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THREE-MANIFOLDS AND K ÄHLER GROUPS

D. KOTSCHICK

ABSTRACT. We give a simple proof of a result originally due to Dimca andSuciu [6]: a group that
is both Kähler and the fundamental group of a closed three-manifold is finite. We also prove that a
group that is both the fundamental group of a closed three-manifold and of a non-Kähler compact
complex surface isZ orZ⊕ Z2.

1. INTRODUCTION

In the late 1980s the study of Kähler groups, that is, fundamental groups of closed Kähler man-
ifolds, took off in spectacular fashion. While restrictions on such groups were previously known
because of Hodge theory and because of rational homotopy theory, several deep new results were
proved around 1988. I will only recall two of them here. Theseand many other results on Kähler
groups are discussed in detail in [2].

Firstly, generalising partial results of Johnson and Rees [11], Gromov proved:

Theorem 1(Gromov [7]). A Kähler group does not split as a nontrivial free product.

Secondly, building on work of Siu, Sampson and others, Carlson and Toledo proved:

Theorem 2 (Carlson–Toledo [5]). No fundamental group of a closed real hyperbolicn-manifold
with n ≥ 3 is a Kähler group.

When these results were proved, several people, including Donaldson and Goldman, noticed the
contrast between Kähler groups on the one hand and three-manifold groups on the other: the latter
are closed under free products, and, according to Thurston,most three-manifolds with freely in-
decomposable fundamental group are hyperbolic. Moreover,a case by case check of the Thurston
geometries as explained in [23] shows the following: closedthree-manifolds carrying one of the
geometriesS2 × R, H2 × R, R3 or Sol3 have virtually odd first Betti number, and so their funda-
mental groups cannot be Kähler. Moreover, closed three-manifolds carrying one of the geometries
Nil3 or SL2(R) have positive first Betti numbers with trivial cup product from H1 to H2. Their
fundamental groups cannot be Kähler by the Hard Lefschetz Theorem. Now, the only Thurston
geometry that has not been excluded isS3, where every fundamental group is finite. Since all fi-
nite groups are Kähler, it was natural to expect that the intersection of three-manifold groups with
the Kähler groups should consist exactly of the finite groups appearing as fundamental groups of
three-manifolds with geometryS3. The obstacle to turning this expectation into a theorem, indeed
a corollary of the above Theorems 1 and 2, came from three-manifolds with a non-trivial JSJ de-
composition along incompressible tori. While one could imagine that those manifolds containing
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at least some hyperbolic piece might yield to a generalisation of the harmonic map techniques of
Carlson and Toledo [5]1, the case of graph manifolds seemed intractable.

Twenty years ago one thought about such questions modulo Thurston’s geometrisation conjec-
ture. Since this has now been proved by Perelman [21, 22, 13, 19], an unconditional result can
finally be obtained. Indeed, Dimca and Suciu recently proved:

Theorem 3(Dimca–Suciu [6]). Assume that a groupΓ is the fundamental group both of a closed
Kähler manifold and of a closed three-manifold. ThenΓ is finite, and, therefore, a finite subgroup
ofO(4).

Once one provesΓ to be finite, it follows from Perelman’s work [21, 22, 13, 19] thatΓ is a
finite subgroup ofO(4) acting freely onS3. Note that by a classical construction due to Serre,
every finite group is the fundamental group of a smooth complex projective variety, hence a closed
Kähler manifold. By the Lefschetz hyperplane theorem one may assume this variety to be a surface.

To me, a surprising aspect of the proof given by Dimca and Suciu is that it does not follow
the above outline at all, and makes little use of the Thurstonapproach to three-manifolds. In
fact, their proof does not use Theorems 1 and 2. Instead, theyconsider separately the cases of
trivial and of nontrivial first Betti number. If the first Betti number of the fundamental group of a
closed oriented three-manifold is positive, then they prove it is not Kähler using a lot of machinery
of a very different sort: characteristic and resonance varieties, Catanese’s approach to the Siu–
Beauville theorem, a commutative algebra result of Buchsbaum–Eisenbud, . . . . Then, for the case
of zero first Betti number, Dimca and Suciu appeal to results of Reznikov and Fujiwara pertaining
to Kazhdan’s propertyT . It is only at this point that their proof depends on geometrisation via
Fujiwara’s arguments.

The present paper arose from my attempt to understand the argument of Dimca and Suciu [6].
From their high-tech treatment of the positive Betti numbercase I extracted the following strategy
for obtaining a contradiction:If Γ has positive first Betti number and is both the fundamental group
of a closed oriented three-manifold and of a closed Kähler manifold, thenH1(Γ;R) comes from a
complex curve. Therefore all cup products of classes inH1(Γ;R) also come from a curve, and this
is incompatible with three-dimensional Poincaré duality.

One can actually implement this strategy in several different ways to prove Theorem 3. Here I
will give a distinctly low-tech implementation, leading toan elementary proof of the following:

Theorem 4. If Γ is a group withb1(Γ) > 0 whose real cohomology algebraH∗(Γ;R) satisfies
3-dimensional oriented Poincaré duality, thenΓ is not a K̈ahler group.

To put this into perspective, recall that many Kähler groups are Poincaré duality groups (of even
dimension), cf. [11, 25, 14]. Also recall that, for everyk ≥ 3, Toledo [25] constructed examples
of Kähler groups of cohomological dimension2k− 1. Moreover, his examples are duality (though
not Poincaré duality) groups.

Of course, to exclude a group from being a Kähler group, it isenough that some finite index
subgroup satisfy the assumptions of Theorem 4.

Corollary 5. LetM be a closed aspherical three-manifold. IfM has a finite orientable covering
that is not anR-homology sphere, thenπ1(M) is not a K̈ahler group.

1A first step in this direction was soon taken by Hernández-Lamoneda, although his paper [10] was only published
much later.
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Theorem 4 is more general than the Corollary because the theorem makes no assumption in inte-
gral cohomology and does not assume thatΓ is torsion-free. Even if one adds these assumptions, it
is not known whether every such group is the fundamental group of an aspherical three-manifold.
This issue is a version of the three-dimensional Borel conjecture, where we of course assumeΓ to
be finitely presentable; see Problem 3.77 on Kirby’s problemlist [12].

Corollary 5 proves most of Theorem 3, since it handles not only manifolds with a nontrivial JSJ
decomposition, but also gives a uniform treatment of geometric cases that no longer need to be
checked case by case, so we obtain quite a simple proof of Theorem 3 for groups with virtually
positive first Betti number. Using Perelman’s geometrisation theorem, the case of first Betti number
zero can actually be reduced to Theorem 2. In Section 2 below we first prove Theorem 4, and then
spell out the resulting straightforward proof of Theorem 3,avoiding the difficult arguments of
Dimca–Suciu [6], and the appeals to the works of Reznikov andFujiwara. Like the original proof
of [6], the proof of Theorem 3 given here uses geometrisationonly to handle the case of trivial
(virtual) first Betti number.

Using the Kodaira classification of non-Kähler complex surfaces we shall also prove the follow-
ing:

Theorem 6. Assume that a groupΓ is the fundamental group both of a closed complex surface
S and of a closed three-manifold. Then eitherΓ is a finite subgroup ofO(4) andS is a Kähler
surface, orΓ is Z or Z⊕ Z2 andS is a Hopf surface.

This is interesting since in complex dimensions≥ 3 every finitely presentable group is the fun-
damental group of a compact complex manifold, as proved by Taubes [24]. Thus, for fundamental
group questions, complex surfaces are at the watershed between curves and the general case of
complex three-folds, just like three-manifolds are at the watershed between real surfaces and the
general case of four-manifolds, where all finitely presentable groups appear.

2. PROOFS

Proof of Theorem 4.Suppose for a contradiction thatX is a closed Kähler manifold with funda-
mental groupΓ, and letαX : X −→ T b1(Γ) be its Albanese map. Since the target is aspherical,αX

factors up to homotopy into a composition

X
cX−→ BΓ

a
−→ BZ

b1(Γ) = T b1(Γ) ,

wherecX is the classifying map of the universal covering ofX, anda is induced by the Abeliani-
sation followed by dividing out the torsion in first homology. One concludes thatα∗

X
= c∗

X
◦ a∗ is

trivial in real cohomology of degree> 3 becauseBΓ has no such cohomology, and so the image
of αX cannot have complex dimension2 or more. Thus the image ofαX is a complex curve.

Note that all the maps above induce isomorphisms in degree one cohomology. Moreover, by
the Hard Lefschetz Theorem,α∗

X
is nontrivial in degree2 cohomology, and so the same is true for

a∗. However, there is no class inH1(Γ;R) that has a nontrivial cup product with the image ofa∗

in H2(Γ;R), since this cup product comes from the image ofαX , which has real dimension= 2.
This contradicts the assumption thatΓ satisfies3-dimensional Poincaré duality. �

Proof of Theorem 3.We need to show that an infinite three-manifold groupΓ cannot be Kähler.
Since finite coverings of Kähler manifolds are Kähler, we only need to exclude some finite index
subgroup ofΓ, and so three-manifolds can be replaced by their finite coverings. In particular we
may assume that all three-manifolds are orientable.
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We may restrict our attention to three-manifolds that are prime in the sense of being indecompos-
able under connected sums, since a nontrivial free product is never a Kähler group by Theorem 1.
Such a prime three-manifold is eitherS1×S2, or is aspherical, cf. [18]. Since a Kähler group can-
not be infinite cyclic, we are reduced to the consideration ofaspherical three-manifolds, so that,
for all 3-manifolds with positive (virtual) first Betti number, Theorem 3 follows from Corollary 5.

To complete the proof of Theorem 3 it remains to deal with groups with vanishing first Betti
number. Thus consider a closed oriented aspherical three-manifoldM with infinite fundamental
groupΓ havingb1(Γ) = 0. If M contains an incompressible torus, then by a result of Luecke[17],
see also [15],M has a finite covering with positive first Betti number, so thatCorollary 5 applied
to this covering shows thatΓ is not Kähler. Thus we are left with the case of an asphericalM that
contains no incompressible torus. Such manifolds are hyperbolic by the work of Perelman [21, 22,
13], and fundamental groups of hyperbolic three-manifoldsare never Kähler by Theorem 2. �

Proof of Theorem 6.Suppose thatΓ is the fundamental group of both a compact complex surface
S and a closed three-manifoldM . As before we may assumeM to be orientable.

If S is Kähler, thenΓ is finite by Theorem 3. Conversely, ifΓ is finite, then the first Betti number
of S vanishes, and soS is Kählerian, cf. [4].

If S is not Kählerian, then its first Betti number is odd, see again [4]. We now use the Enriques–
Kodaira classification to conclude that eitherS is properly elliptic withb1(S) ≥ 3, orS is of class
V II with b1(S) = 1, cf. [3, 20]. In the first caseΓ is freely indecomposable and is a Poincaré
duality group of dimension4 by results of Kodaira described in [2, Section 3 of Ch. 1]. In the
second case, it is known only thatπ1(S) cannot split intoΓ1 ⋆ Γ2 with bothΓi containing proper
subgroups of finite index; see [2, Thm. 1.35]. However, sincethree-manifold groups are residually
finite [9], this is enough to conclude that in our case, whereπ1(S) = Γ = π1(M), Γ is indeed
freely indecomposable.

Thus we may assume thatM is prime. If it is aspherical, thenΓ is a three-dimensional Poincaré
duality group. This means thatΓ is not the fundamental groups of properly elliptic surfaceswith
b1(S) ≥ 3 since they are four-dimensional Poincaré duality groups.If Γ is the fundamental group
of a classV II surface, then we haveb1(Γ) = 1, and, by Poincaré duality onM , b2(Γ) = 1.
Under the classifying map of the universal covering ofS, H2(Γ;R) injects intoH2(S;R), where
it becomes an isotropic subspace for the cup product for dimension reasons. (Its cup square comes
from the three-dimensionalM .) Thus the intersection form ofS would have to be indefinite, which
contradicts the known fact that the intersection forms of classV II surfaces are negative definite;
see [2, Lemma 1.45].

Thus we are left to consider the case of anM that is prime but not aspherical. This means that
M is S1 × S2 if it is orientable; cf. [18]. However, for a nonorientableM we could also have the
nontrivial S2-bundle overS1, also with fundamental groupZ, andS1 × RP 2, with fundamental
groupZ⊕Z2; cf. [23]. Since bothZ andZ⊕Z2 occur as fundamental groups of Hopf surfaces, and,
by a result of Kodaira (cf. [20]), only of Hopf surfaces, thiscompletes the proof of Theorem 6.�

3. DISCUSSION

3.1. Avoiding the use of Theorem 1.In the proof of Theorem 3 in Section 2, I found it most
straightforward to reduce to the consideration of prime three-manifolds by using Gromov’s result
on free products, stated as Theorem 1 in the introduction. However, one can completely bypass the
use of Theorem 1, as we now explain.
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Lemma 7. Assume thatΓ1 andΓ2 each have a non-trivial finite quotientfi : Γi −→ Qi. Then
their free productΓ1 ⋆ Γ2 has a finite index subgroup with odd first Betti number.

Proof. Consider the induced homomorphismf : Γ1 ⋆ Γ2 −→ Q1 × Q2. By the Kurosh subgroup
theorem, its kernel is of the formFk ⋆Γ, whereFk is a free group of rankk = (|Q1|−1)(|Q2|−1),
andΓ is a free product of copies of the kernels of thefi. For a finite quotientg : Fk −→ Q of order
d we consider the kernel∆ of ḡ : Fk ⋆ Γ −→ Q, whereḡ restricts toFk asg and is trivial onΓ.
Then∆ is isomorphic toFl ⋆ Γ ⋆ . . . ⋆ Γ with d copies ofΓ appearing, andl = 1+ d(k− 1). Thus
∆ ⊂ Γ1 ⋆ Γ2 is a finite index subgroup with

b1(∆) = l + d · b1(Γ) = 1 + d · (k − 1 + b1(Γ)) .

Choosingd to be even, we have found the desired subgroup. �

Since three-manifold groups are residually finite [9], we have the following:

Corollary 8. If M is a non-prime three-manifold, then it has a finite covering with odd first Betti
number.

At the expense of appealing to residual finiteness, we can usethis Corollary in place of The-
orem 1 to exclude non-prime manifolds form consideration inthe proof of Theorem 3. More
generally, without restricting to three-manifold groups,Lemma 7 tells us that an arbitrary free
product whose free factors admit finite quotients cannot be aKähler group. This is exactly the
special case of Theorem 1 originally proved by Johnson and Rees [11]. Indeed our proof of the
Lemma is a simplification of the argument in [11].

Finally, there is another way to avoid appealing to Theorem 1, without using the residual finite-
ness of three-manifold groups. If we consider a non-prime oriented three-manifoldM , then its
prime summands are aspherical manifolds plus, perhaps, copies ofS1 × S2. Therefore, the clas-
sifying spaceBπ1(M) is the one-point union of the aspherical summands plus, possibly, some
circles. Now ifπ1(M) were a Kähler group, then one could use this classifying space in the argu-
ment from the proof of Theorem 4 to derive a contradiction with the Hard Lefschetz theorem.

3.2. The necessity to discussR-homology spheres.In the proof of Theorem 3 it was necessary to
consider separately the case of groups with zero first Betti number. This step would be superfluous,
if it were known that every closed three-manifold has a finitecovering with positive first Betti
number. If such a statement were available, then one would not need Theorem 2 for the proof of
Theorem 3 given here.

Apparently the question of whether every closed three-manifold with infinite fundamental group
has virtually positive first Betti number was raised long agoby Waldhausen, Thurston, and others;
see Problems 3.2 and 3.50 in Kirby’s problem list [12] and thereferences given there. Curiously,
those references do not include [8, 17] and other papers quoted in [8], all of which contain a wealth
of information about this problem. In any case, this problemseems to be still open.

3.3. The second Betti number of infinite Kähler groups. Carlson and Toledo have asked whether
an infinite Kähler group has virtually positive second Betti number2. If this were known to be true,
then, because of three-dimensional Poincaré duality, we would not have to considerR-homology
3-spheres in the proof of Theorem 3. Moreover, we would not need to use geometrisation, and we
would not need Theorem 2 either! We refer to the paper of Klingler [14] for a recent discussion of
this question of Carlson and Toledo.

2The original reference for their question is Section 18.16 in [16], where only a more specific version is formulated.
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Unfortunately, a slight misstatement occurs in [2, Prop. 3.44 (i)], which implicitly asserts a pos-
itive answer to the question of Carlson and Toledo. The statementb2(π1(X)) ≥ 1 there should be
replaced byb2(X) ≥ 1 (which is trivial). The Proposition in question was proved by Amorós [1],
whose paper does not contain the misstatement.
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