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THREE-MANIFOLDS AND K AHLER GROUPS
D. KOTSCHICK

ABSTRACT. We give a simple proof of a result originally due to Dimca &wtiu [6]: a group that
is both Kahler and the fundamental group of a closed thrae#wld is finite. We also prove that a
group that is both the fundamental group of a closed three#oid and of a non-Kahler compact
complex surface i% or Z & Z,.

1. INTRODUCTION

In the late 1980s the study of Kahler groups, that is, funelaiad groups of closed Kahler man-
ifolds, took off in spectacular fashion. While restricteoan such groups were previously known
because of Hodge theory and because of rational homotopwyttseveral deep new results were
proved around 1988. | will only recall two of them here. Thasd many other results on Kahler
groups are discussed in detail in [2].

Firstly, generalising partial results of Johnson and R&#&§ [Gromov proved:

Theorem 1(Gromov [7]). A Kahler group does not split as a nontrivial free product.
Secondly, building on work of Siu, Sampson and others, Garésd Toledo proved:

Theorem 2 (Carlson—Toleda [5]) No fundamental group of a closed real hyperbalitnanifold
with n > 3 is a Kahler group.

When these results were proved, several people, includimaldson and Goldman, noticed the
contrast between Kahler groups on the one hand and thradettegroups on the other: the latter
are closed under free products, and, according to Thurstost three-manifolds with freely in-
decomposable fundamental group are hyperbolic. Moreavease by case check of the Thurston
geometries as explained in |23] shows the following: clogede-manifolds carrying one of the
geometriesS? x R, H? x R, R? or Sol® have virtually odd first Betti number, and so their funda-
mental groups cannot be Kahler. Moreover, closed threeHfolds carrying one of the geometries
Nil® or SLy(R) have positive first Betti numbers with trivial cup produatrft /' to H2. Their
fundamental groups cannot be Kahler by the Hard Lefschb&oiiem. Now, the only Thurston
geometry that has not been excludedis where every fundamental group is finite. Since all fi-
nite groups are Kahler, it was natural to expect that thergaction of three-manifold groups with
the Kahler groups should consist exactly of the finite ggappearing as fundamental groups of
three-manifolds with geometr§?®. The obstacle to turning this expectation into a theoredgéal
a corollary of the above Theoremks 1 and 2, came from threefoldsmwith a non-trivial JSJ de-
composition along incompressible tori. While one couldgme that those manifolds containing
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at least some hyperbolic piece might yield to a generatinatf the harmonic map techniques of
Carlson and Toleda [ﬂ,] the case of graph manifolds seemed intractable.
Twenty years ago one thought about such questions modulstoim’s geometrisation conjec-

ture. Since this has now been proved by Perelmah([21, 22,9]3afh unconditional result can
finally be obtained. Indeed, Dimca and Suciu recently proved

Theorem 3(Dimca—Suciul[6]) Assume that a group is the fundamental group both of a closed
Kahler manifold and of a closed three-manifold. THeis finite, and, therefore, a finite subgroup
of O(4).

Once one prove§ to be finite, it follows from Perelman’s work [21, 22,113,/ 19t is a
finite subgroup ofD(4) acting freely onS®. Note that by a classical construction due to Serre,
every finite group is the fundamental group of a smooth corymlejective variety, hence a closed
Kahler manifold. By the Lefschetz hyperplane theorem oag assume this variety to be a surface.

To me, a surprising aspect of the proof given by Dimca andBiscthat it does not follow
the above outline at all, and makes little use of the Thurstpproach to three-manifolds. In
fact, their proof does not use Theorehis 1 Bhd 2. Instead,dbesider separately the cases of
trivial and of nontrivial first Betti number. If the first Bettumber of the fundamental group of a
closed oriented three-manifold is positive, then they pribis not Kahler using a lot of machinery
of a very different sort: characteristic and resonanceeti@s, Catanese’s approach to the Siu—
Beauville theorem, a commutative algebra result of BuchsbdEisenbud, . ... Then, for the case
of zero first Betti number, Dimca and Suciu appeal to resdlBeznikov and Fujiwara pertaining
to Kazhdan’s property’. It is only at this point that their proof depends on geonsation via
Fujiwara’s arguments.

The present paper arose from my attempt to understand thenarg of Dimca and Sucil [6].
From their high-tech treatment of the positive Betti numizese | extracted the following strategy
for obtaining a contradictionf I" has positive first Betti number and is both the fundamentaigr
of a closed oriented three-manifold and of a closethkr manifold, ther 7! (T'; R) comes from a
complex curve. Therefore all cup products of classegifl'; R) also come from a curve, and this
is incompatible with three-dimensional Poinéatuality.

One can actually implement this strategy in several diffeveays to prove Theorefd 3. Here |
will give a distinctly low-tech implementation, leadingan elementary proof of the following:

Theorem 4. If T' is a group withb; (I') > 0 whose real cohomology algebid*(T'; R) satisfies
3-dimensional oriented Poincarduality, therl" is not a Kahler group.

To put this into perspective, recall that many Kahler gsoape Poincaré duality groups (of even
dimension), cf.[[11, 25, 14]. Also recall that, for every> 3, Toledo [25] constructed examples
of Kahler groups of cohomological dimensidh— 1. Moreover, his examples are duality (though
not Poincaré duality) groups.

Of course, to exclude a group from being a Kahler group, @nsugh that some finite index
subgroup satisfy the assumptions of Theokém 4.

Corollary 5. Let M be a closed aspherical three-manifold.Mf has a finite orientable covering
that is not anR-homology sphere, then (M) is not a Kahler group.

1A first step in this direction was soon taken by Hernandemvuaeda, although his papér [10] was only published
much later.
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Theoreni 4 is more general than the Corollary because thesiimemakes no assumption in inte-
gral cohomology and does not assume thaettorsion-free. Even if one adds these assumptions, it
is not known whether every such group is the fundamentalgodan aspherical three-manifold.
This issue is a version of the three-dimensional Borel ainje, where we of course assuimeo
be finitely presentable; see Problem 3.77 on Kirby’'s prodishil2].

Corollary[5 proves most of Theordm 3, since it handles not ordnifolds with a nontrivial JSJ
decomposition, but also gives a uniform treatment of geametases that no longer need to be
checked case by case, so we obtain quite a simple proof ofr@méd for groups with virtually
positive first Betti number. Using Perelman’s geometr@atheorem, the case of first Betti number
zero can actually be reduced to Theofém 2. In Se€lion 2 bel¥irst prove Theorei 4, and then
spell out the resulting straightforward proof of Theoreha8piding the difficult arguments of
Dimca—Suciul[6], and the appeals to the works of ReznikovRujilvara. Like the original proof
of [6], the proof of Theorem]3 given here uses geometrisatiay to handle the case of trivial
(virtual) first Betti number.

Using the Kodaira classification of non-Kahler complexaces we shall also prove the follow-

ing:
Theorem 6. Assume that a group is the fundamental group both of a closed complex surface

S and of a closed three-manifold. Then eitlieis a finite subgroup o (4) and S is a Kahler
surface, ol isZ or Z & Z, and S is a Hopf surface.

This is interesting since in complex dimensions every finitely presentable group is the fun-
damental group of a compact complex manifold, as proved bpds[24]. Thus, for fundamental
group questions, complex surfaces are at the watershecdeteurves and the general case of
complex three-folds, just like three-manifolds are at tregesshed between real surfaces and the
general case of four-manifolds, where all finitely preskl@groups appear.

2. PROOFS

Proof of Theorerhl4Suppose for a contradiction that is a closed Kahler manifold with funda-
mental groud’, and letay : X — T (@) be its Albanese map. Since the target is aspherigal,
factors up to homotopy into a composition

X & pr % pzh®) = 00

wherecy is the classifying map of the universal coveringXof anda is induced by the Abeliani-
sation followed by dividing out the torsion in first homolodgyne concludes that}, = c% o a* is
trivial in real cohomology of degree 3 because31" has no such cohomology, and so the image
of ax cannot have complex dimensi@ror more. Thus the image ofy is a complex curve.

Note that all the maps above induce isomorphisms in degreeconomology. Moreover, by
the Hard Lefschetz Theoremj; is nontrivial in degre@ cohomology, and so the same is true for
a*. However, there is no class ifi' (I'; R) that has a nontrivial cup product with the imagenof
in H2(T'; R), since this cup product comes from the imager@f which has real dimensioa 2.
This contradicts the assumption thasatisfies3-dimensional Poincaré duality. O

Proof of Theorerhl3We need to show that an infinite three-manifold gradupannot be Kahler.
Since finite coverings of Kahler manifolds are Kahler, wdyameed to exclude some finite index
subgroup ofl", and so three-manifolds can be replaced by their finite cogsr In particular we
may assume that all three-manifolds are orientable.
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We may restrict our attention to three-manifolds that ammeiin the sense of being indecompos-
able under connected sums, since a nontrivial free produwver a Kahler group by Theoréin 1.
Such a prime three-manifold is eithgt x S?, or is aspherical, cf_[18]. Since a Kahler group can-
not be infinite cyclic, we are reduced to the consideratioaspherical three-manifolds, so that,
for all 3-manifolds with positive (virtual) first Betti number, Them[3 follows from Corollary 5.

To complete the proof of Theorep 3 it remains to deal with geowith vanishing first Betti
number. Thus consider a closed oriented aspherical theggfold A/ with infinite fundamental
groupl havingb; (I') = 0. If M contains an incompressible torus, then by a result of LUECKe
see alsol[15]M has a finite covering with positive first Betti number, so tBatollary[5 applied
to this covering shows thdtis not Kahler. Thus we are left with the case of an asphefitahat
contains no incompressible torus. Such manifolds are lnglierby the work of Perelman [21, 22,
13], and fundamental groups of hyperbolic three-manifaldsnever Kahler by Theorem 2. ]

Proof of Theorerhl6Suppose thak is the fundamental group of both a compact complex surface
S and a closed three-manifold. As before we may assumnié to be orientable.

If S'is Kahler, therT" is finite by Theorerhl3. Conversely,lifis finite, then the first Betti number
of S vanishes, and s6 is Kahlerian, cf.[[4].

If S is not Kahlerian, then its first Betti number is odd, see agii. We now use the Enriques—
Kodaira classification to conclude that eitkteis properly elliptic withb; (S) > 3, or S is of class
VII with b,(S) = 1, cf. [3,[20]. In the first casé’ is freely indecomposable and is a Poincaré
duality group of dimensiod by results of Kodaira described in/[2, Section 3 of Ch. 1]. He t
second case, it is known only that(S) cannot split intal’; x I's with bothT"; containing proper
subgroups of finite index; see [2, Thm. 1.35]. However, sthcee-manifold groups are residually
finite [9], this is enough to conclude that in our case, whares) = I' = = (M), I' is indeed
freely indecomposable.

Thus we may assume th&f is prime. If it is aspherical, thefi is a three-dimensional Poincaré
duality group. This means thatis not the fundamental groups of properly elliptic surfaagth
b1(S) > 3 since they are four-dimensional Poincaré duality grolipE.is the fundamental group
of a classVII surface, then we havig (I') = 1, and, by Poincaré duality of/, by(I") = 1.
Under the classifying map of the universal coveringsofff?(T"; R) injects intoH%(S; R), where
it becomes an isotropic subspace for the cup product formkina reasons. (Its cup square comes
from the three-dimensionall.) Thus the intersection form of would have to be indefinite, which
contradicts the known fact that the intersection forms agsl’ /1 surfaces are negative definite;
seel[2, Lemma 1.45].

Thus we are left to consider the case of/nthat is prime but not aspherical. This means that
M is St x S?if it is orientable; cf. [18]. However, for a nonorientahlé we could also have the
nontrivial S2-bundle overS?, also with fundamental grous, and.S' x RP?, with fundamental
groupZ®Zs; cf. [23]. Since botl¥ andZ @ Z, occur as fundamental groups of Hopf surfaces, and,
by a result of Kodaira (cf[[20]), only of Hopf surfaces, tb@mpletes the proof of Theorédr 6]

3. DiscussioN

3.1. Avoiding the use of Theorem[1.In the proof of Theorer]3 in Sectidn 2, | found it most
straightforward to reduce to the consideration of primeghmanifolds by using Gromov’s result

on free products, stated as Theofém 1 in the introductiomeser, one can completely bypass the
use of Theorernl1, as we now explain.
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Lemma 7. Assume that’; andI'; each have a non-trivial finite quotierfi: I, — @;. Then
their free product’; « I'; has a finite index subgroup with odd first Betti number.

Proof. Consider the induced homomorphigmI'; x ', — @1 x Q2. By the Kurosh subgroup
theorem, its kernel is of the forify, I, whereF}, is a free group of rank = (|@Q1| —1)(|@2]| — 1),
andI" is a free product of copies of the kernels of theFor a finite quotieng: F, — @ of order
d we consider the kerneh of g: F, x I' — (@, whereg restricts toF), asg and is trivial onI".
ThenA is isomorphic taF; x I = ... x [ with d copies ofl" appearing, and= 1+ d(k — 1). Thus
A C T’y x 'y is a finite index subgroup with

b(A)=1+d-b(T)=1+d-(k—1+b()).
Choosingd to be even, we have found the desired subgroup. O
Since three-manifold groups are residually finite [9], weehthe following:

Corollary 8. If M is a non-prime three-manifold, then it has a finite coverinthwdd first Betti
number.

At the expense of appealing to residual finiteness, we canhisé€orollary in place of The-
orem[l to exclude non-prime manifolds form consideratiorhi& proof of Theorem|3. More
generally, without restricting to three-manifold groupgmmal? tells us that an arbitrary free
product whose free factors admit finite quotients cannot B&élaer group. This is exactly the
special case of Theorelm 1 originally proved by Johnson aresd REL]. Indeed our proof of the
Lemma is a simplification of the argument in [11].

Finally, there is another way to avoid appealing to Thedremithout using the residual finite-
ness of three-manifold groups. If we consider a non-primented three-manifold/, then its
prime summands are aspherical manifolds plus, perhapg&sofS! x S2. Therefore, the clas-
sifying spaceBm; (M) is the one-point union of the aspherical summands plus,ifggssome
circles. Now ifr; (M) were a Kéhler group, then one could use this classifyingespathe argu-
ment from the proof of Theoreh 4 to derive a contradictiorhwlite Hard Lefschetz theorem.

3.2. The necessity to discusR-homology spheres.In the proof of Theoreml3 it was necessary to
consider separately the case of groups with zero first Bettiber. This step would be superfluous,
if it were known that every closed three-manifold has a ficb@ering with positive first Betti
number. If such a statement were available, then one wouldeed Theorerl 2 for the proof of
Theoreni B given here.

Apparently the question of whether every closed three-falthivith infinite fundamental group
has virtually positive first Betti number was raised long dgdValdhausen, Thurston, and others;
see Problems 3.2 and 3.50 in Kirby’s problem list/[12] andrd#ferences given there. Curiously,
those references do not includé([8] 17] and other papergduo{g], all of which contain a wealth
of information about this problem. In any case, this probssams to be still open.

3.3. The second Betti number of infinite Kahler groups. Carlson and Toledo have asked whether
an infinite Kahler group has virtually positive second Bettmbel. If this were known to be true,
then, because of three-dimensional Poincaré duality, addwot have to considék-homology
3-spheres in the proof of Theorém 3. Moreover, we would notnee@ise geometrisation, and we
would not need Theorem 2 either! We refer to the paper of Kéinfi4] for a recent discussion of
this question of Carlson and Toledo.

°The original reference for their question is Section 18rA 6], where only a more specific version is formulated.
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Unfortunately, a slight misstatement occurs_ in [2, Prop43i)], which implicitly asserts a pos-

itive answer to the question of Carlson and Toledo. The istateb, (7, (X)) > 1 there should be

re

placed by, (X) > 1 (which is trivial). The Proposition in question was provedAmoros [1],

whose paper does not contain the misstatement.
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