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EMBEDDEDNESS OF PROPER MINIMAL SUBMANIFOLDS

IN HOMOGENEOUS SPACES

SUNG-HONG MIN

Abstract. We prove the three embeddedness results as follows. (i) Let Γ2m+1

be a piecewise geodesic Jordan curve with 2m + 1 vertices in Rn, where m is
an integer ≥ 2. Then the total curvature of Γ2m+1 < 2mπ. In particular, the
total curvature of Γ5 < 4π and thus any minimal surface Σ ⊂ Rn bounded
by Γ5 is embedded. Let Γ5 be a piecewise geodesic Jordan curve with 5 ver-
tices in Hn. Then any minimal surface Σ ⊂ Hn bounded by Γ5 is embedded.
If Γ5 is in a geodesic ball of radius π

4
in Sn

+
, then Σ ⊂ Sn

+
is also embed-

ded. As a consequence, Γ5 is an unknot in R3, H3 and S3
+
. (ii) Let Σ be

an m-dimensional proper minimal submanifold in Hn with the ideal boundary
∂∞Σ = Γ in the infinite sphere Sn−1 = ∂∞Hn. If the Möbius volume of Γ

Ṽol(Γ) < 2Vol(Sm−1), then Σ is embedded. If Ṽol(Γ) = 2Vol(Sm−1), then
Σ is embedded unless it is a cone. (iii) Let Σ be a proper minimal surface
in H2 × R. If Σ is vertically regular at infinity and has two ends, then Σ is
embedded.

Mathematics Subject Classification(2010) : 53A10, 49Q05
Key Words and phrases : minimal surface, monotonicity, embeddedness, total
curvature of a curve, knot

1. Introduction

To decide whether a minimal submanifold is embedded or not is one of the
significant problems in minimal surface theory. The first well-known embeddedness
theorem is given by Radó [16]. He proved that if a Jordan curve Γ in R

n has a 1-1
projection onto the boundary of a convex domain D in a plane then any minimal
surface bounded by Γ is a graph over D. In the 1970’s Tomi and Tromba [21]
and Almgren and Simon [1] showed that an extremal Jordan curve Γ in R

3 spans
an embedded minimal surface. A curve is extremal if it lies in the boundary of
a convex domain. Moreover Meeks and Yau [12] proved that the Douglas-Morrey
solution of the Plateau problem is embedded under the same condition.

In 1929, Fenchel [7] proved that the total curvature of any closed curve in R
3 is

always greater than or equal to 2π and is equal to 2π if and only if it is a convex
curve in a plane. He observed that the total curvature of a regular curve Γ is
measured by the length of spherical image of the unit tangent vectors to Γ. Fáry
[6] and Milnor [13] proved independently that the total curvature of a knot in R

3

is greater than 4π. For minimal surfaces, it had been open for a long time whether
a minimal surface bounded by a Jordan curve with total curvature at most 4π is
embedded or not.

In 2002, Ekholm, White, and Wienholtz [4] proved the embeddedness of any
minimal surface bounded by a Jordan curve Γ in R

n with total curvature at most
4π. This gives a simple proof of Fáry-Milnor theorem. Choe and Gulliver [3]
generalized this result for minimal surfaces in an n-dimensional complete simply
connected Riemannian manifold with sectional curvature bounded above by a non-
positive constant and for minimal surfaces in S

n
+. In particular, they proved that

any minimal surface bounded by a Jordan curve Γ in H
n (Sn+, resp.) with total
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2 SUNG-HONG MIN

curvature less than or equal to 4π + infp∈Σ Area(p××Γ) (4π − supp∈ΣArea(p××Γ),
resp.) is always embedded unless it is a cone. It follows that a Jordan curve in
H

3 (S3+, resp.) with total curvature less than or equal to 4π + infp∈ΣArea(p××Γ)
(4π − supp∈Σ Area(p××Γ), resp.) is unknotted.

In this paper we will prove three embeddedness results for some proper minimal
submanifolds in homogeneous manifolds. In order to obtain embeddedness of a
minimal submanifold Σ, we are going to get an estimate

ΘΣ(p) < 2,

where ΘΣ(p) is the density of Σ at p.

In section 2, we will first deal with the following two problems.

Problem 1.1. Let Γk be a piecewise geodesic Jordan curve with k vertices in R
n.

What is the upper bound for the total curvature of Γk?

If k = 3, then Fenchel’s theorem [7] implies that the total curvature of Γ3 is
equal to 2π. If k ≥ 4 is an even integer, then it is not difficult to show that the
total curvature of Γk is less than kπ and that kπ is sharp. We will find the sharp
upper bound for the total curvature of Γk, where k ≥ 5 is an odd integer. In case of
this, k = 2m+ 1 for some integer m ≥ 2. The theorem we will prove is as follows:

TotalCurvature(Γ2m+1) < 2mπ.

In particular,

TotalCurvature(Γ5) < 4π,

and thus any minimal surface Σ bounded by Γ5 is embedded by [4], and Γ5 is an
unknot in R

3 by [6] and [13]. This leads us to Problem 1.2 in a very natural way.

Problem 1.2. Let Γ5 be a piecewise geodesic Jordan curve with 5 vertices in H
n

or Sn+. If Σ is a minimal surface bounded by Γ5, is Σ embedded? Is Γ5 an unknot

in H
3 or S3+?

We will prove the following. Any minimal surface Σ bounded by Γ5 is embedded
in H

n. In case of hemisphere S
n
+, if Γ5 is a piecewise geodesic Jordan curve lying

in a geodesic ball of radius π
4 , then Σ ⊂ S

n
+ is also embedded. As a consequence,

Γ5 is an unknot in H
3 and S

3
+.

Figure 1. Non-existence of a star-shaped knotted piecewise geo-
desic Jordan curve with 5 vertices in R

3, H3 and S
3
+. (This picture

cannot exist!)
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Unlike [3], there is no need to assume that the total curvature of Γ5 ⊂ H
n or Sn+

is bounded above by a constant and additional terms. In fact, the total curvature
and the additional term including Area(p××Γ) are very difficult to compute in H

n

or Sn+. In this regard, we can see that these results are intuitive and efficient when
we consider piecewise geodesic Jordan curves.

In particular, there does not exist a star-shaped knotted piecewise geodesic Jor-
dan curve with 5 vertices in R

n, Hn and S
n
+ (Figure 1). Here, n = 5 is the largest

number for a piecewise geodesic Jordan curve Γn with n vertices to be unknotted.

While these results deal with the embeddedness of a compact surface, it was
Schoen [20] who first dealt with the embeddedness of a complete minimal surface.
He proved that a complete minimal hypersurface in R

n which has two ends and is
regular at infinity is embedded and that it is actually the catenoid. He also proved
that if a minimal surface in R

3 is regular at infinity then it has finite total curvature
and thus it is proper [5]. Levitt and Rosenberg [10] showed that a connected min-
imal hypersurface in H

n which has ideal boundary Γ = S1 ∪ S2, where S1, S2 are
disjoint round spheres in S

n−1 = ∂∞H
n, and is regular at infinity is the catenoid.

Here, Σ being regular at infinity implies Σ = Σ ∪ Γ.

In section 3, we will prove the embeddedness of any m-dimensional proper min-
imal submanifold in H

n which has an ideal boundary Γ in the infinite sphere
S
n−1 = ∂∞H

n whose Möbius volume is at most 2Vol(Sm−1). The Möbius volume

Ṽol(Γ) of Γ is defined to be

Ṽol(Γ) = sup{VolR(g(Γ)) | g ∈ Möb(Sn−1)},

where VolR(g(Γ)) denotes the volume of g(Γ) in S
n−1.

Consider a 2-dimensional cone 0××Γ in R
n. The total geodesic curvature of Γ is

less than or equal to the length of the radial projection of Γ onto the unit sphere,
and this length is equal to 2π times the density of 0××Γ at 0, as shown in [4] and
[3]. In view of this, we think of the Möbius volume or the volume in a sphere as
a kind of total curvature and in this way we can obtain a suitable estimate of the
density of a minimal submanifold.

In section 4, we will deal with minimal surfaces in H
2 × R. H

2 × R is a ho-
mogeneous 3-dimensional Riemannian manifold and is one of Thurston’s eight ge-
ometry. In 2002, Rosenberg [18] constructed infinitely many disk type minimal
surfaces in H

2 × R which are graphs over ideal polygons in H
2 by generalizing the

Jenkins-Serrin type theorem to H
2 × R. After that, many mathematicians have

been working on the theory of minimal surfaces in H
2 × R. In particular, they have

constructed many minimal surfaces in H
2 × R, such as the catenoid with the ver-

tical axis of revolution, ruled minimal surfaces, the Riemann type minimal surface
which is foliated by horizontal curves of constant curvature, and vertical minimal
graphs over an unbounded domain in H

2 which are not necessarily convex and not
necessarily bounded by convex arcs ([14], [8], [19]). Recently Pyo [15] constructed
complete annular minimal surfaces with finite total curvature.

The last theorem we will prove is as follows: A proper minimal surface in H
2 × R

which is vertically regular at infinity and has two ends is embedded.

We would like to mention that the problems of this paper were proposed by
Jaigyoung Choe.
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2. On minimal surfaces bounded by Γ5

Let k be a positive integer ≥ 2. A geodesic polygonal curve (we will just use
the term polygon in R

n) is a piecewise length-minimizing geodesic curve Γk with
k vertices v0(= vk), v1, · · · , vk−1 such that vi+1 6= vi for i = 0, · · · , k − 1. Denote
Γk by v0v1 · · · vk−1. In particular, if Γk is a closed geodesic polygonal curve, i.e.
vk = v0, then we will denote it as v0v1 · · · vk−1v0.

2.1. Total curvature of Γk in R
n. Let Γk be a closed polygon in R

n with k

vertices. Fenchel’s theorem [7] implies that the total curvature of Γ3 is equal to 2π.
If Γk is simple, i.e. it is a Jordan curve, then

TotalCurvature(Γk) < kπ.

Here, kπ is sharp if k is even integer. Consider a closed polygon Γ̃ = v0v1 · · · vk−1v0
where veven = v0 and vodd = v1 (Γ̃ is a line segment as a set). We can make it

a polygonal Jordan curve Γ arbitrary close to Γ̃ by moving vertices of Γ̃ slightly.
This implies that there is a polygonal Jordan curve Γ of the total curvature kπ− ǫ

for small ǫ > 0.
The main goal of this section is to find the sharp upper bound for the total

curvature of Γk, where k is an odd integer ≥ 5, in R
n.

In the following lemma, we will call a closed geodesic polygonal curve with 3
vertices a geodesic triangle.

Lemma 2.1. Let ∆ be a geodesic triangle p0p1p2p0 in S
n−1. Then

Length(∆) ≤ 2π.

The equality holds if and only if either {p0, p1, p2} contains antipodal points or
∆ = p0p1p2p0 is a great circle.

Proof. Suppose that {p0, p1, p2} contains antipodal points. We may assume that
p0 and p1 are antipodal. Then p1p2p0 is a geodesic of length π no matter where p2
lies in. Therefore

Length(∆) = Length(p0p1) + Length(p1p2p0) = 2π.

On the other hand, if any two points in {p0, p1, p2} are not antipodal, then each
geodesic segment of ∆ has the length < π. Observe that p0, p1, p2 lie in a hemi-
sphere. There are two possibilities, either p0, p1, p2 lie in an (n − 1)-dimensional
open hemisphere or completely in S

n−2. If p0, p1, p2 ∈ S
n−2, then either p0, p1, p2

lie in an (n− 2)-dimensional open hemisphere or in S
n−3 for the same reason men-

tioned above. Even in the worst case, in a finite step we can conclude that p0, p1, p2
lie in the same open hemisphere unless p0, p1, p2 are contained in a great circle S.

Suppose that p0, p1, p2 lie in the same k-dimensional open hemisphere. Let O
be the origin and O××∆ be the cone over ∆ with the vertex O in R

n. Note that
the length of pipi+1 is the same as the angle between line segments Opi and Opi+1,
i = 0, 1, 2. We can develop the tetrahedron O − p0p1p2 ⊂ R

n into a plane since
O − p0p1p2 is flat. But to make the tetrahedron O − p0p1p2 from a development
drawing described in a plane, the angle around O must be strictly less than 2π.
Therefore Length(∆) < 2π.

If p0, p1, p2 are contained in a great circle S, then it is easy to show that
Length(∆) ≤ Length(S) = 2π. Moreover, Length(∆) = Length(S) if and only
if ∆ = p0p1p2p0 is a great circle S itself. �

Proposition 2.2. Let p0 and p2 be points in S
n−1. Let Λ be a geodesic polygonal

curve p0p1p2 in S
n−1 which is made by adding one point p1. If Length(p0p2) = θ,

then
Length(Λ) ≤ 2π − θ.
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The equality holds if and only if either {p0, p1, p2} contains antipodal points or
p0p1p2p0 is a great circle.

Proof. Let ∆ be the geodesic triangle p0p1p2p0 in S
n−1. Then

Length(p0p1p2p0) = Length(Λ) + Length(p2p0).

The conclusion follows Lemma 2.1. �

Proposition 2.3. Let p0 and p3 be points in S
n−1. Let Λ be a geodesic polyg-

onal curve p0p1p2p3 in S
n−1 which is made by adding two points p1 and p2. If

Length(p0p3) = θ, then
Length(Λ) ≤ 2π + θ.

If we further assume that each geodesic segment of Λ has the length < π and
θ < π, then the equality holds if and only if p0p3p1p2p0 is a great circle and
Length(p2p0p3) < π.

If θ = π and the equality holds, then p1 = p3 is the antipodal point of p2 = p0.
In general (without assumption mentioned above), p0, p1, p2, p3 lie in the same

great circle if equality holds.

Proof. Let α be the length of p2p3 and β be the distance between p0 and p2. Then
we have

Length(Λ) = Length(p0p1p2) + Length(p2p3)

≤ (2π − β) + α(2.1)

≤ 2π + θ.

Here, (2.1) comes from Proposition 2.2. The second inequality holds because p2p3
is a length-minimizing geodesic.

Suppose that the equality holds. Then α = β + θ.
One of the following holds.

(i) If α = π, then p2 and p3 are antipodal;
(ii) If α < π, then Length(p2p3) = Length(p2p0p3) < π.

If we further assume that each geodesic segment of Λ has the length < π and θ < π,
then we have 0 < β < π. Because if β = π then θ = 0 and Length(p2p3) = α = π,
and if β = 0 then Length(p0p1) is equal to π from the equality condition of (2.1).
That is a contradiction. Thus there is the unique great circle S determined by p0
and p2. Since p1 ∈ S by (2.1), p0p1p2p0 = S. Together with (ii), this implies that
p0p3p1p2p0 = S and Length(p2p0p3) < π. The converse can be shown directly.

In the case θ = π, Length(Λ) = 3π. Therefore each geodesic segment of Λ has
the length π.

Lastly, we will prove that p0, p1, p2, p3 lie in the same great circle when the
equality holds. There is a trichotomy.

• If 0 < β < π, then we already know that there is the unique great circle S
determined by p0 and p2 and that p1 ∈ S. We only need to consider the
case (i). But in this case p3 is the antipodal point of p2.

• If β = π, then p0 = p3 and p2 is the antipodal point of p0.
• If β = 0, then p0 = p2 and p1 is the antipodal point of p0.

For all of these three cases, we can conclude that p0, p1, p2, p3 lie in the same great
circle. �

Before stating the general case, we are going to deal with Γ5 ⊂ R
n.

Theorem 2.4. Let Γ5 be a piecewise geodesic Jordan curve with 5 vertices in R
n.

Then
TotalCurvature(Γ5) < 4π.
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Proof. Let v0(= v5), v1, v2, v3, v4 be the vertices of Γ5 and let T be the tangent
indicatrix of Γ5, that is the spherical image of the unit tangent vectors to Γ5. Then
T is a closed geodesic polygonal curve (in general, not simple) in S

n−1 with 5
vertices pi, where pi is the unit vector parallel to vivi+1, for i = 0, 1, 2, 3, 4. It is
known that the length of pipi+1 in S

n−1 is the same as the turning angle around
vi+1 in R

n ([13]). Since Γ5 can not have a cuspidal point, the length of a geodesic
segment of T is strictly less than π and thus T is length-minimizing.

One can make a closed geodesic polygonal curve T in S
n−1 with 5 vertices as fol-

lows: For given two points p0 and p2 in S
n−1, T can be identified with p0p1p2p3p4p0

by adding three points p1, p3, p4.
Let the distance between p0 and p2 be θ. Joining Proposition 2.2 and Proposition

2.3, we have the following inequality:

TotalCurvature(Γ5) = Length(T )

= Length(p0p1p2) + Length(p0p4p3p2)

≤ (2π − θ) + (2π + θ) = 4π.

By a contradiction argument, we will prove that the inequality is strict. Suppose
that the equality holds. If θ = π, then p0 = p3, p2 = p4, and moreover p2 and
p3 are antipodal points from Proposition 2.3. It is a contradiction. Hence θ < π.
Then the equality condition implies that p0p1p2p0 and p0p2p4p3p0 are great circles,
respectively. Actually they coincide. Denote this great circle by S. Since p0p1p2p0
and p0p2p4p3p0 have an opposite direction, the tangent indicatrix T = p0p1p2p3p4p0
of Γ5 winds S twice. Therefore Γ5 is a planar curve and of rotation index 2. It
implies that Γ5 has self-intersection. But it is a contradiction. �

The next proposition is a bridge to the general theorem about the total curvature
for a piecewise geodesic Jordan curve Γk, where k is an odd integer ≥ 5. For a
convenience, write k = 2m+ 1 for m ≥ 2.

Proposition 2.5. I(m): Let Γ2m+1 be a closed geodesic polygonal curve in S
n−1

with 2m+ 1 vertices. Then

(2.2) Length(Γ2m+1) ≤ 2mπ.

If the equality holds, then every vertex of Γ2m+1 lies in the same great circle S.
Moreover if every geodesic segment of Γ2m+1 has the length < π, then Γ2m+1 winds
S m-times.

J(m): Let p0 and p2m be points in S
n−1. Let Λ2m+1 be a geodesic polygonal

curve p0p1 · · · p2m−1p2m which is made by adding 2m− 1 points p1, · · · , p2m−1. If
Length(p0p2m) = θ, then

Length(Λ2m+1) ≤ 2mπ − θ.

If the equality holds, then every vertex of Λ2m+1 lies in the same great circle S.
Moreover if θ < π and every geodesic segment of Λ2m+1 has the length < π, then
p0p1 · · · p2mp0 winds S m-times.

Proof. Use the mathematical induction in m ≥ 2 as follows:

• We already proved I(2) on the way to prove Theorem 2.4.
• If I(m) holds then so does J(m) for m ≥ 2.
• For a given two points p0 and p3 in S

n−1, a closed geodesic polygonal curve
Γ2m+3 is made by adding 2m+ 1 points as follows: Add two points p1, p2
and 2m − 1 points p4, · · · , p2m+2, respectively. And then identify Γ2m+3

with p0p1 · · · p2m+2p0. Joining J(m) and Proposition 2.3, we have I(m+1)
in the same manner as Theorem 2.4.

�
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Theorem 2.6. Let m be an integer ≥ 2. Let Γ2m+1 be a piecewise geodesic Jordan
curve with 2m+ 1 vertices in R

n. Then

(2.3) TotalCurvature(Γ2m+1) < 2mπ.

Proof. The tangent indicatrix T of Γ2m+1 is a closed geodesic polygonal curve in
S
n−1 with 2m+ 1 vertices. By (2.2), we have

TotalCurvature(Γ2m+1) = Length(T ) ≤ 2mπ.

Since Γ2m+1 is a Jordan curve, every geodesic segment of T has the length < π. If
the equality holds, then T is a great circle S as a set and winds itself m-times. It
is a contradiction. �

In (2.3), the upper bound 2mπ is sharp. Let Γ̃ = v0v1 · · · v2m−1v0 be a closed
polygon in R

n with 2m vertices, where veven = v0 and vodd = v1. Take new point

v2m, which is different from v0 and v2m−1, in a geodesic segment of Γ̃. We can

move vertices v0, · · · , v2m−1, v2m slightly to make Γ̃ a polygonal Jordan curve Γ

with 2m + 1 vertices. It is possible to construct such a Γ arbitrary close to Γ̃.
Therefore there is a polygonal Jordan curve Γ of the total curvature 2mπ − ǫ for
small ǫ > 0.

In particular, Γ5 ⊂ R
n has interesting properties as follows:

Corollary 2.7. Let Γ5 be a piecewise geodesic Jordan curve with 5 vertices in R
n.

Then any minimal surface Σ in R
n bounded by Γ5 is embedded. If Γ5 ⊂ R

3, then
it is an unknot.

Proof. See [4] for embeddedness, and see Fáry-Milnor theorem ([6], [13]) for un-
knottedness. (For reference, the latter one can be also obtained in a different way
using Theorem 4.8 in [13]). �

Corollary 2.7 leads us to the following problem in a very natural way.

Problem 2.8. Let Γ5 be a piecewise geodesic Jordan curve with 5 vertices in H
n

or S
n
+. If Σ is a minimal surface bounded by Γ5, is Σ embedded? Is Γ5 an unknot

in H
3 or S

3
+?

In the next section, we will give an answer to Problem 2.8.

2.2. On minimal surfaces bounded by Γ5 in H
n and S

n
+. Let N be an n-

dimensional Riemannian manifold. The injectivity radius i(N) of N is the largest
r such that the exponential map is an embedding on an open ball of radius r in
TpN for all p. Observe that i(Rn) = i(Hn) = ∞ and i(Sn) = π.

Definition 2.9. ([2]) Let N be an n-dimensional space form. Let Γ ⊂ N be a k-
dimensional rectifiable set in N and let p be a point in N such that dist(p, q) < i(N)
for all q ∈ Γ. Let J(ρ) be a radial function on N as follows: J(ρ) = sin ρ in S

n,
ρ in R

n and sinh ρ in H
n. The k-dimensional angle Ak(Γ, p) of Γ viewed from p is

defined by setting

Ak(Γ, p) =
Vol((p××Γ) ∩ Sρ(p))

J(ρ)k
,

where Sρ(p) is the geodesic sphere of radius ρ < dist(p,Γ) centered at p, and the
volume is measured counting multiplicity. Clearly the angle does not depend on ρ.

Note that

(2.4) Ak(Γ, p) = (k + 1)ωk+1Θp××Γ(p).

Before stating the theorem, we will sketch models of S
n in a similar way to

Section 3. Note that S
n is isometrically immersed onto the unit sphere S1, x

2
0 +
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x21+· · ·+x2n = 1 in R
n+1 endowed with the usual metric, ds2 = dx20+dx21+· · ·+dx2n.

Let ρ be the distance in S
n measured from the south pole, (−1, 0, · · · , 0). Then

|x| =
√
x21 + · · ·+ x2n = sin ρ and d|x| = cos ρ ·dρ. We can consider Sn as Rn∪{∞}

via the stereographic projection Φ : S1 ⊂ R
n+1 → R

n ∪ {∞} of S1 onto R
n ∪ {∞}

which is given by

Φ (x0, x1, · · · , xn) = (u1, · · · , un) where ui =
xi

1− x0
, i = 1, · · · , n.

Since Φ is 1-1 and onto, there is the inverse Φ−1 : R
n ∪ {∞} → S1 such that

(u1, · · · , un) 7→ (x0, x1, · · · , xn) where x0 = r2−1
r2+1 , xi =

2ui

1+r2 , i = 1, · · · , n. Then

Φ−1 induces on R
n ∪ {∞} the metric ds2B =

4ds2
R

(1+r2)2 where ds2
R
= du21 + · · · + du2n

is the Euclidean metric and r2 = u21 + · · ·+ u2n. Note that

sin ρ =
2r

1 + r2
, ρ = arcsin

2r

1 + r2
and r = cot

1

2
ρ.

To estimate the density, we need the following proposition.

Proposition 2.10. ([3]) (Density comparison)
(1) Let Γ be a (piecewise) C2 immersed closed curve in S

n
+. p ∈ S

n
+ such that

dist(p,Γ) ≤ π
2 . Let Σ be a branched minimal surface in S

n
+ with boundary Γ. Then

(2.5) ΘΣ(p) < Θp××Γ(p),

unless Σ is a totally geodesic.
(2) Let Γ be a (piecewise) C2 immersed closed curve in H

n. Let Σ be a branched
minimal surface in H

n with boundary Γ in H
n. Then

ΘΣ(p) < Θp××Γ(p),

unless Σ is a totally geodesic.

Proof. See [3]. The original proof in [3] only deals with a regular C2 curve Γ.
However the density comparison (which is shown by using monotonicity) at the
vertex of Γ can be obtained in the same manner even though Γ is a piecewise C2

curve. �

The original version of the second part of Proposition 2.10 is more powerful. It
is proved for Σ which is a branched minimal surface in an n-dimensional simply
connected Riemannian manifold with sectional curvature ≤ −κ2.

The following is the main theorem of Section 2.

Theorem 2.11. Let Γ5 be a piecewise geodesic Jordan curve with 5 vertices in a
geodesic ball Br ⊂ S

n
+ of radius r < π

4 . Then any minimal surface Σ ⊂ Br bounded
by Γ5 is embedded.

Proof. Let p ∈ Σ ⊂ Br ⊂ S
n
+. Since Br is convex, p ∈ Conv(Γ5) where Conv(Γ5)

is the convex hull of Γ5. Thus dist(p,Γ5) <
π
2 . We may assume that p is identified

with the origin in R
n ∪ {∞} via the stereographic projection. Joining (2.5) with

(2.4) we get

(k + 1)ωk+1ΘΣ(p) ≤ Ak(Γ, p).
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Therefore

ΘΣ(p) ≤ LengthS((p××Γ5) ∩ Sρ(p))
2π sin ρ

=
1

2π

∫

(p××Γ5)∩Sρ(p)

1

sin ρ
dσS

=
1

2π

∫

Φ(p××Γ5)∩Sρ∗(0)

1

r
·
(
1 + r2

2

)
dσS

=
1

2π

∫

Φ(p××Γ5)∩Sρ∗(0)

1

r
dσR

=
1

2π
LengthR(Φ(p××Γ5) ∩ S1(0)),

where ρ∗ = cot 1
2ρ.

There are three cases. (From now on, we will consider Sn+ as a subset of Rn∪{∞}
through the stereographic projection Φ. For a convenience, we will omit Φ if it is
not ambiguous.)

Case I. p ∈ Σ \ Γ5.
Observe that (p××Γ5) ∩ S1(0) is a piecewise length-minimizing geodesic closed

curve with 5 vertices in the unit sphere in R
n. Therefore Proposition 2.5 implies

Length
R
((p××Γ5) ∩ S1(0)) ≤ 4π. Now we claim that the equality can not occur. If

the equality holds, then all of the vertices of (p××Γ5) ∩ S1(0) lie in the same great
circle S. This implies that all of the vertices of Φ(Γ5) are in the plane P containing
the origin and S. Since each geodesic segment (this is not a line segment, in general)
of Φ(Γ5) minimizes length, Γ5 ⊂ P and thus (p××Γ5)∩S1(0) ⊂ P also. This implies
that (p××Γ5) ∩ S1(0) is a geodesic circle S as a set and winds S twice. But it is a
contradiction since Φ(Γ5) is a Jordan curve. Therefore we have

ΘΣ(p) < 2.

Case II. p ∈ Γ5 \ {vertices}.
TpΓ5 intersects S1(0) at two points a, b which are antipodal. And thus (p××Γ5)∩

S1(0) is a piecewise length-minimizing geodesic curve with 5 vertices and a, b are end
points of (p××Γ5)∩S1(0). Proposition 2.5 implies that Length

R
((p××Γ5)∩ S1(0)) ≤

3π. In the same manner to the first case, we can show that the equality can not
occur. Therefore we have

ΘΣ(p) <
3

2
.

Case III. p is a vertex of Γ5.
Let θ be an exterior angle of Γ5 at p. Then Proposition 2.3 implies that

LengthR((p××Γ5) ∩ S1(0)) ≤ 2π + (π − θ) = 3π − θ. In a similar way to the
first two cases, we have

ΘΣ(p) <
3

2
− θ

2π
.

These three density estimates complete the proof. �

We can also prove the following in H
n.

Theorem 2.12. Let Γ5 be a piecewise geodesic Jordan curve with 5 vertices in H
n.

Then any minimal surface Σ bounded by Γ5 is embedded.

Proof. The proof is similar to Theorem 2.11. �

Corollary 2.13. There does not exist a star-shaped knotted piecewise geodesic Jor-
dan curve in H

3 or in a geodesic ball of radius < π
4 ⊂ S

3
+ which consists of 5 geodesic

segments (See Figure 1 in Introduction).
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Proof. Note that a minimal disk in a 3-dimensional manifold bounded by a knotted
Jordan curve always has not only self-intersections but also a branch point. It is a
direct consequence of Theorem 2.12 and Theorem 2.11. �

In Corollary 2.13, n = 5 is the critical number for a piecewise geodesic Jordan
curve Γn with n vertices to be unknotted. It is not difficult to find a knotted
piecewise geodesic Jordan curve Γ6 with 6 vertices (Figure 2).

Figure 2. Five is critical! Existence of a knotted piecewise geo-
desic Jordan curve Γ6 with 6 vertices.

3. Embeddedness of proper minimal submanifolds in H
n

Let us sketch two models of hyperbolic space H
n. First, H

n is isometrically
immersed onto the hyperboloid H, −x20 + x21 + · · · + x2n = −1, x0 > 0, in R

n+1

endowed with the Minkowski metric, ds2
L

= −dx20 + dx21 + · · · + dx2n, which is
denoted by L

n+1. Let ρ be the distance in H
n measured from (1, 0, · · · , 0). Then

|x| =
√
x21 + · · ·+ x2n = sinh ρ and d|x| = cosh ρ · dρ. Second, one can consider Hn

as the unit ball Bn = {(u1, · · · , un)|u21 + · · · + u2n < 1} ⊂ R
n. Define a mapping

Ψ : H ⊂ L
n+1 → Bn ⊂ R

n by

Ψ (x0, x1, · · · , xn) = (u1, · · · , un) where ui =
xi

1 + x0
, i = 1, · · · , n.

Actually Ψ is known as the stereographic projection of H onto the unit ball in
the hyperplane {x0 = 0}. Since Ψ is 1-1 and onto, there is the inverse Ψ−1 :

Bn → H such that (u1, · · · , un) 7→ (x0, x1, · · · , xn) where x0 = 1+r2

1−r2 , xi =
2ui

1−r2 ,

i = 1, · · · , n. Then Ψ−1 induces on Bn the metric ds2B =
4ds2

R

(1−r2)2 where ds2
R
=

du21 + · · ·+ du2n is the Euclidean metric and r2 = u21 + · · ·+ u2n. Such a ball Bn is
called the Poincaré ball, one of the models of Hn. Note that

sinh ρ =
2r

1− r2
, ρ = log

1 + r

1− r
and r = tanh

1

2
ρ.

If we employ the Poincaré ball, then the ideal boundary ∂∞Σ of Σ ⊂ H
n is

defined to be the set of all accumulation points of Σ in S
n−1. Here ∂∞H

n, the ideal
boundary of Hn, is identified with S

n−1.

Definition 3.1. Let Γ be an (m−1)-dimensional submanifold in an n-dimensional
Riemannian manifold M and let p be a point of M . The m-dimensional cone over
Γ with the vertex p is defined as the union of the geodesic segment from p to q, over
all q ∈ Γ and is denoted by p××Γ.
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From now on, VolR(Γ) denotes the volume of Γ in S
n−1 ⊂ R

n. In particular
VolR(S

m−1) = mωm, where ωm is the volume of the m-dimensional unit ball in
R
m.

Proposition 3.2. (Density estimation) Let Γ be an (m− 1)-dimensional compact
submanifold of Sn−1. Let Σ be an m-dimensional proper minimal submanifold in
H
n with ∂∞Σ = Γ ⊂ S

n−1 = ∂∞H
n and let q be a point of Σ. Let ψ be an isometry

of Hn such that ψ(q) = (1, 0, · · · , 0) ∈ H in the hyperboloid model of Hn. Then

(3.1) mωmΘΣ(q) ≤ VolR(Γ̃),

where Γ̃ denotes the ideal boundary of ψ(Σ). If the equality holds, then Σ = q××Γ.

The properness of Σ in Proposition 3.2 can be replaced by the hypothesis that
Σ = Σ ∪ Γ.

Proof. Let G(x) be Green’s function of Hm, whose derivative is sinh1−m x for 0 <
x < ∞, where x is the distance from a fixed point in H

m. Choe and Gulliver [2]
proved that if Σ is an m-dimensional minimal submanifold of Hn and q ∈ Σ then
G ◦ ρ is subharmonic on Σ \ {q} and is harmonic except q if Σ is a cone with the
vertex q. That is,

△ΣG(ρ) = m
cosh ρ

sinhm ρ

(
1− |∇Σρ|2

)
≥ 0,

where ρ(·) is the distance from q in H
n.

Let Br(q) denote the geodesic ball in H
n of radius r centered at q. Integrate

△ΣG(ρ) over Σ ∩ BR(q) \ Bǫ(q) for small ǫ > 0 and large R and then apply the
divergence theorem. Since ∂(Σ ∩BR(q) \Bǫ(q)) = (Σ ∩ ∂Bǫ(q))∪ (Σ ∩ ∂BR(q)), it
implies

0 ≤
∫

Σ∩BR(q)\Bǫ(q)

△ΣG(ρ) =

∫

Σ∩∂Bǫ(q)

∇ΣG(ρ) · ν +
∫

Σ∩∂BR(q)

∇ΣG(ρ) · ν,

where ν is the outward unit conormal vector to Σ.
Recall that ∇ΣG(ρ) = sinh1−m ρ · ∇Σρ. Hence

(3.2) −
∫

Σ∩∂Bǫ(q)

1

sinhm−1 ρ

∂ρ

∂ν
≤
∫

Σ∩∂BR(q)

1

sinhm−1 ρ

∂ρ

∂ν
.

Along Σ ∩ ∂Bǫ(q) ∂ρ
∂ν

→ −1 uniformly and

Vol(Σ ∩ ∂Bǫ(q))
sinhm−1 ǫ

→ mωmΘΣ(q) as ǫ→ 0.

It follows that

lim
ǫ→0

∫

Σ∩∂Bǫ(q)

1

sinhm−1 ρ

∂ρ

∂ν
= −mωmΘΣ(q).

Then (3.2) yields

(3.3) mωmΘΣ(q) ≤
∫

Σ∩∂BR(q)

1

sinhm−1 ρ

∂ρ

∂ν
.

Let us write dσH as the hyperbolic volume form of Σ∩∂BR(q) in the hyperboloid

and Poincaré ball model in common. Since | ∂ρ
∂ν

| ≤ 1,
∫

Σ∩∂BR(q)

1

sinhm−1 ρ

∂ρ

∂ν
≤
∫

Σ∩∂BR(q)

1

sinhm−1 ρ
.
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On the other hand, we can obtain some interesting equalities as follows

∫

Σ∩∂BR(q)

1

sinhm−1 ρ
dσH =

∫

ψ(Σ)∩∂BR(ψ(q))

(
1√
x20 − 1

)m−1

dσH(3.4)

=

∫

ψ(Σ)∩∂B̃R∗ (0)

1

rm−1

(
1− r2

2

)m−1

dσH

=

∫

ψ(Σ)∩∂B̃R∗ (0)

1

rm−1
dσR,

where R∗ = tanh 1
2R, B̃R∗(0) is a geodesic ball in Bn ⊂ R

n centered at the origin

and dσR is the volume form of ψ(Σ) ∩ ∂B̃R∗(0) in R
n. The last equality holds

because ds2
H
is conformal to ds2

R
.

Note that the last integral equals just Vol(ψ(Σ) ∩ ∂B̃R∗(0)) divided by R∗m−1.

In fact it is the volume of the radial projection of ψ(Σ)∩∂B̃R∗(0) in R
n onto S

n−1.
And it converges to VolR(∂∞ψ(Σ)) as R∗ → 1, that is, as R → ∞. Hence from
(3.3) and (3.4) we have (3.1).

If equality holds, then △ΣG(ρ) vanishes on the whole Σ with respect to the fixed
point q ∈ Σ. It implies that |∇Σρ| ≡ 1 on Σ. Let s ∈ Σ and let γ be a geodesic such
that γ(0) = q and γ(1) = s. Then γ′(1) ∈ TsΣ for all s ∈ Σ because ∇Σρ ∈ TsΣ.
It then follows that Σ is a cone with the vertex q. �

Definition 3.3. Let Γ be an (m − 1)-dimensional compact submanifold of Sn−1.
Let Möb(Sn−1) be the group of all Möbius transformations of Sn−1. The Möbius
volume of Γ is defined to be

Ṽol(Γ) = sup{VolR(g ◦ Γ) | g ∈ Möb(Sn−1)}.
Remark. According to the definition of Li and Yau [11], the Möbius volume of Γ is
the same as the (n− 1)-conformal volume of the inclusion of Γ into S

n−1.

Proposition 3.4. Let Γ be an (m− 1)-dimensional compact submanifold of Sn−1.

Then Ṽol(Γ) ≥ mωm. And equality holds if Γ is an (m− 1)-dimensional sphere. In

particular, if Γ is a closed curve in S
2, then Ṽol(Γ) = 2π if and only if Γ is a circle.

Proof. Let p be a point of Γ. There is ϕǫ ∈ Möb(Sn−1) fixing p and corresponding
to the homothety ϕ̃ǫ in R

n−1 which is defined as ϕ̃ǫ(x) :=
x
ǫ
. Then ϕǫ(Γ) converges

to an (m− 1)-dimensional great sphere as ǫ goes to 0. Therefore Ṽol(Γ) ≥ mωm.
Let Γ be an (m − 1)-dimensional sphere. Since the Möbius transformation of

S
n−1 maps the spheres to the spheres, obviously we have Ṽol(Γ) = mωm.

Let Γ be a closed curve in S
2. We only need to prove that if Ṽol(Γ) = 2π then Γ

is a circle. If Γ has a self-intersection then we can take a closed embedded subarc
γ from Γ and clearly Ṽol(γ) ≤ Ṽol(Γ). Thus it is enough to consider an embedded
Γ of length ≤ 2π. Then Γ lies in a closed hemisphere by Horn’s theorem [9].

Suppose Γ is not a circle. Let D1, D2 ⊂ S
2 be the domains bounded by Γ. Then

there is a largest circle Si in Closure(Di), i = 1, 2, such that Γ ∩ Si consists of at
least two points. Choose ϕ ∈ Möb(S2) in such a way that ϕ(S1) and ϕ(S2) become
two parallels of equal latitude in northern and southern hemisphere, respectively.
Let A ⊂ S

2 be the annulus between ϕ(S1) and ϕ(S2).
Now we claim that no closed hemisphere in S

2 can contain ϕ(Γ). Suppose, on the
contrary, that ϕ(Γ) lies in a closed hemisphere U . Since ϕ(Γ) is not null-homotopic
in A, U ∩ A cannot be simply connected, and so ∂U lies in A and is not null-
homotopic in A. Moreover, assuming that ϕ(S1) ⊂ U , we have ∂U ∩ ϕ(S2) 6= ∅
since Γ∩Si 6= ∅ for i = 1, 2. However, we should note that ∂U intersects ϕ(Si) only
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at one point, for i = 1, 2. But this contradicts the hypothesis that Γ ∩ Si consists
of at least two points.

Therefore no closed hemisphere in S
2 can contain ϕ(Γ) and hence it follows from

[9] that Vol(ϕ(Γ)) > 2π. This is a contradiction to our hypothesis Ṽol(Γ) = 2π,
and thus we can conclude that Γ is a circle. �

The following is a non-trivial example of a Jordan curve having Ṽol(Γ) < 4π.

Example 3.5. Let S and S⊥ be great circles in S
2 and let p1 and p2 be the

intersection points of S and S⊥. We can choose four points pij different from p1
and p2 as follows: pij ∈ S, dist(pi, pij) = ǫ < π

2 and p1j and p2j are antipodal

for i, j = 1, 2. Then we have new piecewise smooth Jordan curve Γ from S ∪ S⊥

removing length-minimizing geodesic segments connecting pi1 and pi2 and adding
semi-circles Sj of length π with the end points p1j and p2j which intersects S at a
right angle for i, j = 1, 2

Let ϕ be any Möbius transformation of S2. Then S and Sj remain still part
of circles under ϕ and intersection angle between ϕ(S) and ϕ(Sj) is π

2 from the
conformality , j = 1, 2. It is not difficult to show that

Length(ϕ(S1)) + Length(ϕ(S2)) ≤ 2π

and thus Length(ϕ(Γ)) < 4π. It follows that Ṽol(Γ) < 4π.

Theorem 3.6. Let Γ be an (m − 1)-dimensional compact submanifold of S
n−1.

Let Σ be an m-dimensional proper minimal submanifold in H
n with ∂∞Σ = Γ. If

Ṽol(Γ) < 2mωm, then Σ is embedded. If Ṽol(Γ) = 2mωm, then Σ is embedded
unless it is a cone.

Proof. Let p be a point on Σ in H
n. In accordance with Proposition 3.2

(3.5) mωmΘΣ(p) ≤ VolR(Γ̃).

Let Isom(Hn) be the group of all isometries of Hn. Let Möb(Bn) be the group of
all Möbius transformations of Bn. Then (Chapter 4 in [17]),

Isom(Hn) ≃ Möb(Bn) ≃ Möb(Sn−1).

Given ψ ∈ Isom(Hn), we may consider it as in Möb(Sn−1). Then it follows that

(3.6) VolR(Γ̃) ≤ Ṽol(Γ) < 2mωm.

Therefore combining (3.5) and (3.6), we have

ΘΣ(p) < 2,

and hence Σ is embedded.
If Ṽol(Γ) = 2mωm, then ΘΣ(p) ≤ 2 for every p ∈ Σ. Let q ∈ Σ be a point of

density 2. Since equality holds in (3.1), then it is a cone with the vertex q. This
completes the proof. �

4. Embeddedness of proper minimal surfaces in H
2 × R

Proposition 4.1. Let Σ be a complete minimal surface in H
2 × R and p ∈ Σ. Let

ρ be the distance from p in H
2 × R. Then

△Σ log ρ ≥ 0

on Σ \ {p}.
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Before proving Proposition 4.1, we will determine the Jacobi fields along a unit
speed geodesic in H

2 × R. In this section we use the Poincaré disk model of H2,

H
2 = {(u1, u2) ∈ R

2|r2 = u21 + u22 < 1}.
As the product space, H

2 × R has the coordinates (u1, u2, z) endowed with the
metric

ds̃2 =
4(du21 + du22)

(1− r2)2
+ dz2,

where (u1, u2) ∈ H
2 and z ∈ R. Let p be a point in H

2 × R and γ be a unit speed
geodesic in H

2 × R emanating from p with γ(0) = p and γ′(0) = v ∈ TpH
2 × R.

Since H2 × R is a homogeneous space, there exists the isometry ϕ of H2 × R so that
ϕ(p) = 0 and dϕ(v) = (c, 0,

√
1− 4c2) =: w for some c ∈ [0, 12 ]. For convenience

denote by γ the geodesic ϕ ◦ γ, i.e. γ(0) = 0 and γ′(0) = w.
To find the geodesic γ explicitly, recall the geodesic equation as follows:

(4.1) γ′′k (t) +
3∑

i,j=1

Γkijγ
′
i(t)γ

′
j(t) = 0, k = 1, 2, 3.

Since the Christoffel symbols of the Riemannian connection is given by

Γkij =
3∑

l=1

1

2
gkl(gil,j + gjl,i − gij,l), i, j, k ∈ {1, 2, 3},

we have

(4.2)





Γ1
11 = Γ2

21 = Γ2
12 = −Γ1

22 = 2u1

1−r2 ,
Γ2
22 = Γ1

12 = Γ1
21 = −Γ2

11 = 2u2

1−r2 ,
Γkij = 0 if 3 ∈ {i, j, k}.

It is a well known fact that the canonical projections of a geodesic in the product
Riemannian manifold are also geodesics. In particular, a projection of γ onto the
horizontal totally geodesic plane in H

2 × R is also a geodesic. Therefore γ2(t) = 0
because the only geodesics emanating from the origin in H

2 are the rays. Putting
(4.2) in (4.1), we get

{
γ′′1 (t) + Γ1

11(γ
′
1(t))

2 = 0,
γ′′3 (t) = 0.

With the given initial conditions, one may obtain as follows:

γ(t) =
(
tanh ct, 0,

√
1− 4c2t

)
.

Lemma 4.2. The Jacobi field along γ with the initial condition J(0) = (0, 0, 0)
and J ′(0) = ω(0) in H

2 × R is given by

(4.3) J(t) =

(
tω1(t),

sinh 2ct

2c
ω2(t), tω3(t)

)
,

where ω(t) = (ω1(t), ω2(t), ω3(t)) is a parallel vector field along γ with γ′(t)·ω(t) = 0
and |ω(t)| = 1.

Proof. We derive the Riemannian curvature tensor of H2 × R using that of H2 as
follows:

Rlijk =

{ (
2

1−r2
)2

(−δikδjl + δjkδil) , i, j, k, l = 1, 2,

0, otherwise.
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Since γ2(t) = 0, the Jacobi equation

Jl
′′(t) +

3∑

i,j,k=1

Rlijkγi
′(t)γk

′(t)Jj(t) = 0, l = 1, 2, 3,

becomes 



J1
′′(t) = 0,

J2
′′(t) +R2

121 · (γ1′(t))2J2(t) = 0,
J3

′′(t) = 0.

Along the geodesic γ, R2
121 · (γ1′(t))2 = −

(
2

1−r2
)2

·
(
c(1 − x2)

)2
= −4c2. Solving

the equation 



J1
′′(t) = 0,

J2
′′(t)− 4c2J2(t) = 0,

J3
′′(t) = 0

with the given initial conditions J(0) = (0, 0, 0) and J ′(0) = ω(0), we can obtain
(4.3). �

Lemma 4.3. ([2], Lemma 2) Let f be a smooth function on an n-dimensional
Riemannian manifold M and Σ an m-dimensional submanifold of M . Let ∇ and
△ be the connection and Laplacian on M respectively, and △Σ the Laplacian on Σ.
If H is the mean curvature vector of Σ in M , then

(4.4) △Σf = (△f)|Σ+Hf −
n∑

α=m+1

∇2
f(eα, eα),

where Hf is the directional derivative of f in the direction of the mean curvature
vector H and em+1, · · · , en are orthonormal vectors which are perpendicular to Σ.

Proof of Proposition 4.1. Let γ be a unit speed geodesic emanating from 0
and Sρ(0) be a geodesic sphere of radius ρ centered at 0 in H

2 × R. It is convenient
to use the exponential coordinates (ρ, φ, θ), where φ is the angle between γ′(0) and
the z-axis in T0H

2 × R and θ is the angle around the z-axis. Note that cosφ =√
1− 4c2 and hence 2c = sinφ. In terms of φ one can rewrite γ(t) and J(t).
There are globally defined coordinate vector fields corresponding to these co-

ordinates. Now define new vector fields {V1, V2, V3} to be parallel to the above-
mentioned coordinate vector fields on a neighborhood of q = γ(ρ) ∈ Sρ(0) such
that

V1(q) = γ′(ρ) =
∂

∂ρ
, Vi · Vj = 0

and

|V1| = 1, |V2| = ρ, |V3| =
sinh(ρ sinφ)

sinφ
.

By Lemma 4.3 and the minimality of Σ, (4.4) yields

(4.5) △Σ log ρ = △ log ρ−∇2
log ρ(n, n) = tr∇2

log ρ−∇2
log ρ(n, n),

where n is the unit normal vector field of Σ in H
2 × R.

Let {hij} and {Γ̃kij} be the metric and Christoffel symbols corresponding to the

vector fields {Vi}. If F is a smooth function on H
2 × R, then the Hessian of F

satisfies

(4.6) ∇2
F (Vi, Vj) =

3∑

k=1

1√
hii
√
hjj

(Fij − Γ̃kijFk).
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Rewrite the metric {hij} by the matrix form,

(hij) =




1 0 0
0 ρ2 0

0 0 sinh2(ρ sinφ)
sin2 φ


 .

In case that F = log ρ, two out of the three directional derivatives vanish. Substi-
tuting {hij} into (4.6), we get

∇2
log ρ(Vi, Vj) =





1
h11

(
(log ρ)11 − Γ̃1

11(log ρ)1

)
, i = j = 1,

1√
hii

√
hjj

(
−Γ̃1

ij(log ρ)1

)
, otherwise.

Hence it is enough to compute the terms {Γ̃1
ij}. If i 6= j then Γ̃1

ij = 0. The only
non-zero terms are{

Γ̃1
22 = − 1

2h22,1 = −ρ,
Γ̃1
33 = − 1

3h33,1 = − sinh(ρ sinφ) cosh(ρ sinφ)
sinφ .

Therefore

∇2
log ρ(V1, V1) = 1

h11

(
(log ρ)11 − Γ̃1

11(log ρ)1

)
= − 1

ρ2
,

∇2
log ρ(V2, V2) = − 1

h22

Γ̃1
22(log ρ)1 = 1

ρ2
,

∇2
log ρ(V3, V3) = − 1

h33

Γ̃1
33(log ρ)1 = 1

ρ
sinφ coth(ρ sinφ).

In conclusion, the Hessian of log ρ in H
2 × R is obtained

(4.7) ∇2
log ρ =

1

ρ2
·




−1 0 0
0 1 0
0 0 ρ sinφ coth(ρ sinφ)


 .

Putting n = (n1, n2, n3) and applying (4.5) together with (4.7),

ρ2△Σ log ρ = ρ2 ·
(
tr∇2

log ρ−∇2
log ρ(n, n)

)

= (1− n2
3)ρ sinφ coth(ρ sinφ)− (n2

2 − n2
1).

Now we claim ρ sinφ coth(ρ sinφ) ≥ 1 . If we define f(s) = s coth s, 0 ≤ s ≤ ρ then
f ′(s) = coth s − s

sinh2 s
= 1

sinh2 s
(sinh s · cosh s − s). Since d

ds (sinh s · cosh s − s) =
cosh 2s− 1 ≥ 0 and lims→0(sinh s · cosh s− s) = 0, f is a monotonically increasing

function. Since lims→0 f(s) = lims→0 s · e
s+e−s

es−e−s = 1, one can conclude f(s) ≥ 1.
Hence

ρ2△Σ log ρ ≥ 1 + n2
1 − (n2

2 + n2
3) ≥ 1 + n2

1 − |n|2 = n2
1 ≥ 0. �

Remark 4.4. If the equality holds in Proposition 4.1 at a point q ∈ Σ then either
n = (0, 0, 1) or both n1 and sinφ at q vanish. In particular, if Σ is a totally
geodesic vertical plane containing p and q, then n = (0, 0, 1) at any q ∈ Σ and thus
△Σ log ρ ≡ 0 on Σ, and vice versa. Note that sinφ vanishes at q if and only if q lies
in the vertical geodesic through p in H

2 × R.

Definition 4.5. Let Π0 be a totally geodesic vertical plane in H
2 × R such that

Π0 = {(u1, u2, z) ∈ H
2 × R|u2 = 0}. A surface Σ in H

2 × R is a horizontal graph of
a function f over Π if

Σ =
{
(u1, u2, z) ∈ H

2 × R|ϕ2 = f
(
ϕ1, ϕ3

)}
,

where ϕ = (ϕ1, ϕ2, ϕ3) is an isometry in H
2 × R such that ϕ(Π) = Π0.

Definition 4.6. Let Σ be a complete minimal surface in H
2 × R. Σ is said to be

vertically regular at infinity in H
2 × R if there is a compact subset K ⊂ H

2 × R

such that
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1) Σ ∼ K consists of k components Σ1, · · · ,Σk;
2) each Σi is the horizontal graph of a function fi over the exterior of a

bounded region in some totally geodesic vertical plane Πi ≃ H× R;
3) each fi has the following asymptotic behavior for r large and α > 0:

fi → 0, ∂xi
fi = O

(
1

rα

)
→ 0 and ∂zifi = O

(
1

sinh1+α r

)
→ 0,

as r → ∞, where xi, zi are the coordinates on Πi ≃ H × R and r is the
distance from (0, 0) ∈ Πi.

We call these Σi the ends of Σ.

Remark 4.7. Schoen [20] defines the following. A complete minimal surface Σ ⊂
R

3 is said to be regular at infinity if there is a compact subset K ⊂ Σ such that
Σ ∼ K consists of r components Σ1, · · · ,Σr such that each Σi is the graph of
a function fi with bounded slope over the exterior of a bounded region in some
plane Πi. Moreover, if x1 and x2 are coordinates in Πi, we require the fi have the
following asymptotic behavior for r = |x| large:

fi(x) = a log r + b +
c1x1

r2
+
c2x2

r2
+O(r−2)

for constants a, b, c1, c2 depending on i.
As the distance r from the origin, (0, 0) ∈ Πi, goes to infinity, fi is dominated

by log r. It comes from the profile curve of an end of a catenoid in R
3. Note that

log r → ∞ as r → ∞, so Σ goes apart from any plane parallel to Πi. However,
since log r

r
→ 0 as r → ∞, Σ tends to approach a plane. In other words the radial

projection onto S
2 of the intersection of Σ and a geodesic sphere of radius ρ con-

verges uniformly as ρ→ ∞ to an equator, with multiplicities, of S2.

But in H
2 × R we have a different situation as follows:

H
2 × R is not isotropic and homotheties are not isometries. So the be-

haviors of the components of a minimal surface outside a compact set in
H

2 × R are different depending on whether they are vertical, horizontal, or
mixed. In this section we deal with only the vertical cases.

The following theorem is the main result of Section 4.

Theorem 4.8. Let Σ be a proper minimal surface in H
2 × R. If Σ is vertically

regular at infinity in H
2 × R and has two ends, then Σ is embedded.

Proof. Let p be a point in Σ and ρ(·) = dist(p, ·) in H
2 × R. Since Σ is proper

in H
2 × R, though p is not in K, we can find new compact subset K̃ ⊂ H

2 × R

satisfying all conditions in Definition 4.6. For convenience, denote K̃ by K, i.e.
without loss of generality we may assume that p ∈ K. SinceH2 × R is homogeneous,
we may also assume that p = (0, 0, 0) ∈ H

2 × R.
By definition, each Σi is the horizontal graph of the function fi over the exterior

of a bounded region in Πi. Let xi, zi be the coordinates on Πi ≃ H × R and let
pi = (0, 0) with respect to this coordinates. Then we can assume that pi ∈ H

2×{0}.
Let ϕi be the isometry in H

2 × R such that ϕi(Πi) = Π0, ϕi(pi) = p ∈ H
2 × R and

ϕi preserves R-axis. Let Sr(pi) be the geodesic circle of radius r centered at pi on
Πi. Define Chr (pi) to be

Chr (pi) := ϕ−1
i ({(u1, u2, z) ∈ H

2 × R|(u1, 0, z) ∈ ϕi(Sr(pi)), u2 ∈ [−h, h]}).
Put Kh

r = K ∪ Chr (p1) ∪ Chr (p2). The fact that fi → 0 as r → ∞ implies that for
sufficiently large r there is h > 0, which does not depend on r, such that Σ ∼ Kh

r

consists of only two connected components of Σ. If necessary, we can enlarge K
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since Σ is proper. Furthermore we consider Σ ∩ ∂Chr (pi) as a horizontal graph over
Sr(pi).

Integrating △Σ log ρ in Σ ∩ Kh
r ∼ Bǫ(p) and applying the divergence theorem

gives
∫

Σ∩Kh
r ∼Bǫ(p)

△Σ log ρ =

∫

Σ∩∂Ch
r (p1)

1

ρ

∂ρ

∂ν
+

∫

Σ∩∂Ch
r (p2)

1

ρ

∂ρ

∂ν
+

∫

Σ∩∂Bǫ(p)

1

ρ

∂ρ

∂ν
,

where ν is the outward unit conormal vector to Σ ∩Kh
r ∼ Bǫ(p).

Near p, sinh ρ→ ρ uniformly and Σ is close to TpΣ. Hence

Vol(Σ ∩ ∂Bǫ(p)) → 2πǫΘΣ(p)

and ∂ρ
∂ν

→ −1 uniformly as ǫ→ 0. So

2πΘΣ(p) ≤ −
∫

Σ∩∂Bǫ(p)

1

ρ

∂ρ

∂ν
.

Therefore

(4.8) 2πΘΣ(p) ≤
∫

Σ∩∂Ch
r (p1)

1

ρ

∂ρ

∂ν
+

∫

Σ∩∂Ch
r (p2)

1

ρ

∂ρ

∂ν
−
∫

Σ∩Kh
r ∼Bǫ(p)

△Σ log ρ.

Since dist(pi, q) ≤ dist(p, q) for q ∈ Σi sufficiently far from p, we have, r ≤ ρ and
hence ∫

Σ∩∂Ch
r (pi)

1

ρ

∂ρ

∂ν
≤

∫

Σ∩∂Ch
r (pi)

1

ρ

≤
∫

Σ∩∂Ch
r (pi)

1

r
=

1

r
Length(Σ ∩ ∂Chr (pi)).

Parameterize Σ ∩ ∂Chr (pi) by t, 0 ≤ t ≤ 2π, as follows:

(x(t), fi(x(t), z(t)), z(t)) =

(
tanh

1

2
r cos t, fi(x(t), z(t)), r sin t

)
,

where xi(t) and zi(t) is denoted by x(t) and z(t), respectively, for convenience.
Then we can compute directly

1

r
Length(Σ ∩ ∂Chr (pi))

=
1

r

∫ 2π

0

√√√√x′(t)2 + (∂xfi · x′(t) + ∂zfi · z′(t))2(
1−x∗2

2

)2 + z′(t)2

=

∫ 2π

0

√√√√
(

1−x2

2 · sin t
1−x∗2

2

)2

+

(
1−x2

2 · ∂xfi · (− sin t) + ∂zfi · cos t
1−x∗2

2

)2

+ cos2 t,

where x∗ is determined by an orthogonal projection of the graph onto H
2. From

the vertical regularity of Σ

|∂zfi| ·
(
1− x∗2

2

)−1

= O

(
1

sinh1+α r

)
·
(

x∗

sinh r∗

)−1

= O

(
1

sinh1+α r

)
· (1 + cosh r∗) −→ 0,

|∂xfi| ·
(

1− x2

1− x∗2

)
= O

(
1

rα

)
·
(
1 + cosh r∗

1 + cosh r

)
−→ 0,

as r → ∞, where r∗ = log 1+x∗

1−x∗
the distance from pi in H

2.
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It implies that not only Σ ∩ ∂Chr (pi) converges to Sr(pi) as a set but also the
tangent vectors of Σ ∩ ∂Chr (pi) converge to those of Sr(pi) uniformly. Therefore

(4.9)
1

r
Length(Σ ∩ ∂Chr (pi)) →

1

r
Length(Sr(pi)) = 2π,

as r → ∞. Note that the last equality holds because Πi ≃ H × R is isometric to
R

2. Then (4.9) implies that for every δ > 0, there exists R such that
∣∣∣∣∣

∫

Σ∩∂Ch
r (p1)

1

ρ

∂ρ

∂ν
+

∫

Σ∩∂Ch
r (p2)

1

ρ

∂ρ

∂ν
− 4π

∣∣∣∣∣ < δ if r > R.

Remark 4.4 implies that ∫

Σ∩Kh
r ∼Bǫ(p)

△Σ log ρ

is strictly positive since Σ can not be a union of two totally geodesic vertical planes.
Then there is δ0 > 0 which does not depend on r such that∫

Σ∩Kh
r ∼Bǫ(p)

△Σ log ρ > δ0.

If we take δ < δ0
2 then (4.8) deduces

2πΘΣ(p) < 4π + δ − δ0 < 4π +
δ0

2
− δ0 < 4π.

This completes the proof. �
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