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A SHORT AND ELEMENTARY PROOF OF HANNER’S THEOREM
AASA FERAGEN

ABSTRACT. Hanner’s theorem is a classical theorem in the theory of retracts and extensors in
topological spaces, which states that a local ANE is an ANE. While Hanner’s original proof of the
theorem is quite simple for separable spaces, it is rather involved for the general case. We provide
a proof which is not only short, but also elementary, relying only on well-known classical point-set
topology.

1. INTRODUCTION

Denote by .# the class of metrizable spaces. Hanner’s theorem is a fundamental theorem in the
theory of extensors and retracts, stating that a space which admits an open covering by ANEs for
A, is an ANE for . .

Proving that a space with a countable covering by open ANEs is an ANE is not hard [2], but
the original proof of the Hanner’s general theorem is rather complicated [3]. We give a short and
elementary proof, based on reducing the uncountable covering by ANEs to a countable covering
by ANEs using a technique originating with J. Milnor [4]. Another short proof of the theorem has
been given by J. Dydak [1] as part of his framework for the extension dimension theory.

2. PRELIMINARIES

A metrizable space Y is said to be an ANE for .Z if, given any space X € .# and any continuous
map f: A — Y where A is a closed subset of X, there exists a neighborhood U of A in X and a
continuous extension F': U — Y of f.

Theorem 1. i) Any open subset of a space which is an ANE for 4 is an ANE for # .
ii) If X = (J,c; Ui where the U; are disjoint open subsets of X which are ANEs for ./, then
X is an ANE for A .
iii) If X = U, ey Un where the U,, are open subsets of X which are ANEs for #, then X is an
ANE for # .

Proof. Claim 1) is trivial, and proofs of claims i), and i) can be found in Hanner’s article [2]. O

3. HANNER'S GENERAL THEOREM

Our theorem is the following

Theorem 2. If X € .4 and X =
M, then X is an ANFE for A .

.1 Ui where the U; are open subsets of X which are ANEs for

Proof. Find a partition of unity {¢;: X — [0,1]};e; which is subordinate to the covering {U; }ier

of X. For each finite subset T' C I we denote
W(T) ={z € X|pi(x) > p;(x)VieT, Vjel\T}.

2000 Mathematics Subject Classification. 54C55.
Key words and phrases. Hanner’s theorem, ANE, local ANE..
1


http://arxiv.org/abs/1011.4145v1

2 AASA FERAGEN

This set is open because W (T') = uz'(0, 1] for the continuous map
up: X —[0,1], wup(z) = max{0, min{y;(z) — p;(x)|i € T, j € I\ T}}.

Furthermore, W (T') C ¢; '(0,1] C U; for each i € T since x € W (T) implies ¢;(x) > ¢;(z) > 0 for
eachi €T and j € I\ T. It follows that W(T') is an ANE for .# by Theorem [l part ).

Note that if Card(T) = Card(7") and T # T’, then W(T) N W(T’) = (), since otherwise for
some z € W(T)NW(T"), 1€ T\T" and j € 7"\ T we have simultaneously ¢;(z) < ¢;(z) and
@;(z) > pi(x), which is impossible.

Define

W, = J{W(T)|Card(T) = n}.

Then W, is an ANE for .# by Theorem [l part ).
But now X = J _ W, is an ANE for .# by Theorem [Il part 4ii). 0J
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