A SHORT AND ELEMENTARY PROOF OF HANNER'S THEOREM

AASA FERAGEN

ABSTRACT. Hanner's theorem is a classical theorem in the theory of retracts and extensors in topological spaces, which states that a local ANE is an ANE. While Hanner's original proof of the theorem is quite simple for separable spaces, it is rather involved for the general case. We provide a proof which is not only short, but also elementary, relying only on well-known classical point-set topology.

1. INTRODUCTION

Denote by \mathscr{M} the class of metrizable spaces. Hanner's theorem is a fundamental theorem in the theory of extensors and retracts, stating that a space which admits an open covering by ANEs for \mathscr{M} , is an ANE for \mathscr{M} .

Proving that a space with a countable covering by open ANEs is an ANE is not hard [2], but the original proof of the Hanner's general theorem is rather complicated [3]. We give a short and elementary proof, based on reducing the uncountable covering by ANEs to a countable covering by ANEs using a technique originating with J. Milnor [4]. Another short proof of the theorem has been given by J. Dydak [1] as part of his framework for the extension dimension theory.

2. Preliminaries

A metrizable space Y is said to be an ANE for \mathcal{M} if, given any space $X \in \mathcal{M}$ and any continuous map $f: A \to Y$ where A is a closed subset of X, there exists a neighborhood U of A in X and a continuous extension $F: U \to Y$ of f.

Theorem 1. i) Any open subset of a space which is an ANE for \mathcal{M} is an ANE for \mathcal{M} .

- ii) If $X = \bigcup_{i \in I} U_i$ where the U_i are disjoint open subsets of X which are ANEs for \mathcal{M} , then X is an ANE for \mathcal{M} .
- iii) If $X = \bigcup_{n \in \mathbb{N}} U_n$ where the U_n are open subsets of X which are ANEs for \mathscr{M} , then X is an ANE for \mathscr{M} .

Proof. Claim i) is trivial, and proofs of claims ii), and iii) can be found in Hanner's article [2]. \Box

3. Hanner's general theorem

Our theorem is the following

Theorem 2. If $X \in \mathcal{M}$ and $X = \bigcup_{i \in I} U_i$ where the U_i are open subsets of X which are ANEs for \mathcal{M} , then X is an ANE for \mathcal{M} .

Proof. Find a partition of unity $\{\varphi_i \colon X \to [0,1]\}_{i \in I}$ which is subordinate to the covering $\{U_i\}_{i \in I}$ of X. For each finite subset $T \subset I$ we denote

$$W(T) = \{ x \in X | \varphi_i(x) > \varphi_j(x) \ \forall \ i \in T, \ \forall \ j \in I \setminus T \}.$$

²⁰⁰⁰ Mathematics Subject Classification. 54C55.

Key words and phrases. Hanner's theorem, ANE, local ANE..

AASA FERAGEN

This set is open because $W(T) = u_T^{-1}(0, 1]$ for the continuous map

$$u_T \colon X \to [0,1], \quad u_T(x) = \max\{0, \min\{\varphi_i(x) - \varphi_j(x) | i \in T, \ j \in I \setminus T\}\}.$$

Furthermore, $W(T) \subset \varphi_i^{-1}(0,1] \subset U_i$ for each $i \in T$ since $x \in W(T)$ implies $\varphi_i(x) > \varphi_j(x) \ge 0$ for each $i \in T$ and $j \in I \setminus T$. It follows that W(T) is an ANE for \mathscr{M} by Theorem 1 part i).

Note that if $\operatorname{Card}(T) = \operatorname{Card}(T')$ and $T \neq T'$, then $W(T) \cap W(T') = \emptyset$, since otherwise for some $x \in W(T) \cap W(T')$, $i \in T \setminus T'$ and $j \in T' \setminus T$ we have simultaneously $\varphi_i(x) < \varphi_j(x)$ and $\varphi_i(x) > \varphi_i(x)$, which is impossible.

Define

$$W_n = \bigcup \{ W(T) | \operatorname{Card}(T) = n \}.$$

Then W_n is an ANE for \mathcal{M} by Theorem 1 part *ii*).

But now $X = \bigcup_{n \in \mathbb{N}} W_n$ is an ANE for \mathscr{M} by Theorem 1, part *iii*).

4. Acknowledgements

The author wishes to thank the Magnus Ehrnrooth Foundation for financial support, and the Department of Mathematical Sciences at the University of Aarhus for its hospitality.

References

- [1] J. Dydak, Extension dimension for paracompact spaces, *Top. Appl.* 140 (2004) 227-243.
- [2] O. Hanner, Some theorems on absolute neighborhood retracts, Arkiv för Matematik, Vol. 1, No. 5, (1950) 389-408.
- [3] S.T. Hu, *Theory of Retracts*, 1st ed. (Wayne State University Press, 1965).
- [4] R. S. Palais, The classification of G-spaces, Mem. Amer. Math. Soc. No. 36, 1960.

UNIVERSITY OF COPENHAGEN, DEPARTMENT OF COMPUTER SCIENCE (DIKU), UNIVERSITETSPARKEN 1, K-2100 COPENHAGEN , DENMARK

 $E\text{-}mail \ address: aasa@diku.dk$