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EMBEDDEDNESS OF PROPER MINIMAL SUBMANIFOLDS
IN HOMOGENEOUS SPACES

SUNG-HONG MIN

ABSTRACT. We prove the three embeddedness results as follows. (i) Let I'2ym41
be a piecewise geodesic Jordan curve with 2m + 1 vertices in R™, where m is
an integer > 2. Then the total curvature of I'ay,4+1 < 2mar. In particular, the
total curvature of I's < 47 and thus any minimal surface ¥ C R” bounded
by I's is embedded. Let I's be a piecewise geodesic Jordan curve with 5 ver-
tices in H". Then any minimal surface ¥ C H" bounded by I's is embedded.

If I's is in a geodesic ball of radius 7 in S7, then ¥ C S% is also embed-

ded. As a consequence, I's is an unknot in R3, H3 and Si. (ii) Let X be
an m-dimensional proper minimal submanifold in H" with the ideal boundary
OsoX = TI' in the infinite sphere S"~! = 9 H". If the Mobius volume of T'
Vol(T') < 2Vol(S™~1), then ¥ is embedded. If Vol(I') = 2Vol(S™~1), then
Y is embedded unless it is a cone. (iii) Let ¥ be a proper minimal surface
in H2 x R. If ¥ is vertically regular at infinity and has two ends, then ¥ is
embedded.
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1. INTRODUCTION

To decide whether a minimal submanifold is embedded or not is one of the
significant problems in minimal surface theory. The first well-known embeddedness
theorem is given by Radé [16]. He proved that if a Jordan curve I' in R™ has a 1-1
projection onto the boundary of a convex domain D in a plane then any minimal
surface bounded by T' is a graph over D. In the 1970’s Tomi and Tromba [2]
and Almgren and Simon [I] showed that an extremal Jordan curve I' in R3 spans
an embedded minimal surface. A curve is extremal if it lies in the boundary of
a convex domain. Moreover Meeks and Yau [I2] proved that the Douglas-Morrey
solution of the Plateau problem is embedded under the same condition.

In 1929, Fenchel [7] proved that the total curvature of any closed curve in R? is
always greater than or equal to 2w and is equal to 27 if and only if it is a convex
curve in a plane. He observed that the total curvature of a regular curve I is
measured by the length of spherical image of the unit tangent vectors to I'. Fary
[6] and Milnor [I3] proved independently that the total curvature of a knot in R?
is greater than 4m. For minimal surfaces, it had been open for a long time whether
a minimal surface bounded by a Jordan curve with total curvature at most 47 is
embedded or not.

In 2002, Ekholm, White, and Wienholtz [4] proved the embeddedness of any
minimal surface bounded by a Jordan curve I' in R™ with total curvature at most
4m. This gives a simple proof of Fary-Milnor theorem. Choe and Gulliver [3]
generalized this result for minimal surfaces in an n-dimensional complete simply
connected Riemannian manifold with sectional curvature bounded above by a non-
positive constant and for minimal surfaces in S. In particular, they proved that
any minimal surface bounded by a Jordan curve I' in H"™ (S, resp.) with total
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curvature less than or equal to 47 + infyex Area(pxT') (47 — sup,cx; Area(pxT),
resp.) is always embedded unless it is a cone. It follows that a Jordan curve in
H? (S%, resp.) with total curvature less than or equal to 47 + inf,ex Area(pxI')
(4™ — sup, ey, Area(pxT'), resp.) is unknotted.

In this paper we will prove three embeddedness results for some proper minimal
submanifolds in homogeneous manifolds. In order to obtain embeddedness of a
minimal submanifold ¥, we are going to get an estimate

®E(p) < 27
where Ox(p) is the density of ¥ at p.

In section 2] we will first deal with the following two problems.

Problem 1.1. Let I';, be a piecewise geodesic Jordan curve with k vertices in R™.
What is the upper bound for the total curvature of I'y?

If k = 3, then Fenchel’s theorem [7] implies that the total curvature of I's is
equal to 27. If £ > 4 is an even integer, then it is not difficult to show that the
total curvature of I'y; is less than k7 and that k7 is sharp. We will find the sharp
upper bound for the total curvature of I'y,, where k > 5 is an odd integer. In case of
this, £ = 2m + 1 for some integer m > 2. The theorem we will prove is as follows:

TotalCurvature(Tap, 1) < 2m.

In particular,
TotalCurvature(I's) < 4,

and thus any minimal surface ¥ bounded by I's is embedded by [4], and T'5 is an
unknot in R3 by [6] and [13]. This leads us to Problem [L2in a very natural way.

Problem 1.2. Let I's be a piecewise geodesic Jordan curve with 5 vertices in H"
or S%. If ¥ is a minimal surface bounded by I's, is ¥ embedded? Is I's an unknot
in H? or Si?

We will prove the following. Any minimal surface > bounded by I's is embedded

in H™. In case of hemisphere S, if I';5 is a piecewise geodesic Jordan curve lying
in a geodesic ball of radius 7, then ¥ C S is also embedded. As a consequence,

I's is an unknot in H? and Si.

FIGURE 1. Non-existence of a star-shaped knotted piecewise geo-
desic Jordan curve with 5 vertices in R?, H* and S . (This picture
cannot exist!)
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Unlike [3], there is no need to assume that the total curvature of I's C H” or S}
is bounded above by a constant and additional terms. In fact, the total curvature
and the additional term including Area(pxT') are very difficult to compute in H"™
or . In this regard, we can see that these results are intuitive and efficient when
we consider piecewise geodesic Jordan curves.

In particular, there does not exist a star-shaped knotted piecewise geodesic Jor-
dan curve with 5 vertices in R”, H" and S (Figure 1). Here, n = 5 is the largest
number for a piecewise geodesic Jordan curve I',, with n vertices to be unknotted.

While these results deal with the embeddedness of a compact surface, it was
Schoen [20] who first dealt with the embeddedness of a complete minimal surface.
He proved that a complete minimal hypersurface in R™ which has two ends and is
regular at infinity is embedded and that it is actually the catenoid. He also proved
that if a minimal surface in R? is regular at infinity then it has finite total curvature
and thus it is proper [5]. Levitt and Rosenberg [10] showed that a connected min-
imal hypersurface in H™ which has ideal boundary I' = S; U Sy, where S1, S5 are
disjoint round spheres in S*~! = 9, ,H", and is regular at infinity is the catenoid.
Here, ¥ being regular at infinity implies ¥ = X UT.

In section Bl we will prove the embeddedness of any m-dimensional proper min-
imal submanifold in H"™ which has an ideal boundary I' in the infinite sphere
S"=! = 9, H"™ whose Mobius volume is at most 2Vol(S™~1). The Mébius volume

VO/I(F) of I is defined to be
Vol(I') = sup{Volg(¢(I')) | g € M&b(S" 1)},

where Volg(g(I")) denotes the volume of g(I') in S"~1.

Consider a 2-dimensional cone 0xI" in R™. The total geodesic curvature of I' is
less than or equal to the length of the radial projection of I' onto the unit sphere,
and this length is equal to 27 times the density of 0xI at 0, as shown in [4] and
[B]. In view of this, we think of the Mdbius volume or the volume in a sphere as
a kind of total curvature and in this way we can obtain a suitable estimate of the
density of a minimal submanifold.

In section @ we will deal with minimal surfaces in H? x R. H? x R is a ho-
mogeneous 3-dimensional Riemannian manifold and is one of Thurston’s eight ge-
ometry. In 2002, Rosenberg [I8§] constructed infinitely many disk type minimal
surfaces in H? x R which are graphs over ideal polygons in H? by generalizing the
Jenkins-Serrin type theorem to H? x R. After that, many mathematicians have
been working on the theory of minimal surfaces in H? x R. In particular, they have
constructed many minimal surfaces in H? x R, such as the catenoid with the ver-
tical axis of revolution, ruled minimal surfaces, the Riemann type minimal surface
which is foliated by horizontal curves of constant curvature, and vertical minimal
graphs over an unbounded domain in H? which are not necessarily convex and not
necessarily bounded by convex arcs ([14], [8], [19]). Recently Pyo [15] constructed
complete annular minimal surfaces with finite total curvature.

The last theorem we will prove is as follows: A proper minimal surface in H? x R
which is vertically regular at infinity and has two ends is embedded.

We would like to mention that the problems of this paper were proposed by
Jaigyoung Choe.
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2. ON MINIMAL SURFACES BOUNDED BY I’

Let k be a positive integer > 2. A geodesic polygonal curve (we will just use
the term polygon in R™) is a piecewise length-minimizing geodesic curve I'y, with
k vertices vo(= vi),v1," - ,vk—1 such that v;4q1 # v; for i = 0,--- ,k — 1. Denote
Ty by vgvy - vg—1. In particular, if I'y is a closed geodesic polygonal curve, i.e.
v = vg, then we will denote it as vovy - - - Vp_10g-

2.1. Total curvature of 'y in R". Let 'y be a closed polygon in R™ with k
vertices. Fenchel’s theorem [7] implies that the total curvature of I's is equal to 2.
If 'y, is simple, i.e. it is a Jordan curve, then

TotalCurvature(T'y) < k.

Here, km is sharp if k is even integer. Consider a closed polygon r= VU] - - Vp—100
where Veven = Vo and voqq = U1 (f is a line segment as a set). We can make it
a polygonal Jordan curve I' arbitrary close to r by moving vertices of r slightly.
This implies that there is a polygonal Jordan curve I' of the total curvature km — ¢
for small € > 0.

The main goal of this section is to find the sharp upper bound for the total
curvature of 'y, where k is an odd integer > 5, in R™.

In the following lemma, we will call a closed geodesic polygonal curve with 3
vertices a geodesic triangle.

Lemma 2.1. Let A be a geodesic triangle popipapo in S*~1. Then
Length(A) < 2.

The equality holds if and only if either {po,p1,p2} contains antipodal points or
A = pop1p2po is a great circle.

Proof. Suppose that {pg,p1,p2} contains antipodal points. We may assume that
po and p; are antipodal. Then pypopg is a geodesic of length 7 no matter where po
lies in. Therefore

Length(A) = Length(pop1 ) + Length(pipapo) = 27.

On the other hand, if any two points in {pg, p1,p2} are not antipodal, then each
geodesic segment of A has the length < 7. Observe that pg, p1,p2 lie in a hemi-
sphere. There are two possibilities, either pg,p1,p2 lie in an (n — 1)-dimensional
open hemisphere or completely in S*~2. If pg, p1,p2 € S"2, then either pg, p1, p2
lie in an (n — 2)-dimensional open hemisphere or in S"~3 for the same reason men-
tioned above. Even in the worst case, in a finite step we can conclude that pg, p1, p2
lie in the same open hemisphere unless pg, p1, p2 are contained in a great circle S.

Suppose that pg,p1,p2 lie in the same k-dimensional open hemisphere. Let O
be the origin and Ox A be the cone over A with the vertex O in R™. Note that
the length of p;p;11 is the same as the angle between line segments Op; and Op; 41,
i = 0,1,2. We can develop the tetrahedron O — pop1p2 C R™ into a plane since
O — pop1p2 is flat. But to make the tetrahedron O — popip2 from a development
drawing described in a plane, the angle around O must be strictly less than 2.
Therefore Length(A) < 2.

If po,p1,p2 are contained in a great circle S, then it is easy to show that
Length(A) < Length(S) = 27. Moreover, Length(A) = Length(S) if and only
if A = pop1papo is a great circle S itself. (]

Proposition 2.2. Let pg and ps be points in S*~ 1. Let A be a geodesic polygonal
curve pop1p2 in S*~ which is made by adding one point py. If Length(pop2) = 0,
then

Length(A) <27 — 6.
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The equality holds if and only if either {po,p1,p2} contains antipodal points or
Pop1P2po 1S a great circle.

Proof. Let A be the geodesic triangle popipapo in S”~!. Then
Length(pop1p2po) = Length(A) + Length(papo).

The conclusion follows Lemma [2.1] O

Proposition 2.3. Let py and ps be points in S*~1. Let A be a geodesic polyg-
onal curve popipaps in S*™1 which is made by adding two points p1 and po. If
Length(pops) = 6, then

Length(A) < 27 + 6.
If we further assume that each geodesic segment of A has the length < 7 and
0 < m, then the equality holds if and only if popspip2po s a great circle and

Length(p2pops) < .
If 0 = 7 and the equality holds, then p1 = p3 is the antipodal point of ps = pg.
In general (without assumption mentioned above), po,p1,p2,p3 lie in the same
great circle if equality holds.

Proof. Let a be the length of paps and g be the distance between pg and pa. Then
we have

Length(A) = Length(popip2) + Length(paps)
@2r—B)+a
27 + 6.

(2.1)

[VANVAN

Here, (Z1)) comes from Proposition 221 The second inequality holds because paps
is a length-minimizing geodesic.

Suppose that the equality holds. Then ao = 3 + 6.

One of the following holds.

(i) If @« = 7, then py and p3 are antipodal;

(i) If o < 7, then Length(paps) = Length(pepops) < .
If we further assume that each geodesic segment of A has the length < 7 and 6 < 7,
then we have 0 < 8 < . Because if § = 7 then § = 0 and Length(paps) = a = ,
and if 8 = 0 then Length(pgp1) is equal to 7 from the equality condition of (ZT]).
That is a contradiction. Thus there is the unique great circle S determined by pg
and po. Since p1 € S by (Z1)), pop1p2po = S. Together with (i¢), this implies that
popsp1p2po = S and Length(papops) < m. The converse can be shown directly.

In the case § = m, Length(A) = 3w. Therefore each geodesic segment of A has
the length 7.

Lastly, we will prove that pg,p1,p2,ps lie in the same great circle when the
equality holds. There is a trichotomy.

e If 0 < B < m, then we already know that there is the unique great circle S
determined by py and ps and that p; € S. We only need to consider the
case (7). But in this case ps is the antipodal point of ps.

e If B =7, then py = p3 and ps is the antipodal point of py.

e If B =0, then pg = p2 and p; is the antipodal point of py.

For all of these three cases, we can conclude that pg, p1, p2, p3 lie in the same great
circle. [l

Before stating the general case, we are going to deal with I's C R".

Theorem 2.4. Let I's be a piecewise geodesic Jordan curve with 5 vertices in R™.
Then
TotalCurvature(I's) < 4.
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Proof. Let vo(= v5),v1,v2,v3,v4 be the vertices of I's and let T be the tangent
indicatriz of I's, that is the spherical image of the unit tangent vectors to I's. Then
T is a closed geodesic polygonal curve (in general, not simple) in S*"~! with 5
vertices p;, where p; is the unit vector parallel to v;v;+1, for i = 0,1,2,3,4. Tt is
known that the length of p;p;;1 in S*~! is the same as the turning angle around
vi41 in R™ ([13]). Since I's can not have a cuspidal point, the length of a geodesic
segment of T' is strictly less than 7 and thus T is length-minimizing.

One can make a closed geodesic polygonal curve T in S*~! with 5 vertices as fol-
lows: For given two points pg and py in S” 1, T can be identified with pop1papapapo
by adding three points pi, ps, ps.

Let the distance between pg and ps be . Joining PropositionZ.2and Proposition
2.3l we have the following inequality:

TotalCurvature(I's) = Length(T)

Length(pop1p2) + Length(popapsp2)
< (27 —0)+ (27 +0) = 4.

By a contradiction argument, we will prove that the inequality is strict. Suppose
that the equality holds. If § = m, then pg = ps3, p2 = ps, and moreover py and
p3 are antipodal points from Proposition 2.3l It is a contradiction. Hence 6 < .
Then the equality condition implies that popi1p2po and popapapspo are great circles,
respectively. Actually they coincide. Denote this great circle by S. Since pop1p2po
and popapapspo have an opposite direction, the tangent indicatrix T' = pgp1p2psp4aDo
of I's winds S twice. Therefore I's is a planar curve and of rotation index 2. It
implies that I'; has self-intersection. But it is a contradiction. ([

The next proposition is a bridge to the general theorem about the total curvature
for a piecewise geodesic Jordan curve I'y, where k is an odd integer > 5. For a
convenience, write k = 2m + 1 for m > 2.

Proposition 2.5. I(m): Let ot be a closed geodesic polygonal curve in S"~1
with 2m + 1 vertices. Then

(2.2) Length(T'2m41) < 2mar.

If the equality holds, then every vertex of I'spn41 lies in the same great circle S.
Moreover if every geodesic segment of I'apm41 has the length < m, then T'gpyq1 winds
S m-times.

J(m): Let po and pay, be points in S"~t. Let Agpmi1 be a geodesic polygonal
CUTVE PoP1 * * * Pom—1P2m which is made by adding 2m — 1 points p1,--- ,pam—1. If
Length(popam) = 0, then

Length(Agy,41) < 2mm — 6.

If the equality holds, then every vertex of Aomy1 lies in the same great circle S.
Moreover if 0 < w and every geodesic segment of Aapymy1 has the length < , then
DoP1 -+ - PamPo winds S m-times.

Proof. Use the mathematical induction in m > 2 as follows:

e We already proved I(2) on the way to prove Theorem 24

e If I(m) holds then so does J(m) for m > 2.

e For a given two points py and p3 in S*™!, a closed geodesic polygonal curve
I'opnt3 is made by adding 2m + 1 points as follows: Add two points p1, p2
and 2m — 1 points py,- -+, pam+2, respectively. And then identify a3
with pop1 - - - Pam+2po. Joining J(m) and Proposition 23] we have I(m+1)
in the same manner as Theorem 2.4]

O
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Theorem 2.6. Let m be an integer > 2. Let I'ayy 11 be a piecewise geodesic Jordan
curve with 2m + 1 vertices in R™. Then

(2.3) TotalCurvature(Iyp4+1) < 2mm.

Proof. The tangent indicatrix T of I'g,, 41 is a closed geodesic polygonal curve in
Sn=1 with 2m + 1 vertices. By [22]), we have

TotalCurvature(T'a;,41) = Length(T') < 2mar.

Since I'yy, 41 is a Jordan curve, every geodesic segment of 7" has the length < 7. If
the equality holds, then T is a great circle S as a set and winds itself m-times. It
is a contradiction. O

In ([2Z3)), the upper bound 2mm is sharp. Let I = VU7 - * - Vam—1Vo be a closed
polygon in R" with 2m vertices, where Veven = Vo and voqq = v1. Take~new point
Vam, which is different from vy and vg,,—1, in a geodesic segment of I'. We can
move vertices vg, - -+, Vam—1, V2, slightly to make Ta polygonal Jordan curve I’
with 2m + 1 vertices. It is possible to construct such a I' arbitrary close to I.
Therefore there is a polygonal Jordan curve I' of the total curvature 2mm — € for
small € > 0.

In particular, I's C R™ has interesting properties as follows:

Corollary 2.7. Let I's be a piecewise geodesic Jordan curve with 5 vertices in R™.
Then any minimal surface ¥ in R™ bounded by I's is embedded. If I's C R3, then
it s an unknot.

Proof. See [4] for embeddedness, and see Fary-Milnor theorem ([6], [13]) for un-
knottedness. (For reference, the latter one can be also obtained in a different way
using Theorem 4.8 in [13]). O

Corollary 27 leads us to the following problem in a very natural way.

Problem 2.8. Let I's be a piecewise geodesic Jordan curve with 5 vertices in H™
or ST. If ¥ is a minimal surface bounded by I's, is X embedded? Is I's an unknot
in H3 or S3 2

In the next section, we will give an answer to Problem 2.8

2.2. On minimal surfaces bounded by I's in H" and S’. Let N be an n-
dimensional Riemannian manifold. The injectivity radius ¢(N) of N is the largest
r such that the exponential map is an embedding on an open ball of radius r in
T, N for all p. Observe that i(R"™) = 4(H") = oo and i(S™) = 7.

Definition 2.9. ([2]) Let N be an n-dimensional space form. Let I' C N be a k-
dimensional rectifiable set in N and let p be a point in N such that dist(p, ¢) < i(N)
for all ¢ € T'. Let J(p) be a radial function on N as follows: J(p) = sinp in S”,
p in R™ and sinh p in H". The k-dimensional angle A*(T,p) of T viewed from p is
defined by setting

_ Vol((pxI') N S,(p))

J(p)* ’
where S,(p) is the geodesic sphere of radius p < dist(p,T") centered at p, and the
volume is measured counting multiplicity. Clearly the angle does not depend on p.

AM(T, p)

Note that
(2.4) AR, p) = (k + Dwr10,% (D).

Before stating the theorem, we will sketch models of S™ in a similar way to
Section Note that S™ is isometrically immersed onto the unit sphere Sy, 2% +
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23+ --+22 = 1in R""! endowed with the usual metric, ds® = dzg+daz?+- - -+dz2.

Let p be the distance in S™ measured from the south pole, (—1,0,---,0). Then

|z| = \/x? + -+ + 22 = sinp and d|x| = cos p-dp. We can consider S as R" U{cc}

via the stereographic projection ® : §; C R**1 — R" U {oo} of S; onto R™ U {cc}
which is given by
z;

D (0,21, ,xn) = (u1, - ,u,) where u; = . ,i=1,--+,n.
— 2

Since ® is 1-1 and onto, there is the inverse @1 : R" U {oo} — S; such that

2
_ Qs .
(ug, -+ ,up) — (o, 21, - ,Ty) where xg = =T i = 1402, 4= 1,---,n. Then
-1 . 4ds?
@1 induces on R™ U {co} the metric dsj = ﬁ where ds3 = duf + -+ + du?

is the Euclidean metric and 7% = u? + - - - + u2. Note that

2r . 2r 1
arcsin —— and r = cot 3P

Sinp = T p = arein T,

To estimate the density, we need the following proposition.

Proposition 2.10. ([3]) (Density comparison)
(1) Let T be a (piecewise) C* immersed closed curve in S. p € S such that
dist(p,I') < . Let ¥ be a branched minimal surface in S with boundary T'. Then

(2.5) Ox(p) < O,xr(P),

unless 3 1s a totally geodesic.
(2) Let T be a (piecewise) C? immersed closed curve in H". Let % be a branched
minimal surface in H™ with boundary T' in H™. Then

@E(p) < erF(p)a
unless 3 1s a totally geodesic.

Proof. See [3]. The original proof in [3] only deals with a regular C? curve T.
However the density comparison (which is shown by using monotonicity) at the
vertex of I' can be obtained in the same manner even though I is a piecewise C?
curve. 0

The original version of the second part of Proposition 2.10] is more powerful. It
is proved for ¥ which is a branched minimal surface in an n-dimensional simply
connected Riemannian manifold with sectional curvature < —x?2.

The following is the main theorem of Section

Theorem 2.11. Let I's be a piecewise geodesic Jordan curve with 5 vertices in a
geodesic ball B, C S of radius v < 5. Then any minimal surface 3 C B, bounded
by T's is embedded.

Proof. Let p € ¥ C B, C S. Since B, is convex, p € Conv(I's) where Conv(I's)
is the convex hull of I's. Thus dist(p,I's) < 5. We may assume that p is identified
with the origin in R™ U {oo} via the stereographic projection. Joining (Z3]) with

@) we get
(k + Dwi110x(p) < A*(T, p),
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Therefore

Lengthg((pxT's) N Sy (p))
27 sinp

1 1
do®

27 J (pxT5)nS, (p) SINP

1 1 (1472
= — Z. ( T )dgs
27 Ja(pxTs)ns,-(0) T 2

1 1
= — —do®
27 @(pXTs5)NS,«(0)

Os(p) <

1
= 2—LengthR((I)(pXF5) N .51(0)),
T

where p* = cot %p.

There are three cases. (From now on, we will consider S’} as a subset of R"U{oo}
through the stereographic projection ®. For a convenience, we will omit ® if it is
not ambiguous.)

Case . pe X\ .

Observe that (pxT'5) N S1(0) is a piecewise length-minimizing geodesic closed
curve with 5 vertices in the unit sphere in R™. Therefore Proposition implies
Lengthg ((pxI's) N S1(0)) < 47. Now we claim that the equality can not occur. If
the equality holds, then all of the vertices of (pxI's) N S1(0) lie in the same great
circle S. This implies that all of the vertices of ®(I's) are in the plane P containing
the origin and S. Since each geodesic segment (this is not a line segment, in general)
of ®(I's) minimizes length, I's C P and thus (pxT'5)NS1(0) C P also. This implies
that (pxTI'5) N .S1(0) is a geodesic circle S as a set and winds S twice. But it is a
contradiction since ®(I's) is a Jordan curve. Therefore we have

@2(]?) < 2.

Case II. p € T'5 \ {vertices}.

T,T's intersects S1(0) at two points a, b which are antipodal. And thus (pxI's)N
S1(0) is a piecewise length-minimizing geodesic curve with 5 vertices and a, b are end
points of (pxT'5) N.S1(0). Proposition 25 implies that Lengthy ((pxT'5) N S1(0)) <
37. In the same manner to the first case, we can show that the equality can not

occur. Therefore we have
3
@E(p) < 5
Case III. p is a vertex of I's.
Let 6 be an exterior angle of I's at p. Then Proposition implies that
Lengthg ((pxI's) N S1(0)) < 27 + (7 — 0) = 37 — 0. In a similar way to the

first two cases, we have

3 0
S} - — —.
20 <3~ 57
These three density estimates complete the proof. (I

We can also prove the following in H".

Theorem 2.12. Let I's be a piecewise geodesic Jordan curve with 5 vertices in H™.
Then any minimal surface X2 bounded by I's is embedded.

Proof. The proof is similar to Theorem 2111 O

Corollary 2.13. There does not exist a star-shaped knotted piecewise geodesic Jor-
dan curve in H? or in a geodesic ball of radius < iC Si which consists of 5 geodesic
segments (See Figure 1 in Introduction).
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Proof. Note that a minimal disk in a 3-dimensional manifold bounded by a knotted
Jordan curve always has not only self-intersections but also a branch point. It is a
direct consequence of Theorem [Z.12] and Theorem Z.111 O

In Corollary 213 n = 5 is the critical number for a piecewise geodesic Jordan
curve I',, with n vertices to be unknotted. It is not difficult to find a knotted
piecewise geodesic Jordan curve I's with 6 vertices (Figure 2).

/

FIGURE 2. Five is criticall Existence of a knotted piecewise geo-
desic Jordan curve I'g with 6 vertices.

3. EMBEDDEDNESS OF PROPER MINIMAL SUBMANIFOLDS IN H"

Let us sketch two models of hyperbolic space H™. First, H" is isometrically
immersed onto the hyperboloid H, —23 + 2% + --- + 22 = —1, 29 > 0, in R**!
endowed with the Minkowski metric, ds? = —da? + da% + -+ + d2?, which is
denoted by L"!. Let p be the distance in H" measured from (1,0,---,0). Then
|z| = \/2? + -+ + 22 = sinh p and d|z| = cosh p - dp. Second, one can consider H"
as the unit ball B™ = {(ug,--- ,u,)[uf + -+ +u2 < 1} C R™. Define a mapping
V:HcL*! - B" CR"” by

Ty
1+ 29 ’
Actually ¥ is known as the stereographic projection of H onto the unit ball in
the hyperplane {zo = 0}. Since ¥ is 1-1 and onto, there is the inverse U1 :

U (zo, 21, ,&n) = (U1, ,un) where u; = i=1,---,n.

_ 1+’l“2 _ 2uy
B"™ — H such that (u1, -+ ,u,) = (20,71, -+ ,2n) Where xg = 150, ¥, = 7725,
. 1. . 4ds3
i =1,---,n. Then U~! induces on B" the metric ds} = ﬁ where ds? =

du? + -+ + du? is the Euclidean metric and r? = u? + -+ + u2. Such a ball B" is
called the Poincaré ball, one of the models of H". Note that

. 2r 1
sinhp = m,p:logli

1
and r = tanh Pl

If we employ the Poincaré ball, then the ideal boundary J,.X of ¥ C H" is
defined to be the set of all accumulation points of ¥ in S*~!. Here O,,H", the ideal
boundary of H", is identified with S*~1.

Definition 3.1. Let I" be an (m — 1)-dimensional submanifold in an n-dimensional
Riemannian manifold M and let p be a point of M. The m-dimensional cone over
T" with the vertex p is defined as the union of the geodesic segment from p to ¢, over
all g € ' and is denoted by pxTI'.
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From now on, Volg(T') denotes the volume of I in S»~! C R™. In particular
Volg(S™~1) = mw,, where w,, is the volume of the m-dimensional unit ball in
R™.

Proposition 3.2. (Density estimation) Let I be an (m — 1)-dimensional compact
submanifold of S*™1. Let ¥ be an m-dimensional proper minimal submanifold in
H" with 05X =T C S*! = O, H" and let q be a point of . Let ¢ be an isometry
of H™ such that ¥(q) = (1,0,---,0) € H in the hyperboloid model of H"™. Then

(3.1) mw,Ox(q) < Volg (),
where T denotes the ideal boundary of ¢(X). If the equality holds, then ¥ = ¢xT .

The properness of ¥ in Proposition can be replaced by the hypothesis that
Y =XuUrl.

Proof. Let G(z) be Green’s function of H™, whose derivative is sinh' ™™ z for 0 <
x < 00, where z is the distance from a fixed point in H™. Choe and Gulliver [2]
proved that if 3 is an m-dimensional minimal submanifold of H® and ¢ € ¥ then
G o p is subharmonic on ¥ \ {¢} and is harmonic except ¢ if ¥ is a cone with the
vertex ¢q. That is,

cosh p

AsG(p) =m (1—1Vzpl’) >0,

sinh™ p

where p(-) is the distance from ¢ in H".
Let B,(q) denote the geodesic ball in H" of radius r centered at ¢. Integrate

AsG(p) over £.N Br(q) \ Be(q) for small € > 0 and large R and then apply the

divergence theorem. Since (XN Br(q) \ Be(q)) = (XN 0B(q)) U (X NIBr(q)), it
implies

0< / AsG(p) = / VeG(p) v+ / V=G(p) v,
¥NBr(q)\B:(q) ¥NdBc(q) SNOBr(q)

where v is the outward unit conormal vector to .
Recall that VsG(p) = sinh' ™™ p - Vg p. Hence

1 dp 1 ap
(32) —/ R S/ Ty
$NaB.(q) SIMh™ ™ p OV ™ JsnoBg(q) sinh™ " p OV

Along ¥ N 0B.(q) % — —1 uniformly and
Vol(X N 9dB(q))

= = mwmOx(q) ase— 0.

It follows that
1 dp
lim —_ = —Mw,0 .
<=0 J5noB.(q) sinh™ ! p v »(q)
Then [B.2)) yields

(3.3) mwmOx(q) < / 1 Op

$noBR(q) SIMh™ ' p v

Let us write do™ as the hyperbolic volume form of N&Bg(q) in the hyperboloid
and Poincaré ball model in common. Since |g§| <1,

/ 1 ap </ 1
£NOBr(q) sinh™ ! pal/ = J2noBr(q) sinh™ ™1 p '
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On the other hand, we can obtain some interesting equalities as follows

m—1
1 1
(34) / I dO'H = / —_—— dO']HI
0B (q) SIMh™ ! p W(2)NoBR (@) \ VTE — 1

/ S50 e
g
$(2)NoBRe(0) T\ 2

1
= / — doR,
$(2)NdBR=(0) T

where R* = tanh 1R, Bg-(0) is a geodesic ball in B” C R™ centered at the origin
and do® is the volume form of ¢(X) N &Bg-(0) in R™. The last equality holds
because ds? is conformal to ds3.

Note that the last integral equals just Vol(¢)(X) N dBg-~(0)) divided by R*™ 1.
In fact it is the volume of the radial projection of ¥ () NdBg- (0) in R™ onto S"~ 1.
And it converges to Volgr(0wo® (X)) as R* — 1, that is, as R — oo. Hence from

B3) and (B4) we have (BI).

If equality holds, then AxG(p) vanishes on the whole ¥ with respect to the fixed
point ¢ € . Tt implies that [Vsp| =1 on . Let s € X and let v be a geodesic such
that v(0) = ¢ and (1) = s. Then 4/(1) € TsX for all s € ¥ because Vyp € T 3.
It then follows that ¥ is a cone with the vertex q. (I

Definition 3.3. Let I' be an (m — 1)-dimensional compact submanifold of S"~1.
Let M6b(S™™1) be the group of all Mobius transformations of S*=!. The Mdbius
volume of I is defined to be

Vol(T') = sup{Volg(g o T) | g € M6b(S" ) }.

Remark. According to the definition of Li and Yau [I1], the Mbius volume of T is
the same as the (n — 1)-conformal volume of the inclusion of T' into S*~1.

Proposition 3.4. Let ' be an (m — 1)-dimensional compact submanifold of S*~1.
Then Vol(T') > mwy,. And equality holds if T is an (m — 1)-dimensional sphere. In
particular, if T is a closed curve in S?, then Vol(T') = 27 if and only if T is a circle.

Proof. Let p be a point of I'. There is ¢. € Méb(S"~1) fixing p and corresponding
to the homothety @ in R™~! which is defined as ¢ (z) := £. Then ¢.(I') converges

to an (m — 1)-dimensional great sphere as ¢ goes to 0. Therefore {/Bi(l“) > MWy, .

Let T" be an (m — 1)-dimensional sphere. Since the Mébius transformation of
S”~! maps the spheres to the spheres, obviously we have VO/I(F) = MWp,.

Let ' be a closed curve in S?. We only need to prove that if VO/I(F) = 2m then I’
is a circle. If I" has a self-intersection then we can take a closed embedded subarc
v from I" and clearly Vol(y) < Vol(T'). Thus it is enough to consider an embedded
T of length < 27. Then T lies in a closed hemisphere by Horn’s theorem [9].

Suppose I is not a circle. Let Dy, Dy C S? be the domains bounded by I'. Then
there is a largest circle S; in Closure(D;), ¢ = 1,2, such that T' N S; consists of at
least two points. Choose ¢ € Mob(S?) in such a way that ¢(S7) and ¢(S2) become
two parallels of equal latitude in northern and southern hemisphere, respectively.
Let A C S? be the annulus between (S;) and ((Ss).

Now we claim that no closed hemisphere in S? can contain ¢(I"). Suppose, on the
contrary, that ¢(T') lies in a closed hemisphere U. Since ¢(T") is not null-homotopic
in A, U N A cannot be simply connected, and so OU lies in A and is not null-
homotopic in A. Moreover, assuming that ¢(S1) C U, we have 9U N p(S2) # 0
since I'NS; # 0 for i = 1, 2. However, we should note that U intersects ¢(S;) only
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at one point, for ¢+ = 1,2. But this contradicts the hypothesis that I' N .S; consists
of at least two points.
Therefore no closed hemisphere in S? can contain ¢(T") and hence it follows from

[9) that Vol(¢(T")) > 2x. This is a contradiction to our hypothesis Vol(I') = 2,
and thus we can conclude that I" is a circle. O

The following is a non-trivial example of a Jordan curve having VO/I(F) < 4.

Example 3.5. Let S and S+ be great circles in S? and let p; and py be the
intersection points of S and S+. We can choose four points p;; different from p;
and py as follows: py; € S, dist(p;,pi;) = € < § and py; and py; are antipodal
for i,7 = 1,2. Then we have new piecewise smooth Jordan curve I' from S U S+
removing length-minimizing geodesic segments connecting p;; and p;o and adding
semi-circles S; of length 7 with the end points p;; and pz; which intersects S at a
right angle for i,j = 1,2

Let ¢ be any Mébius transformation of S%2. Then S and S; remain still part
of circles under ¢ and intersection angle between ¢(S) and ¢(S;) is 5 from the
conformality , j = 1, 2. It is not difficult to show that

Length(¢(S1)) + Length(o(S2)) < 27
and thus Length(¢(I)) < 4. It follows that Vol(I') < 4r.

Theorem 3.6. Let I' be an (m — 1)-dimensional compact submanifold of S*~1.
Let 32 be an m-dimensional proper minimal submanifold in H™ with 0% = T'. If

VO/I(F) < 2mwy,, then X is embedded. If VO/I(F) = 2mwy,, then ¥ is embedded
unless it is a cone.

Proof. Let p be a point on ¥ in H". In accordance with Proposition 3.2]
(3.5) mwmOx(p) < Volg().

Let Isom(H"™) be the group of all isometries of H". Let Mob(B™) be the group of
all Mobius transformations of B". Then (Chapter 4 in [I7]),

Isom(H") ~ M&b(B") ~ Mab(S"™1).
Given ¢ € Isom(H"), we may consider it as in M6b(S"~1). Then it follows that
(3.6) Volg(T') < Vol(T') < 2muwp,.
Therefore combining (B8] and (B.6]), we have
Os(p) <2,

and hence ¥ is embedded.

If Vol(T') = 2mwyy,, then Ox(p) < 2 for every p € 3. Let ¢ € ¥ be a point of
density 2. Since equality holds in ([B1]), then it is a cone with the vertex ¢. This
completes the proof. (I

4. EMBEDDEDNESS OF PROPER MINIMAL SURFACES IN H2 x R

Proposition 4.1. Let ¥ be a complete minimal surface in H?> x R and p € ¥. Let
p be the distance from p in H? x R. Then

Asxlogp >0

on T\ {p}.
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Before proving Proposition [£] we will determine the Jacobi fields along a unit
speed geodesic in H? x R. In this section we use the Poincaré disk model of H?Z,

H? = {(u1,uz2) € IR2|7°2 = u% —l—u% < 1}.

As the product space, H? x R has the coordinates (u1,us,z) endowed with the

metric

4(du? + du3)
(1—1r2)2

where (u1,u2) € H? and 2z € R. Let p be a point in H? x R and ~ be a unit speed
geodesic in H? x R emanating from p with v(0) = p and 7/(0) = v € T,H?* x R.
Since H? x R is a homogeneous space, there exists the isometry ¢ of H? x R so that
¢(p) = 0 and dp(v) = (¢,0,V1 —4c?) =: w for some ¢ € [0, 1]. For convenience
denote by ~ the geodesic p 07, i.e. v(0) =0 and +/(0) = w.

To find the geodesic « explicitly, recall the geodesic equation as follows:

ds? = +dz?,

3
(4.1) W)+ D TEY () =0, k=1,2,3.
i,j=1
Since the Christoffel symbols of the Riemannian connection is given by

3

1 .
Ff] = Z igkl(gil,j + 9jli — gij,l>a 1,7, k € {15 27 3}5
=1
we have
2
F%l = F%l = F%Q = —F%Q = —1;;2’
(4-2) F%z = F%z = F%1 = *F% = 1_uf27

Tk =0 if3e{i,jk}

It is a well known fact that the canonical projections of a geodesic in the product
Riemannian manifold are also geodesics. In particular, a projection of « onto the
horizontal totally geodesic plane in H? x R is also a geodesic. Therefore v(t) = 0
because the only geodesics emanating from the origin in H? are the rays. Putting

@) in @), we get

{ Y () + T (1 (1))? 0,
¥5 (t) = 0.

With the given initial conditions, one may obtain as follows:
~(t) = (tanh ct,0,v/1— 402t) .

Lemma 4.2. The Jacobi field along v with the initial condition J(0) = (0,0,0)
and J'(0) = w(0) in H? x R is given by

sinh 2c¢t

(4.3) J(t) = (twl (1), 50 wg(t),twg(t)> ,

where w(t) = (w1(t),wa(t),ws(t)) is a parallel vector field along v with ' (t)-w(t) =0
and |w(t)| = 1.

Proof. We derive the Riemannian curvature tensor of H? x R using that of H? as
follows:

2
Rl _ (ﬁ) (_57,k6]l +5jk511)5 iaja kal =1,2,
0, otherwise.
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Since v2(t) = 0, the Jacobi equation

3
T+ Y Ry (M (0750 =0, 1=1,2,3,

i,5,k=1

becomes
Ji"(t) = 0,
J2”(t) + R%m : (71I(t))2j2(t) = 0,
J5"(t) = 0.

2
Along the geodesic v, R2y, - (11/(£))* = — (1ET2) (e(1 - x2))2 = —4c?. Solving
the equation

Jll/(t) = 05
JQ”(t) — 402J2(t) = 0,
Jg”(t) = 0
with the given initial conditions J(0) = (0,0,0) and J'(0) = w(0), we can obtain

@3). 0

Lemma 4.3. (]2], Lemma 2) Let f be a smooth function on an n-dimensional
Riemannian manifold M and ¥ an m-dimensional submanifold of M. Let ¥V and
A be the connection and Laplacian on M respectively, and Ay, the Laplacian on 3.
If H is the mean curvature vector of X2 in M, then

(4.4) Asf=@NE+Hf~ Y ¥ f(Earta),

a=m-+1

where H f is the directional derivative of f in the direction of the mean curvature
vector H and €41, -+ , €, are orthonormal vectors which are perpendicular to X.

Proof of Proposition[4.Il Let v be a unit speed geodesic emanating from 0
and S,(0) be a geodesic sphere of radius p centered at 0 in H? x R. It is convenient
to use the exponential coordinates (p, ¢, 0), where ¢ is the angle between 4/(0) and
the z-axis in ToH? x R and 6 is the angle around the z-axis. Note that cos¢ =
V1 —4¢? and hence 2¢ = sin¢. In terms of ¢ one can rewrite (t) and J(t).

There are globally defined coordinate vector fields corresponding to these co-
ordinates. Now define new vector fields {V1, Va2, V3} to be parallel to the above-
mentioned coordinate vector fields on a neighborhood of ¢ = v(p) € S,(0) such
that

0
Vi =~(p)==—, Vi-V;=0
1(q) =7'(p) o f
and
sinh(p sin
Vil=1, [Val=p, [Va] = Snbipsing)
sin ¢

By Lemma [£3] and the minimality of ¥, (£4]) yields
(4.5) Aslogp = Alogp — v log p(n,n) = v log p — v log p(n,n),

where n is the unit normal vector field of ¥ in H? x R.

Let {h;;} and {ffj} be the metric and Christoffel symbols corresponding to the
vector fields {V;}. If F is a smooth function on H? x R, then the Hessian of F'
satisfies

=2 > 1
46 VEVL V) =S —
(4.6) Vi, Vj) ; NN

(Fyj — T5Fy).
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Rewrite the metric {h;;} by the matrix form,

1 0 0
2
(hij)=1 0 » 0
! 0 0 sinh%(gsdi)n )

In case that F' = log p, two out of the three directional derivatives vanish. Substi-
tuting {h,;} into (@6), we get

Ty ((10gp)11 - fh(logp)l) , i=j=1,
\/hfl\/a (*F%j(log P)l) , otherwise.

Hence it is enough to compute the terms {fgj} If i # j then lej = (. The only
non-zero terms are

{EQ = —1hay =—p

Vlog p(Vi, V) =

)
1 _ 1 __ sinh(psin ¢) cosh(psin ¢)
F33 - _§h33’1 - sin ¢ :

Therefore

—2 ~
Vilgp(Vi,Vi) = 5 ((10gp)11 - Fh(logp)l) ==,
1

Vlogp(Va,Va) = —7ETh(logp) = &,
Vlogp(Va, V5) = — 7T, (log p)1 = Lsin g coth(psin ¢).
In conclusion, the Hessian of log p in H? x R is obtained
., 1 -1 0 0
(4.7) Vilogp=—- 0 1 0

0 0 psingcoth(psing)
Putting n = (n1, ne, n3) and applying ({3 together with (7],
p*Aslogp = p*- (trﬁQ log p — v log p(n, n))

= (1 —n3)psinpcoth(psing) — (n3 — ni).
Now we claim psin ¢ coth(psing) > 1. If we define f(s) = scoths, 0 < s < p then

f'(s) = coths — —2— = —L—(sinhs - coshs — s). Since <-(sinhs - coshs — s) =
Sin S Sin S S

cosh2s —1 >0 and lims_,o(sinh s - coshs — s) = 0, f is a monotonically increasing

function. Since limg_o f(s) = limg_0 s - zzf‘;: = 1, one can conclude f(s) > 1.

Hence
p*Aslogp>1+nf—(n3+n3)>14n]—[n>=ni>0 O

Remark 4.4. If the equality holds in Proposition [£1] at a point g € 3 then either
n = (0,0,1) or both ny and sin¢ at ¢ vanish. In particular, if ¥ is a totally
geodesic vertical plane containing p and ¢, then n = (0,0, 1) at any ¢ € ¥ and thus
Asxlogp =0 on X, and vice versa. Note that sin ¢ vanishes at ¢ if and only if ¢ lies
in the vertical geodesic through p in H? x R.

Definition 4.5. Let Iy be a totally geodesic vertical plane in H? x R such that
o = {(u1,u2,2) € H? x Rlug = 0}. A surface ¥ in H? x R is a horizontal graph of
a function f over II if

X= {(Ul,UQ,Z) € H2 X R|902 = f (901a()03)} ;
where ¢ = (¢!, %, p3) is an isometry in H? x R such that o(I1) = Il,.
Definition 4.6. Let ¥ be a complete minimal surface in H? x R. ¥ is said to be

vertically reqular at infinity in H? x R if there is a compact subset K C H? x R
such that
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1) ¥ ~ K consists of k components X, -+, Xg;

2) each %; is the horizontal graph of a function f; over the exterior of a
bounded region in some totally geodesic vertical plane II; ~ H x R;

3) each f; has the following asymptotic behavior for r large and « > 0:

1 1
fi—>0, azlfl:O(—) — 0 and azifi:O(i' T ) — 0,
e sinh ™% r

as r — oo, where x;, z; are the coordinates on II; ~ H x R and r is the
distance from (0,0) € II;.

We call these ¥J; the ends of X.

Remark 4.7. Schoen [20] defines the following. A complete minimal surface ¥ C
R3 is said to be regular at infinity if there is a compact subset K C ¥ such that
> ~ K consists of r components Xi,---,%, such that each ¥; is the graph of
a function f; with bounded slope over the exterior of a bounded region in some
plane II;. Moreover, if 1 and zo are coordinates in II;, we require the f; have the
following asymptotic behavior for r = |z| large:
C121 CoT2 —
fi(z) =alogr+b+ pen + 5 +0(r?)

for constants a, b, ¢1, co depending on 1.

As the distance r from the origin, (0,0) € IL;, goes to infinity, f; is dominated
by logr. It comes from the profile curve of an end of a catenoid in R3. Note that
logr — oo as r — 00, so X goes apart from any plane parallel to IT;. However,
since k’% — 0 as r — 00, X tends to approach a plane. In other words the radial
projection onto S? of the intersection of ¥ and a geodesic sphere of radius p con-
verges uniformly as p — 0o to an equator, with multiplicities, of S2.

But in H? x R we have a different situation as follows:

H? x R is not isotropic and homotheties are not isometries. So the be-
haviors of the components of a minimal surface outside a compact set in
H? x R are different depending on whether they are vertical, horizontal, or
mixed. In this section we deal with only the vertical cases.

The following theorem is the main result of Section 4]

Theorem 4.8. Let ¥ be a proper minimal surface in H2 x R. If ¥ is vertically
reqular at infinity in H? x R and has two ends, then ¥ is embedded.

Proof. Let p be a point in ¥ and p(-) = dist(p,-) in H? x R. Since ¥ is proper
in H? x R, though p is not in K, we can find new compact subset I:( C H?xR
satisfying all conditions in Definition For convenience, denote K by K, i.e.
without loss of generality we may assume that p € K. Since H? x R is homogeneous,
we may also assume that p = (0,0,0) € H? x R.

By definition, each ¥; is the horizontal graph of the function f; over the exterior
of a bounded region in II;. Let z;,z; be the coordinates on IT; ~ H x R and let
pi = (0,0) with respect to this coordinates. Then we can assume that p; € H? x {0}.
Let ¢; be the isometry in H? x R such that ¢;(IL;) = Ilg, ¢;(p;) = p € H? x R and
; preserves R-axis. Let S,.(p;) be the geodesic circle of radius r centered at p; on
II;. Define C”(p;) to be

Cﬁ(pl) = 50;1({(’“17“272) € H2 X R|(U1,O,Z> € @i(ST(pi))aUQ € [7ha h]})

Put K" = K UC"(p;) UCl(ps). The fact that f; — 0 as r — oo implies that for
sufficiently large r there is h > 0, which does not depend on r, such that ¥ ~ K"
consists of only two connected components of ¥. If necessary, we can enlarge K
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since ¥ is proper. Furthermore we consider ¥ N dC"(p;) as a horizontal graph over

Sy (pi)-
Integrating Axlogp in ¥ N K" ~ B.(p) and applying the divergence theorem
gives

1 1 1
/ Aglogp:/ —@wL/ —@ﬁL/ —%,
SAK"~B. (p) £naCk(p) POV Jsnach(p) POV JsnaB.(p) POV

where v is the outward unit conormal vector to X N K" ~ B.(p).
Near p, sinh p — p uniformly and ¥ is close to T,,3. Hence

Vol(X N dB.(p)) — 2meOx(p)

and gg — —1 uniformly as € — 0. So

10p
210x(p) < f/ -—.
=(p) ¥NIB.(p) pov

Therefore

10 10
(4.8) 210x(p) < / =2P +/ —2P f/ Asx log p.
£naCk(p) POV Jsnach(ps) POV Jsnkr~B.(p)

Since dist(p;, ¢) < dist(p, q) for g € X; sufficiently far from p, we have, r < p and

hence
[l
$naCh (p;) P OV £NOCH (p;) P
1

1
< /z I = —Length(X N aC"(p;)).
NoC T (pi

r

A

Parameterize ¥ N 0C” (p;) by t, 0 < t < 27, as follows:

(x(t), fi(z(t), 2(t)), 2(t)) = (tanh %T cost, fi(z(t),z(t)),rsint) ,

where z;(t) and z(t) is denoted by x(¢) and z(t), respectively, for convenience.
Then we can compute directly

1
~Length(X N aCH (p:))
T

_ LT @R @fio () £ 0:fi 2 (0)
_ T/O ! +2/(t)

(=)

2 122 i\ 2 1=2® . 9, fi - (—sint) + 0. f; - cost i
- / 217*2 + . *2 +cos?t,
; = l1—z

2 2

where z* is determined by an orthogonal projection of the graph onto H?. From
the vertical regularity of &

o () 2 o w
z 2 o sinhlJrar sinh r*

) - (1+ coshr*) — 0,

1
o —
<sinh1+a r

1—a? 1 1+ coshr*
ofil- () = O =) (20 o,
1921 <1—x*2> <r0‘) (1—|—coshr>—>

142

as r — 0o, where r* = log {4 the distance from p; in H?.
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It implies that not only ¥ N AC"(p;) converges to S,.(p;) as a set but also the
tangent vectors of ¥ N OC"(p;) converge to those of S,(p;) uniformly. Therefore

(4.9) %Length(z NaC! (pi)) — %Length(ST (pi)) = 2m,

as r — o0o. Note that the last equality holds because II; ~ H x R is isometric to
R2. Then ([@9) implies that for every ¢ > 0, there exists R such that

1 1
/ _@Jr/ —@fém <d ifr>R.
£naCk(p) POV Jsnach (py) P OV

Remark 4] implies that
/ Aslogp
LNK!~Be(p)

is strictly positive since ¥ can not be a union of two totally geodesic vertical planes.
Then there is dp > 0 which does not depend on r such that

/ Axlogp > do.
ENK]~Be(p)

If we take § < %0 then (A8)) deduces

0
2105 (p) < 41 + 6 — 8y < 47 + 50 — 5o < 4.
This completes the proof. ([
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