradeau regime the strong repulsion between atoms mimics In contrast to the energy gap which is almostindependent of
the Pauli exclusion principle and prevents two atoms from octhe number of particles, the SPDM spectrum and momentum
cupying the same lattice site. In this regime, the bosonéz-op distr_ibution substantially change with the number of mdes.
ators,d;, can be re-expressed using the Jordan-Wigner trandd Fig.[2 we plot the spectrum of the SPDM fdr = 100
formation (JWT)|[11] in terms of fermionic ones;, fulfilling sites as a function of the number of particlés We see that
anti-commutation relations. Under the JWT, any correfatio fragmentation strongly decreases with increasing number o
function of the bosonic system can be rewritten in terms ofParticles so that can infer that the ground state has a desgea
fermionic operators and computed for the corresponding norPverlap with a quasi-momentum NOON-stdte (4). Moreover,
interacting fermionic ground state by using Wick’s theorem the momentum distribution foN = 20 atoms onZ = 100
Local observables, such as the density, or those involvifig o~ Sites shows that even at this small filling depletion is large
nearest-neighbor sites, such as the Hamiltoriian (1), map di Number scaling for finite-width potential barriern fu-
rectly to the corresponding fermionic observables. Fomexa ture experiments the barrier will most likely be provided by
ple, the bosonic spectrum is exactly the same as the spectruanblue-detuned laser beam with Gaussian beam waist. That
of the non-interacting fermionic system. is why we now generalize the case of a single-site poten-

We use the Bose-Fermi mapping to calculate the energy gdff! barrier and consitjler ajf‘_g/siiza” potential barrier tefin
in the strongly-interacting regime. We find consistentlghwi  Width &, Le. Vi 2:_2/\/ _Voem™ with the normalization
Ref. [7] that it is almost independent of the number of parti-A" = 7., e=*7 /26", The matrix element¥,, are given
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FIG. 2: Spectrum of the SPDM (left) versus number of atashgor L = 100 sites andly/J = 0.01. Momentum distribution (middle)
for L = 100, N = 20, andVp/J = 0.01. Energy gapAE versus particle numbeW (right) for L = 50, Vo /J = 0.01, £/d = 0 (blue),
&/d=2/3 (green)¢/d = 4/3 (red), ands/d = 2 (cyan). Points are the exact single-particle spectrumiaed from perturbative expression
(©). Inset shows the barrier potentidl for L = 50, V,/J = 0.01, and¢/d = 2.

by the discrete Fourier transform of the barrier potenitial  transfer to couple the center-of-mass momentum statese Sin
which ford <« ¢ becomes the continuous Fourier transformthe matrix elements of a finite-width potential barrier aexse
Vg = VoefZﬂz(E/dL)z(qfq’)z/L while for ¢ — 0 we recover exponentially for increasing momentum transfer, we recove
the single-site barrier limiv,,, = V;,/L. the exponential scaling of the energy ga@'y similar of the
We can get a perturbative expression for the energy gap ugveakly-interacting regime.

ing degenerate perturbation theory first orde¥/in The en-
ergy gapAFEy between the ground and first excited state in
the Tonks limit forNV particles is

Summary.In conclusion, we have shown that a potential
barrier in a rotating ring lattice loaded with ultracold bas
at low filling fraction supports several qualitatively vedif-
_ o V0 _on?(¢/dL)?N? ferent superposition states of different total quasi-mtue:
Aby = 2f6 : (6)  acondensate for weak, a NOON-state for intermediate, and a
center-of-mass superposition for strong interactionse &t
We note that in th|5 Weak barrier I|m|t the eXponential m“ ergy gap in the Strong'y_interacting ||m|t iS On'y |ndepenm
is independent of the barrier height. _ of the number of particles as long as one can neglect the width
In Fig.[2 we plot the energy gapSEx which open due to  of the potential barrier. Otherwise one recovers the expone
the potential barrier as a function of number of particlefor  tja| scaling with increasing number of particles.
various barrier widthg /d. In the small barriet;,/J = 0.01
the accuracy of the perturbative expressian (6) is excellen AcknowledgementéN thanks Steven M. Girvin for a care-
In contrast to the single-site potential barrier, ke— 0, ful reading of the manuscript and acknowledges support from
a potential barrier with finite widtl§ leads to exponentially NSF under grant DMR-1004406. AMR acknowledges sup-
small energy gaps for increasing number of partiéclesThe  port from NSF, NIST and a grant from the ARO with funding
physical reason is that we need increasingly large momenturfinom the DARPA-OLE.
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