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Superposition states of ultracold bosons in rotating rings with a weak potential barrier
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We study ultracold bosons in a one-dimensional rotating ring lattice with a weak potential barrier well below
unit filling. Due to the potential barrier the eigenstates are superpositions of different quasi-momenta. At the
critical rotation frequency where the single-particle spectrum of the uniform system is doubly degenerate, the
ground-state wave function is a condensate for weak interaction, a NOON-state for intermediate interaction, and
a center-of-mass superposition for strong interaction. Wedemonstrate that the energy gap in the last regime is
independent of the number of particles only if the barrier issufficiently narrow, i.e. a single-site barrier, and de-
creases exponentially for more realistic barrier potentials that necessarily have finite widths. We also provide the
signatures of the different superposition states in momentum distribution and noise correlation measurements.

PACS numbers: 67.85.Hj; 03.75.Gg; 03.75.Gg

Ultracold bosons in rotating ring traps are a fascinating sub-
ject of research because the particles in this system can form
various multi-particle superposition states. Some of these su-
perposition states may play a central role in studies of the
quantum-to-classical transition [1] or in applications such as
entanglement-enhanced metrology [2].

Most of the work in this area has focussed on NOON-
state production in uniform ring lattices [3, 4] and superlat-
tices [5]. In these systems there are critical rotation frequen-
cies at which the single-particle spectrum is degenerate sothat
even weak interactions lead to strong correlations betweenthe
particles. The energy gap between ground and excited states
for these systems does, as one might expect for multi-particle
transitions, decrease exponentially with the number of parti-
cles. This does, of course, limits the schemes proposed to gen-
erate these quasi-momentum NOON-states to operate with a
modest number of atoms [4, 6].

Very recently, the authors of Ref. [7] showed that for strong
interactions the ground state of a Lieb-Liniger model with
a delta-function potential barrier is a superposition of states
with different total (angular) momentum of the particles. As
the energy gap in this model is independent of the number of
particles involved, the production of superposition states with
larger number of particles seems feasible. This is a remark-
able result, and we wished to examine the extent to which the
result would apply to systems with a more realistic potential.

With this in mind, we shall present our results for the nature
of the different superposition states that occur for ultracold
bosons in rotating ring lattices with a weak potential barrier.
We focus on systems at a critical rotation frequency where the
single-particle spectrum of the uniform ring is doubly degen-
erate. We study systems with less than one atom per site in
order to avoid the superfluid-to-Mott-insulator transition for
strong interactions and introduce a weak potential barrierthat
breaks rotational (or translational) invariance and leadsto su-
perposition states of different quasi-momenta.

We use both exact diagonalization of systems with small
numbers of atoms and sites, along with the Bose-Fermi map-
ping in the Tonks-Giradeau regime to fully characterize the
ground-state wave function of this many-body system. We
find that the nature of the lowest-energy superposition state
at the critical rotation frequency with a weak barrier poten-
tial depends on the strength of the interactions. For weak in-
teractions it is a Bose-Einstein condensate. For intermediate
strength it is a strongly-correlated NOON-state. For strong
interactions, where the particles are locked together, it is su-
perposition of two center-of-mass motional states.

The latter limit appears most attractive for generating super-
positions with many particles as the energy gap is independent
of the number of particles. This independence of the number
of particles however depends critically on the large momen-
tum transfer that a sharp potential barrier is able to provide.
As soon as we consider a Gaussian potential with finite width,
the energy gap decreases exponentially with increasing num-
ber of particles. Any real potential in an experiment will have
a finite width and this gives a limit to the number of particles
that can actually participate in the superposition state. Finally,
we present the experimental signatures of the different super-
position states in momentum distribution and noise correla-
tions measurements.

Hamiltonian.We consider a system ofN ultracold bosons
with massM confined in a 1D ring lattice ofL sites with
lattice constantd. The ring is rotated in its plane with angular
velocityΩ. In the rotating frame the Hamiltonian is [4, 8]

Ĥ =− J
L
∑

j=1

(

eiθâ†j+1âj +H.c.
)

+
U

2

L
∑

j=1

n̂j(n̂j − 1)

+

L
∑

j=1

Vj n̂j (1)

wheren̂j = â†j âj andâj are the number and bosonic annihi-
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lation operators of a particle at sitej, θ = MΩLd2/h is the
phase twist induced by rotation,J is the hopping energy be-
tween nearest-neighbor sites,U the on-site interaction energy,
andVj describes the potential barrier at sitej.

To understand the effect of rotation on the atoms in the ring
lattice, we write the many-body Hamiltonian (1) in terms of
the quasi-momentum operatorsb̂q = 1√

L

∑L
j=1 âje

−2πiqj/L,

where2πq/dL is the quasi-momentum andq = 0, . . . , L− 1
an integer. In this basis the Hamiltonian (1) has the form [3,4]

Ĥ =

L−1
∑

q=0

Eq b̂
†
q b̂q +

U

2L

L−1
∑

q,s,l=0

b̂†q b̂
†
sb̂lb̂[q+s−l]modL

+

L−1
∑

{q,q′}=0

Vqq′ b̂
†
q′ b̂q (2)

whereEq = −2J cos(2πq/L−θ) are the single-particle ener-
gies,Vqq′ is the Fourier transform of the single-particle poten-
tial Vqq′ = 1

L

∑

j Vje
2πi(q−q′)j/L, and the modulus is taken

because in collision processes the quasi-momentum is con-
served up to an integer multiple of the reciprocal lattice vector
2π/d, i.e. modulo Umklapp processes. In absence of a poten-
tial barrier, i.e.Vj = 0, the single-particle spectrum is twofold
degenerate forθ = π/L which we will refer to as the critical
rotation frequency or critical phase twist.

Ground state at the critical phase twist.In the following
we will focus on the ground state at the critical phase twist
for a small single-site potential barrier (Vj = 0 for j 6= 0,
i.e. Vqq′ = V0 ≪ J). Note that a single-site barrier leads to
constant momentum transfer in the first Brillouin zone.

In Fig. 1 we show our results for the many-body spectrum
and detailed characterization of the ground-state wave func-
tion using exact diagonalization of a small system forN = 3
atoms onL = 5 lattice sites. We can clearly distinguish three
regimes: weak, intermediate, and strong interactions.

In the non-interacting system,U = 0, all bosons occupy
the lowest-energy single-particle state. In the presence of the
potential barrier,V0 6= 0, translation symmetry is broken and
quasi-momentum ceases to be good quantum number. For a
weak barrier,V0 ≪ J , the ground state of the single-particle
Hamiltonian is an equal superposition of the quasi-momentum
states|q = 0〉 and|q = 1〉, and the many-body ground state is

|ψ0〉 =
(

b̂†0 − b̂†1√
2

)N

|0〉 (3)

where |0〉 is the many-body vacuum. This is corroborated
by our exact-diagonalization results in the weakly-interacting
regime: the momentum distribution is〈n̂q〉 = 〈b̂†q b̂q〉 = N/2
for q = {0, 1} and 〈n̂q〉 = 0 otherwise. The distribution
of total momentumP (K), i.e. the probability that the many-
body system has total quasi-momentum2πK/dL is binomial.
It can be calculated fromP (K) =

∑

n |K,n〉〈K,n|, where
|K,n〉〈K,n| is the projector on the Fock state withK total
quasi-momentum quantum number andn is a shorthand for
the remaining quantum numbers [7]. Finally, the spectrum

of the single-particle density-matrix (SPDM)〈â†i âj〉 has one
eigenvalue of sizeN which signals condensation.

As soon as the interactions overcome the energy splitting
induced by the potential barrier, the almost degenerate many-
body states are strongly mixed leading to correlations between
the atoms. We discussed this mechanism in detail in the con-
text of NOON-state production in rotating ring lattices and
superlattices [9] as well as quantum vortex nucleation [10].
Neglecting the effect of the weak potential barrier, the non-
interacting many-body spectrum at the critical phase twistis
N+1-fold degenerate. Most of the degeneracy is lifted by the
interactions in first order of perturbation theory, but the states
(b̂†0)

N |0〉 and (b̂†1)
N |0〉 remain degenerate. In the presence

of the potential barrier these two states are coupled at some
higher order of perturbation theory (even if the system is non-
commensurate), the degeneracy is lifted, and the ground state
is the quasi-momentum NOON-state [7]

|ψ1〉 =
(b̂†0)

N − (b̂†1)
N

√
2

|0〉. (4)

While the momentum distribution is almost unchanged with
respect to the non-interacting case, the momentum noise
correlations〈n̂qn̂q′〉 − 〈n̂q〉〈n̂q′ 〉 pick up the large fluctua-
tions in the NOON-state (4). The distribution of total quasi-
momentumP (K) is bimodal, and the SPDM has two large
eigenvalues of sizeN/2 indicating fragmentation of the con-
densate. Finally, the overlap with the many-body quasi-
momentum basis states unambiguously proofs that the ground
state is indeed the quasi-momentum NOON-state (4).

In passing we note that the presence of NOON-states can
be observed in time-of-flight expansion after inducing many-
body oscillations with a quench in the rotation frequency [5].
Their frequency is given by twice the energy gap which in the
regime of intermediate interactions is exponentially small in
the number of particles [3, 4].

Let us now discuss the novel strongly-interacting regime. In
absence of the potential barrier, i.e.V0 = 0, quasi-momentum
is a good quantum number. Strong interactions (U/J → ∞)
lead to fermionization of the bosons within each subspace of
total quasi-momentumK. In this regime the many-body en-
ergy spectrum is equal to the single-particle spectrum (with
(anti-)periodic boundary conditions for (even) oddN [11])
which is degenerate at the critical phase twist. The potential
barrier then breaks translation symmetry and couples the two
degenerate ground states|ψK=0

∞ 〉 and|ψK=N
∞ 〉, which are the

ground states of the quasi-momentum subspaces withK = 0
andK = N . We thus call the ground-state wave function a
center-of-mass superposition

|ψ∞〉 = |ψK=0
∞ 〉 − |ψK=N

∞ 〉√
2

. (5)

Compared to the regime of intermediate interactions the two
largest eigenvalues of the SPDM are smaller in the strongly-
interacting limit pointing to the fact that the center-of-mass
superposition (5) is only a partially-fragmented state. Since
many quasi-momentum basis states contribute to (5) the over-
lap with a quasi-momentum NOON-state (4) is also smaller.
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FIG. 1: Energy spectrum and characterization of the ground-state wave function forN = 3 particles onL = 5 sites at the critical phase
twist as a function of the interaction parameterU/J : (a) many-body energy spectrum, (b) momentum distribution〈n̂q〉, (c) momentum noise
correlations〈n̂qn̂q′〉 − 〈n̂q〉〈n̂q′〉, (d) spectrum of single-particle density matrix〈â†

i âj〉, (e) distribution of total quasi-momentumP (K) (as
defined in the text), and (f) overlap with the many-body Fock states in the quasi-momentum basis|nq=0, . . . , nq=L−1〉. Note that in (b), (c),
(e) and (f) most curves are doubly degenerate.

The distribution of total quasi-momentum is not sensitive
to the difference between the states (4) and (5). State (5) is
a superposition involving the center-of-mass coordinate of N
particles and might be valuable for studies of the quantum-to-
classical transition, similar to experiments on the diffraction
of large molecules [12], moving mirrors driven by radiatio-
pressure force [13] and electrons in superconducting flux
qubits [14]. However, state (5) does not possess the intriguing
many-body correlations present in state (4) which are needed
for application such as entanglement-enhanced metrology and
other quantum-information tasks.

Larger systems in the Tonks-Giradeau limit.In the Tonks-
Giradeau regime the strong repulsion between atoms mimics
the Pauli exclusion principle and prevents two atoms from oc-
cupying the same lattice site. In this regime, the bosonic oper-
ators,âj , can be re-expressed using the Jordan-Wigner trans-
formation (JWT) [11] in terms of fermionic ones,ĉj , fulfilling
anti-commutation relations. Under the JWT, any correlation
function of the bosonic system can be rewritten in terms of
fermionic operators and computed for the corresponding non-
interacting fermionic ground state by using Wick’s theorem.
Local observables, such as the density, or those involving only
nearest-neighbor sites, such as the Hamiltonian (1), map di-
rectly to the corresponding fermionic observables. For exam-
ple, the bosonic spectrum is exactly the same as the spectrum
of the non-interacting fermionic system.

We use the Bose-Fermi mapping to calculate the energy gap
in the strongly-interacting regime. We find consistently with
Ref. [7] that it is almost independent of the number of parti-

cles, a consequence of the constant momentum transfer in the
first Brillouin zone for a single-site barrier (see below).

On the contrary, non-local observables, such as the two-
point correlator, 〈â†j âi〉, needed to compute the quasi-
momentum distribution or SPDM, are mapped onto a string

of fermionic operators〈â†j âi〉 → 〈ĉ†j(−1)
∑

j>k>i ĉ
†

k
ĉk ĉi〉 for

j > i. Making extensive use of Wick’s theorem, one can
re-express this quantity as a Töplitz determinant〈â†j âi〉 =
1
2 det[Gj,i], whereGj,i is aj−i by j−imatrix with elements

(Gj,i)l,l′ = 2〈ĉ†i+l′−1ĉj+l〉 − δl,l′−1. We can compute these
determinants numerically for relatively large system sizes.

In contrast to the energy gap which is almost independent of
the number of particles, the SPDM spectrum and momentum
distribution substantially change with the number of particles.
In Fig. 2 we plot the spectrum of the SPDM forL = 100
sites as a function of the number of particlesN . We see that
fragmentation strongly decreases with increasing number of
particles so that can infer that the ground state has a decreasing
overlap with a quasi-momentum NOON-state (4). Moreover,
the momentum distribution forN = 20 atoms onL = 100
sites shows that even at this small filling depletion is large.

Number scaling for finite-width potential barrier.In fu-
ture experiments the barrier will most likely be provided by
a blue-detuned laser beam with Gaussian beam waist. That
is why we now generalize the case of a single-site poten-
tial barrier and consider a Gaussian potential barrier of finite
width ξ, i.e.Vj = N−1V0e

−d2j2/2ξ2 with the normalization
N =

∑L
j=1 e

−d2j2/2ξ2 . The matrix elementsVqq′ are given
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FIG. 2: Spectrum of the SPDM (left) versus number of atomsN for L = 100 sites andV0/J = 0.01. Momentum distribution (middle)
for L = 100, N = 20, andV0/J = 0.01. Energy gap∆E versus particle numberN (right) for L = 50, V0/J = 0.01, ξ/d = 0 (blue),
ξ/d = 2/3 (green),ξ/d = 4/3 (red), andξ/d = 2 (cyan). Points are the exact single-particle spectrum and lines from perturbative expression
(6). Inset shows the barrier potentialVj for L = 50, V0/J = 0.01, andξ/d = 2.

by the discrete Fourier transform of the barrier potentialVj
which for d ≪ ξ becomes the continuous Fourier transform
Vqq′ = V0e

−2π2(ξ/dL)2(q−q′)2/L while for ξ → 0 we recover
the single-site barrier limitVqq′ = V0/L.

We can get a perturbative expression for the energy gap us-
ing degenerate perturbation theory first order inV0. The en-
ergy gap∆EN between the ground and first excited state in
the Tonks limit forN particles is

∆EN = 2
V0
L
e−2π2(ξ/dL)2N2

. (6)

We note that in this weak barrier limit the exponential scaling
is independent of the barrier height.

In Fig. 2 we plot the energy gaps∆EN which open due to
the potential barrier as a function of number of particlesN for
various barrier widthsξ/d. In the small barrierV0/J = 0.01
the accuracy of the perturbative expression (6) is excellent.
In contrast to the single-site potential barrier, i.e.ξ → 0,
a potential barrier with finite widthξ leads to exponentially
small energy gaps for increasing number of particlesN . The
physical reason is that we need increasingly large momentum

transfer to couple the center-of-mass momentum states. Since
the matrix elements of a finite-width potential barrier decrease
exponentially for increasing momentum transfer, we recover
the exponential scaling of the energy gap∆EN similar of the
weakly-interacting regime.

Summary. In conclusion, we have shown that a potential
barrier in a rotating ring lattice loaded with ultracold bosons
at low filling fraction supports several qualitatively verydif-
ferent superposition states of different total quasi-momentum:
a condensate for weak, a NOON-state for intermediate, and a
center-of-mass superposition for strong interactions. The en-
ergy gap in the strongly-interacting limit is only independent
of the number of particles as long as one can neglect the width
of the potential barrier. Otherwise one recovers the exponen-
tial scaling with increasing number of particles.
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