
ar
X

iv
:1

01
1.

41
69

v1
 [

m
at

h.
G

T
]

 1
8

N
ov

 2
01

0

The Pachner graph and the simplification

of 3-sphere triangulations

Benjamin A. Burton

November 18, 2010

Abstract

It is important to have fast and effective methods for simplifying 3-manifold triangula-
tions without losing any topological information. In theory this is difficult: we might need
to make a triangulation super-exponentially more complex before we can make it smaller
than its original size. Here we present experimental work suggesting that for 3-sphere tri-
angulations the reality is far different: we never need to add more than two tetrahedra,
and we never need more than a handful of local modifications. If true in general, these
extremely surprising results would have significant implications for decision algorithms and
the study of triangulations in 3-manifold topology.

The algorithms behind these experiments are interesting in their own right. Key tech-
niques include the isomorph-free generation of all 3-manifold triangulations of a given size,
polynomial-time computable signatures that identify triangulations uniquely up to isomor-
phism, and parallel algorithms for studying finite level sets in the infinite Pachner graph.

1 Introduction

Triangulations of 3-manifolds are ubiquitous in computational knot theory and low-dimensional
topology. They are easily obtained and offer a natural setting for many important algorithms.

Computational topologists typically allow triangulations in which the constituent tetrahedra
may be “bent” or “twisted”, and where distinct edges or vertices of the same tetrahedron
may even be joined together. Such triangulations (sometimes called semi-simplicial or pseudo-
triangulations) can describe rich topological structures using remarkably few tetrahedra. For
example, the 3-dimensional sphere can be built from just one tetrahedron, and more complex
spaces such as non-trivial surface bundles can be built from as few as six [15].

An important class of triangulations is the one-vertex triangulations, in which all vertices
of all tetrahedra are joined together as a single point. These are simple to obtain [11, 14], and
they are often easier to deal with both theoretically and computationally [6, 10, 14].

Keeping the number of tetrahedra small is crucial in computational topology, since many
important algorithms are exponential (or even super-exponential) in the number of tetrahedra
[5, 6]. To this end, topologists have developed a rich suite of local simplification moves that
allow us to reduce the number of tetrahedra without losing any topological information [2, 16].

The most basic of these are the four Pachner moves (also known as bistellar moves). These
include the 3-2 move (which reduces the number of tetrahedra but preserves the number of
vertices), the 4-1 move (which reduces both numbers), and also their inverses, the 2-3 and 1-4
moves. It is known that any two triangulations of the same closed 3-manifold are related by a

1

http://arxiv.org/abs/1011.4169v1

sequence of Pachner moves [21]. Moreover, if both are one-vertex triangulations then we can
relate them using 2-3 and 3-2 moves alone [14].

However, little is known about how difficult it is to relate two triangulations by a sequence
of Pachner moves. In a series of papers, Mijatović develops upper bounds on the number
of moves required for various classes of 3-manifolds [17, 18, 19, 20]. All of these bounds are
super-exponential in the number of tetrahedra, and some even involve exponential towers of
exponential functions. For relating one-vertex triangulations using only 2-3 and 3-2 moves, no
explicit bounds are known at all.

In this paper we focus on one-vertex triangulations of the 3-sphere. Here simplification is
tightly linked to the important problem of 3-sphere recognition, where we are given an input
triangulation T and asked whether T represents the 3-sphere. This problem plays an key role
in other important topological algorithms, such as connected sum decomposition [11, 12] and
unknot recognition [9], and it is now becoming important in computational 4-manifold topology.
We can use Pachner moves for 3-sphere recognition in two ways:

• They give us a direct 3-sphere recognition algorithm: try all possible sequences of Pachner
moves on T up to Mijatović’s upper bound, and return “true” if and only if we reach one
of the well-known “canonical” 3-sphere triangulations with one or two tetrahedra.

• They also allow a hybrid recognition algorithm: begin with a fast and/or greedy procedure
to simplify T as far as possible within a limited number of moves. If we reach a canon-
ical 3-sphere triangulation then return “true”; otherwise run a more traditional 3-sphere
recognition algorithm on our new (and hopefully simpler) triangulation.

The direct algorithm lies well outside the realm of feasibility: Mijatović’s bound is super-
exponential in the number of tetrahedra, and the running time is at least exponential in Mija-
tović’s bound. Current implementations [3] use the hybrid method, which is extremely effective
in practice. Experience suggests that when T is the 3-sphere, the greedy simplification almost
always gives a canonical triangulation. If simplification fails, we revert to the traditional algo-
rithm of Rubinstein [22]; although this runs in exponential time, recent improvements by several
authors have made it extremely effective for moderate-sized problems [6, 7, 11, 23].

Our aims in this paper are:

• to measure how easy or difficult it is in practice to relate two triangulations of the 3-sphere
using Pachner moves, or to simplify a 3-sphere triangulation to use fewer tetrahedra;

• to understand why greedy simplification techniques work so well in practice, despite the
prohibitive theoretical bounds of Mijatović;

• to investigate the possibility that Pachner moves could be used as the basis for a direct
3-sphere recognition algorithm that runs in sub-exponential or even polynomial time.

Fundamentally this is an experimental paper (though the theoretical underpinnings are in-
teresting in their own right). Based on an exhaustive study of ∼ 150 million triangulations
(including ∼ 31 million one-vertex triangulations of the 3-sphere), the answers appear to be:

• we can relate and simplify one-vertex triangulations of the 3-sphere using remarkably few
Pachner moves;

• both procedures require us to add at most two extra tetrahedra, which explains why greedy
simplification works so well;

2

• the number of moves required to simplify such a triangulation could also be bounded by
a constant, which means polynomial-time 3-sphere recognition may indeed be possible.

These observations are extremely surprising, especially in light of Mijatović’s bounds. If
they can be proven in general—yielding a polynomial-time 3-sphere recognition algorithm—this
would be a significant breakthrough in computational topology.

In Section 2 we outline preliminary concepts and introduce the Pachner graph, an infinite
graph whose vertices represent triangulations and whose edges represent Pachner moves. This
graph is the framework on which we build the rest of the paper. We define simplification paths
through the graph, as well as the key quantities of height and length that we seek to measure.

We follow in Section 3 with two key tools for studying the Pachner graph: an isomorph-free
census of all closed 3-manifold triangulations with ≤ 9 tetrahedra (which gives us the vertices of
the graph), and isomorphism signatures of triangulations that can be computed in polynomial
time (which allow us to construct the edges of the graph).

Section 4 describes parallel algorithms for bounding both the height and length of simplifica-
tion paths, and presents the highly unexpected experimental results outlined above. We finish
in Section 5 with a discussion of the implications and consequences of these results.

2 Triangulations and the Pachner graph

A 3-manifold triangulation of size n is a collection of n tetrahedra whose 4n faces are affinely
identified (or “glued together”) in 2n pairs so that the resulting topological space is a closed
3-manifold.1 We are not interested in the shapes or sizes of tetrahedra (since these do not affect
the topology), but merely the combinatorics of how the faces are glued together. Throughout
this paper, all triangulations and 3-manifolds are assumed to be connected.

We do allow two faces of the same tetrahedron to be identified, and we also note that distinct
edges or vertices of the same tetrahedron might become identified as a by-product of the face
gluings. A set of tetrahedron vertices that are identified together is collectively referred to as a
vertex of the triangulation; we define an edge or face of the triangulation in a similar fashion.

twist

twist

twist

fold

Figure 1: A 3-manifold triangulation of size n = 2

Figure 1 illustrates a 3-manifold triangulation of size n = 2. Here the back two faces of
the first tetrahedron are identified with a twist, the front faces of the first tetrahedron are
identified with the front faces of the second using more twists, and the back faces of the second
tetrahedron are identified together by directly “folding” one onto the other. This is a one-vertex

1It is sometimes useful to consider bounded triangulations where some faces are left unidentified, or ideal

triangulations where the overall space only becomes a 3-manifold when we delete the vertices of each tetrahedron.
Such triangulations do not concern us here.

3

triangulation since all eight tetrahedron vertices become identified together. The triangulation
has three distinct edges, indicated in the diagram by three distinct arrowheads.

Mijatović [17] describes a canonical triangulation of the 3-sphere of size n = 2, formed by a
direct identification of the boundaries of two tetrahedra. In other words, given two tetrahedra
ABCD and A′B′C′D′, we directly identify face ABC with A′B′C′, ABD with A′B′D′, and so
on. The resulting triangulation has four faces, six edges, and four vertices.

The four Pachner moves describe local modifications to a triangulation. These include:

• the 2-3 move, where we replace two distinct tetrahedra joined along a common face with
three distinct tetrahedra joined along a common edge;

• the 1-4 moves, where we replace a single tetrahedron with four distinct tetrahedra meeting
at a common internal vertex;

• the 3-2 and 4-1 moves, which are inverse to the 2-3 and 1-4 moves.

These four moves are illustrated in Figure 2. Essentially, the 1-4 and 4-1 moves retriangulate
the interior of a pyramid, and the 2-3 and 3-2 moves retriangulate the interior of a bipyramid. It
is clear that Pachner moves do not change the topology of the triangulation (i.e., the underlying
3-manifold remains the same). Another important observation is that the 2-3 and 3-2 moves do
not change the number of vertices in the triangulation.

(a) The 2-3 and 3-2 moves (b) The 1-4 and 4-1 moves

Figure 2: The four Pachner moves for a 3-manifold triangulation

Two triangulations are isomorphic if they are identical up to a relabelling of tetrahedra and a
reordering of the four vertices of each tetrahedron (that is, isomorphic in the usual combinatorial
sense). Up to isomorphism, there are finitely many distinct triangulations of any given size.

Pachner originally showed that any two triangulations of the same closed 3-manifold can be
made isomorphic by performing a sequence of Pachner moves [21].2 Matveev later strengthened
this result to show that any two one-vertex triangulations of the same closed 3-manifold with at
least two tetrahedra can be made isomorphic through a sequence of 2-3 and/or 3-2 moves [14].
The two-tetrahedron condition is required because it is impossible to perform a 2-3 or 3-2 move
upon a one-tetrahedron triangulation (each move requires two or three distinct tetrahedra).

In this paper we introduce the Pachner graph, which describes how distinct triangulations
of a closed 3-manifold can be related via Pachner moves.

Definition (Pachner graph). Let M be any closed 3-manifold. The Pachner graph of M ,
denoted P(M), is an infinite graph constructed as follows. The vertices of P(M) correspond

2As Mijatović notes [17], Pachner’s original result was proven only for true simplicial complexes, but it is
easily extended to the more flexible definition of a triangulation that we use here.

4

to isomorphism classes of triangulations of M . Two vertices of P(M) are joined by an edge if
and only if there is some Pachner move that converts one class of triangulations into the other.

The restricted Pachner graph of M , denoted P1(M), is the subgraph of P(M) defined
by only those vertices corresponding to one-vertex triangulations. The vertices of P(M) and
P1(M) are partitioned into finite levels 1, 2, 3, . . ., where each level n contains the vertices
corresponding to n-tetrahedron triangulations.

Level 1

Level 2

Level 3

Figure 3: Levels 1–3 of the restricted Pachner graph of the 3-sphere

It is clear that the edges are well-defined (since Pachner moves are preserved under isomor-
phism), and that edges do not need to be directed (since each 2-3 or 1-4 move has a corresponding
inverse 3-2 or 4-1 move). In the full Pachner graph P(M), each edge runs from some level i to
a nearby level i± 1 or i± 3. In the restricted Pachner graph P1(M), each edge must describe a
2-3 or 3-2 move, and must run from some level i to an adjacent level i± 1. Figure 3 shows the
first few levels of the restricted Pachner graph of the 3-sphere.

We can now reformulate the results of Pachner and Matveev as follows:

Theorem 1 (Pachner, Matveev). The Pachner graph of any closed 3-manifold is connected. If
we delete level 1, the restricted Pachner graph of any closed 3-manifold is also connected.

To simplify a triangulation we essentially follow a path through P(M) or P1(M) from a
higher level to a lower level, which motivates the following definition.

Definition (Simplification path). A simplification path is a directed path through either P(M)
or P1(M) from a vertex at some level i to a vertex at some lower level < i. The length of a
simplification path is the number of edges it contains. The height of a simplification path is the
smallest h ≥ 0 for which the entire path stays in or below level i + h.

Both the length and height measure how difficult it is to simplify a triangulation: the length
measures the number of Pachner moves, and the height measures the number of extra tetrahedra
required. For the 3-sphere, the only known bounds on these quantities are the following:

Theorem 2 (Mijatović [17]). Any triangulation of the 3-sphere can be converted into the canon-

ical triangulation using less than 6 · 106n222·10
4n2

Pachner moves.

Corollary 3. In the Pachner graph of the 3-sphere, from any vertex at level n > 2 there is a
simplification path of length less than 6 · 106n222·10

4n2

and height less than 3 · 106n222·10
4n2

.

In the restricted Pachner graph, no explicit bounds on these quantities are known at all.

5

3 Key tools

Experimental studies of the Pachner graph are difficult: the graph itself is infinite, and even
the finite level sets grow super-exponentially in size. By working with isomorphism classes of
triangulations, we keep the level sets considerably smaller than if we had used labelled triangu-
lations instead. However, the trade-off is that both the vertices and the edges of the graph are
more difficult to construct.

In this section we outline two key algorithmic tools for studying the Pachner graph: a census
of triangulations (which enumerates the vertices at each level), and polynomial-time computable
isomorphism signatures (which allow us to construct the edges).

3.1 A census of triangulations

To enumerate the vertices of Pachner graphs, we build a census of all 3-manifold triangulations
of size n ≤ 9, with each triangulation included precisely once up to isomorphism. Because we are
particularly interested in one-vertex triangulations as well as triangulations of the 3-sphere, we
extract such triangulations into separate censuses with the help of the highly optimised 3-sphere
recognition algorithm described in [7]. The final counts are summarised in Table 1.

Number of All closed 3-manifolds 3-spheres only
tetrahedra No constraints 1-vertex only No constraints 1-vertex only

1 4 3 2 1
2 17 12 6 3
3 81 63 32 20
4 577 433 198 128
5 5 184 3 961 1 903 1 297
6 57 753 43 584 19 935 13 660
7 722 765 538 409 247 644 169 077
8 9 787 509 7 148 483 3 185 275 2 142 197
9 139 103 032 99 450 500 43 461 431 28 691 150

Total 149 676 922 107 185 448 46 916 426 31 017 533

Table 1: Counts for 3-manifold triangulations of various types in the census

The algorithms behind this census are sophisticated; see [4] for some of the techniques
involved. The constraint that the triangulation must represent a 3-manifold is critical: if we
just enumerate all pairwise identifications of faces up to isomorphism, there are at least

[(4n− 1)× (4n− 3)× · · · × 3× 1] · 62n
n! · 24n ≃ 2.35× 1016

possibilities for n = 9. To enforce the 3-manifold constraint we use a modified union-find
algorithm that tracks partially-constructed edge links and vertex links; see [4] for details.

Even with this constraint, we can prove that the census grows at a super-exponential rate:

Theorem 4. The number of distinct isomorphism classes of 3-manifold triangulations of size
n grows at an asymptotic rate of exp(Θ(n logn)).

The proof is detailed, and is given in the appendix.

6

3.2 Isomorphism signatures

To construct edges of the Pachner graph, we begin at a vertex—that is, a 3-manifold triangu-
lation T —and perform Pachner moves. Each Pachner move results in a new triangulation T ′,
and our main difficulty is in deciding which vertex of the Pachner graph represents T ′.

A näıve approach might be to search through vertices at the appropriate level of the Pachner
graph and test each corresponding triangulation for isomorphism with T ′. However, this ap-
proach is infeasible: although isomorphism testing is fast (as we prove below), the sheer number
of vertices at level n of the graph is too large (see Theorem 4).

What we need is a property of the triangulation T ′ that is easy to compute, and that uniquely
defines the isomorphism class of T ′. This property could be used as the key in a data structure
with fast insertion and fast lookup (such as a hash table or a red-black tree), and by computing
this property we could quickly jump to the relevant vertex of the Pachner graph.

Here we define such a property, which we call the isomorphism signature of a triangulation.
In Theorem 6 we show that isomorphism signatures do indeed uniquely define isomorphism
classes, and in Theorem 7 we show that they are small to store and fast to compute.

A labelling of a triangulation of size n involves: (i) numbering its tetrahedra from 1 to n
inclusive, and (ii) numbering the four vertices of each tetrahedron from 1 to 4 inclusive. We also
label the four faces of each tetrahedron from 1 to 4 inclusive so that face i is opposite vertex i.
A key ingredient of isomorphism signatures is canonical labellings, which we define as follows.

Definition (Canonical labelling). Given a labelling of a triangulation of size n, let At,f denote
the tetrahedron which is glued to face f of tetrahedron t (so that At,f ∈ {1, . . . , n} for all
t = 1, . . . , n and f = 1, . . . , 4). The labelling is canonical if, when we write out the sequence
A1,1, A1,2, A1,3, A1,4, A2,1, . . . , An,4, the following properties hold:

(i) For each 2 ≤ i < j, tetrahedron i first appears before tetrahedron j first appears.

(ii) For each i ≥ 2, suppose tetrahedron i first appears as the entry At,f . Then the correspond-
ing gluing uses the identity map: face f of tetrahedron t is glued to face f of tetrahedron
i so that vertex v of tetrahedron t maps to vertex v of tetrahedron i for each v 6= f .

As an example, consider the triangulation of size n = 3 described by Table 2. This table
lists the precise gluings of tetrahedron faces. For instance, the second cell in the bottom row
indicates that face 2 of tetrahedron 3 is glued to tetrahedron 2, in such a way that vertices 1, 3, 4
of tetrahedron 3 map to vertices 4, 2, 3 of tetrahedron 2 respectively. This same gluing can be
seen from the other direction by examining the first cell in the middle row.

Face 1 Face 2 Face 3 Face 4
Vertices 234 Vertices 134 Vertices 124 Vertices 123

Tet. 1 Tet. 1: 231 Tet. 2: 134 Tet. 3: 124 Tet. 1: 423

Tet. 2 Tet. 3: 341 Tet. 1: 134 Tet. 2: 123 Tet. 2: 124

Tet. 3 Tet. 3: 123 Tet. 2: 423 Tet. 1: 124 Tet. 3: 234

Table 2: The tetrahedron face gluings for an example 3-tetrahedron triangulation

It is simple to see that the labelling for this triangulation is canonical. The sequence
A1,1, . . . , An,4 is 1, 2, 3, 1, 3, 1, 2, 2, 3, 2, 1, 3 (reading tetrahedron numbers from left to right and
then top to bottom in the table), and tetrahedron 2 first appears before tetrahedron 3 as re-
quired. Looking closer, the first appearance of tetrahedron 2 is in the second cell of the top row

7

where vertices 1, 3, 4 map to 1, 3, 4, and the first appearance of tetrahedron 3 is in the following
cell where vertices 1, 2, 4 map to 1, 2, 4. In both cases the gluings use the identity map.

Lemma 5. For any triangulation T of size n, there are precisely 24n canonical labellings of T ,
and these can be enumerated in O(n2 logn) time.

Proof. In summary, we can choose any of the n tetrahedra to label as tetrahedron 1, and we
can choose any of the 4! = 24 labellings of its four vertices. From here the remaining labels are
forced, and can be deduced in O(n log n) time. The full proof is given in the appendix.

Definition (Isomorphism signature). For any triangulation T of size n, enumerate all 24n
canonical labellings of T , and for each canonical labelling encode the full set of face gluings as
a sequence of bits. We define the isomorphism signature to be the lexicographically smallest of
these 24n bit sequences, and we we denote this by σ(T).

To encode the full set of face gluings for a canonical labelling, we could simply convert a
table of gluing data (such as Table 2) into a sequence of bits. For practical implementations we
use a more compact representation, which will be described in the full version of this paper.

Theorem 6. Given two 3-manifold triangulations T and T ′, we have σ(T) = σ(T ′) if and only
if T and T ′ are isomorphic.

Proof. It is clear that σ(T) = σ(T ′) implies that T and T ′ are isomorphic, since both signatures
encode the same gluing data. Conversely, if T and T ′ are isomorphic then their 24n canonical
labellings are the same (though they might be enumerated in a different order). In particular,
the lexicographically smallest canonical labellings will be identical; that is, σ(T) = σ(T ′).

Theorem 7. Given a 3-manifold triangulation T of size n, the isomorphism signature σ(T)
has O(n log n) size and can be generated in O(n2 logn) time.

Proof. To encode a full set of face gluings, at worst we require a table of gluing data such as
Table 2, with 4n cells each containing four integers. Because some of these integers require
O(log n) bits (the tetrahedron labels), it follows that the total size of σ(T) is O(n log n).

The algorithm to generate σ(T) is spelled out explicitly in its definition. The 24n canonical
labellings of T can be enumerated in O(n2 log n) time (Lemma 5). Because a full set of face
gluings has size O(n log n), we can encode the 24n bit sequences and select the lexicographically
smallest in O(n2 logn) time, giving a time complexity of O(n2 logn) overall.

This space complexity of O(n logn) is the best we can hope for, since Theorem 4 shows that
the number of distinct isomorphism signatures for size n triangulations grows like exp(Θ(n logn)).

It follows from Theorems 6 and 7 that isomorphism signatures are ideal tools for constructing
edges in the Pachner graph, as explained at the beginning of this section. Moreover, the relevant
definitions and results are easily extended to bounded and ideal triangulations (which are beyond
the scope of this paper). We finish with a simple but important consequence of our results:

Corollary 8. Given two 3-manifold triangulations T and T ′ each of size n, we can test whether
T and T ′ are isomorphic in O(n2 logn) time.

8

4 Analysing the Pachner graph

As discussed in the introduction, our focus is on one-vertex triangulations of the 3-sphere. We
therefore direct our attention to P1(S

3), the restricted Pachner graph of the 3-sphere.
In this section we develop algorithms to bound the shortest length and smallest height of

any simplification path from a given vertex at level n of P1(S
3). By running these algorithms

over the full census of 31 017 533 one-vertex triangulations of the 3-sphere (as described in
Section 3.1), we obtain a computer proof of the following results:

Theorem 9. From any vertex at level n of the graph P1(S
3) where 3 ≤ n ≤ 9, there is a

simplification path of length ≤ 13, and there is a simplification path of height ≤ 2.

The bound 3 ≤ n is required because there are no simplification paths in P1(S
3) starting at

level 2 or below (see Figure 3). For n > 9 a computer proof becomes computationally infeasible.
The results of Theorem 9 are astonishing, especially in light of Mijatović’s super-exponential

bounds. Furthermore, whilst it can be shown that the height bound of ≤ 2 is tight, the length
estimate of ≤ 13 is extremely rough: the precise figures could be much smaller still. These
results have important implications, which we discuss later in Section 5.

In this section we describe the algorithms behind Theorem 9, and we present the experimental
results in more detail. Our algorithms are constrained by the following factors:

• Their time and space complexities must be close to linear in the number of vertices that
they examine, due to the sheer size of the census.

• They cannot loop through all vertices in P1(S
3), since the graph is infinite. They cannot

even loop through all vertices at level n ≥ 10, since there are too many to enumerate.

• They cannot follow arbitrary breadth-first or depth-first searches through P1(S
3), since

the graph is infinite and can branch heavily in the upward direction.3

Because of these limiting factors, we cannot run through the census and directly measure
the shortest length or smallest height of any simplification path from each vertex. Instead we
develop fast, localised algorithms that allow us to bound these quantities from above. To our
delight, these bounds turn out to be extremely effective in practice. The details are as follows.

4.1 Bounding path heights

In this section we compute bounds Hn so that, from every vertex at level n of the graph P1(S
3),

there is some simplification path of height ≤ Hn. As in Theorem 9, we compute these bounds
for each n in the range 3 ≤ n ≤ 9.

Algorithm 10 (Algorithm for computing Hn). This algorithm runs by progressively building a
subgraph G ⊂ P1(S

3). At all times we keep track of the number of distinct components of G
(which we denote by c) and the maximum level of any vertex in G (which we denote by ℓ).

1. Initialise G to all of level n of P1(S
3). This means that G has no edges, the number of

components c is just the number of vertices at level n, and the maximum level is ℓ = n.

2. While c > 1, expand the graph as follows:

3In general, a vertex at level n can have up to 2n distinct neighbours at level (n+ 1).

9

(a) Construct all edges from vertices in G at level ℓ to (possibly new) vertices in P1(S
3)

at level ℓ+ 1. Insert these edges and their endpoints into G.

(b) Update the number of components c, and increment ℓ by one.

3. Once we have c = 1, output the final bound Hn = ℓ− n and terminate.

In step 2(a) we construct edges by performing 2-3 moves. We only construct edges from
vertices already in G, which means we only work with a small portion of level ℓ for each ℓ > n.
In step 2(b) we use union-find to update the number of components in small time complexity.

It is clear that Algorithm 10 is correct for any n ≥ 3: once we have c = 1 the subgraph G is
connected, which means there is a path from any vertex at level n to any other vertex at level
n. By Theorem 1 at least one such vertex allows a 3-2 move, and so any vertex at level n has a
simplification path of height ≤ ℓ.

However, it is not clear that Algorithm 10 terminates: it might be that every simplification
path from some vertex at level n passes through vertices that we never construct at higher levels
ℓ > n. Happily it does terminate for all 3 ≤ n ≤ 9, giving an output of H2 = 2 each time.
Table 3 shows how the number of components c changes throughout the algorithm in each case.

Input level n 3 4 5 6 7 8 9

Value of c when ℓ = n 20 128 1 297 13 660 169 077 2 142 197 28 691 150
Value of c when ℓ = n+ 1 8 50 196 1 074 7 784 64 528 557 428
Value of c when ℓ = n+ 2 1 1 1 1 1 1 1

Final bound Hn 2 2 2 2 2 2 2

Table 3: Results obtained when running Algorithm 10 for 3 ≤ n ≤ 9

It is straightforward to show that the space and time complexities of Algorithm 10 are linear
and log-linear respectively in the number of vertices in G (other small polynomial factors in
n and ℓ also appear). Nevertheless, the memory requirements for n = 8 were found to be
extremely large in practice (∼29GB), and for n = 9 they were too large for the algorithm to
run (estimated at 400–500GB). In the case of n = 9 a two-phase approach was necessary:

1. Use Algorithm 10 for the transition from level n to level n+ 1, and terminate if Hn = 1.

2. From each vertex v at level n+ 1, try all possible combinations of a 2-3 move followed by
a 3-2 move. Let w be the endpoint of such a combination (so w is also a vertex at level
n+ 1). If w ∈ G then merge the components and decrement c if necessary. Otherwise do
nothing (since w would never have been constructed in the original algorithm).

3. If c = 1 after this procedure then output Hn = 2; otherwise terminate with no result.

It is important to note that, if this two-phase approach does output a result, it will always
be the same result as Algorithm 10. Essentially Step 2 simulates the transition from level n+1
to n+2 in the original algorithm, with the advantage of a much smaller memory footprint (since
it does not store any vertices at level n+ 2), but with the disadvantage that it cannot move on
to level n+ 3 if required (and so it cannot output any result if Hn > 2).

Of course by the time we reach n = 9 there are reasons to suspect that Hn = 2 (following
the pattern for 3 ≤ n ≤ 8), and so this two-phase method seems a reasonable (and ultimately
successful) approach. For n = 9 the memory consumption was ∼50GB, which was (just) within
the capabilities of the host machine.

10

4.2 Bounding path lengths

Our next task is to compute bounds Ln so that, from every vertex at level n of P1(S
3), there

is some simplification path of length ≤ Ln. Once again we compute Ln for 3 ≤ n ≤ 9.
Because it is infeasible to perform arbitrary breadth-first searches through P1(S

3), we only
consider paths that can be expressed as a series of jumps, where each jump involves a pair of 2-3
moves followed by a pair of 3-2 moves. This keeps the search space and memory usage small: we
always stay within levels n, n+ 1 and n+ 2, and we never need to explicitly store any vertices
above level n. On the other hand, it means that our bounds Ln are very rough—there could be
much shorter simplification paths that we do not detect.

Algorithm 11 (Algorithm for computing Ln). First identify the set I of all vertices at level n
of P1(S

3) that have an edge running down to level n− 1. Then conduct a breadth-first search
across level n, beginning with the vertices in I and using jumps as the steps in this breadth-first
search. If j is the maximum number of jumps required to reach any vertex in level n from the
initial set I, then output the final bound Ln = 4j + 1.

To identify the initial set I we simply attempt to perform 3-2 moves. When we process each
vertex v, we must enumerate all jumps out from v; that is, all combinations of two 2-3 moves
followed by two 3-2 moves. The number of such combinations is O(n4) in general.

This time we can guarantee both correctness and termination if 3 ≤ n ≤ 9. Because n ≥ 3
the initial set I is non-empty (Theorem 1), and from our height experiments in Section 4.1 we
know that our search will eventually reach all of level n. It follows that every vertex at level n
of P1(S

3) has a path of length ≤ 4j to some v ∈ I, and therefore a simplification path of length
≤ 4j + 1. Table 4 shows how the search progresses for each n.

Input level n 3 4 5 6 7 8 9

Size of I 3 46 504 6 975 91 283 1 300 709 18 361 866
Vertices remaining 17 82 793 6 685 77 794 841 488 10 329 284
Vertices remaining after 1 jump 3 1 19 75 496 4 222 31 250
Vertices remaining after 2 jumps 0 0 1 1 0 6 12
Vertices remaining after 3 jumps 0 0 0 0 0 0 0

Final bound Ln 9 9 13 13 9 13 13

Table 4: Results obtained when running Algorithm 11 for 3 ≤ n ≤ 9

This time the space and time complexities are linear and log-linear respectively in the number
of vertices at level n (again with further polynomial factors in n). This is considerably smaller
than the number of vertices processed in Algorithm 10, and so for Algorithm 11 memory is not
a problem: the case n = 9 runs in under 4GB.

4.3 Parallelisation and performance

For n = 9, both Algorithms 10 and 11 have lengthy running times: Algorithm 10 requires a
very large number of vertices to be processed at levels 9, 10 and 11 of the Pachner graph, and
Algorithm 11 spends significant time enumerating the O(n4) available jumps from each vertex.

We can parallelise both algorithms by processing vertices simultaneously (in step 2 of Al-
gorithm 10, and during each stage of the breadth-first search in Algorithm 11). We must be
careful however to serialise any updates to the graph.

11

The experiments described here used an 8-core 2.93GHz Intel Xeon X5570 CPU with 72GB
of RAM (using all cores in parallel). With the serialisation bottlenecks, Algorithms 10 and
11 achieved roughly 90.5% and 98.5% CPU utilisation for the largest case n = 9, and ran for
approximately 6 and 15 days respectively. All code was written using the topological software
package Regina [1, 3].

5 Discussion

As we have already noted, the bounds obtained in Section 4 are astonishingly small. Although we
only consider n ≤ 9, this is not a small sample: the census includes ∼ 150 million triangulations
including ∼ 31 million one-vertex 3-spheres; moreover, nine tetrahedra are enough to build
complex and interesting topological structures [4, 13]. Our results lead us to the following
conjectures:

Conjecture 1. From any vertex at any level n ≥ 3 of the graph P1(S
3) there is a simplification

path of height ≤ 2.

If true, this result (combined with Theorem 4) would reduce Mijatović’s bound in Theorem 2
from exp(O(n2)) to exp(O(n log n)) for one-vertex triangulations of the 3-sphere. Furthermore,
it would help explain why 3-sphere triangulations are so easy to simplify in practice.

There are reasons to believe that a proof might be possible. As a starting point, a simple
Euler characteristic argument shows that every closed 3-manifold triangulation has an edge of
degree ≤ 5; using at most two “nearby” 2-3 moves, this edge can be made degree three (the
setting for a possible 3-2 simplification). The details will appear in the full version of this paper.

Conjecture 2. From any vertex at any level n ≥ 3 of the graph P1(S
3) there is a simplification

path of length ≤ 13.

This is a bolder conjecture, since the length experiments are less consistent in their results.
However, the fact remains that every 3-sphere triangulation of size n ≤ 9 can be simplified after
just three jumps, and this number does not rise between n = 5 and n = 9.

If true, this second conjecture would yield an immediate polynomial-time 3-sphere recogni-
tion algorithm: for any triangulation of size n ≥ 3 we can enumerate all O(n4×3) combinations
of three jumps, and test each resulting triangulation for a 3-2 move down to n − 1 tetrahe-
dra. By repeating this process n− 2 times, we will achieve either a recognisable 2-tetrahedron
triangulation of the 3-sphere, or else a proof that our input is not a 3-sphere triangulation.

Even if Conjecture 2 is false and the length bounds do grow with n, this growth rate appears
to be extremely slow. A growth rate of Ln ∈ O(log n) or even O(

√
n) would still yield the first

known sub-exponential 3-sphere recognition algorithm (using the same procedure as above),
which would be a significant theoretical breakthrough in algorithmic 3-manifold topology.

The author is grateful to the Australian Research Council for their support under the Dis-
covery Projects funding scheme (project DP1094516). Computational resources used in this
work were provided by the Queensland Cyber Infrastructure Foundation.

References

[1] Benjamin A. Burton, Regina: Normal surface and 3-manifold topology software, http://regina.
sourceforge.net/, 1999–2009.

12

[2] , Face pairing graphs and 3-manifold enumeration, J. Knot Theory Ramifications 13 (2004),
no. 8, 1057–1101.

[3] , Introducing Regina, the 3-manifold topology software, Experiment. Math. 13 (2004), no. 3,
267–272.

[4] , Enumeration of non-orientable 3-manifolds using face-pairing graphs and union-find, Dis-
crete Comput. Geom. 38 (2007), no. 3, 527–571.

[5] , The complexity of the normal surface solution space, SCG ’10: Proceedings of the Twenty-
Sixth Annual Symposium on Computational Geometry, ACM, 2010, pp. 201–209.

[6] , Optimizing the double description method for normal surface enumeration, Math. Comp.
79 (2010), no. 269, 453–484.

[7] , Quadrilateral-octagon coordinates for almost normal surfaces, Experiment. Math. 19

(2010), no. 3, 285–315.

[8] Nathan M. Dunfield and William P. Thurston, Finite covers of random 3-manifolds, Invent. Math.
166 (2006), no. 3, 457–521.

[9] Masao Hara, Seiichi Tani, and Makoto Yamamoto, UNKNOTTING is in AM ∩ co-AM, SODA
’05: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society
for Industrial and Applied Mathematics, 2005, pp. 359–364.

[10] William Jaco, David Letscher, and J. Hyam Rubinstein, Algorithms for essential surfaces in 3-

manifolds, Topology and Geometry: Commemorating SISTAG, Contemporary Mathematics, no.
314, Amer. Math. Soc., Providence, RI, 2002, pp. 107–124.

[11] William Jaco and J. Hyam Rubinstein, 0-efficient triangulations of 3-manifolds, J. Differential
Geom. 65 (2003), no. 1, 61–168.

[12] William Jaco and Jeffrey L. Tollefson, Algorithms for the complete decomposition of a closed 3-
manifold, Illinois J. Math. 39 (1995), no. 3, 358–406.

[13] Bruno Martelli and Carlo Petronio, Three-manifolds having complexity at most 9, Experiment.
Math. 10 (2001), no. 2, 207–236.

[14] Sergei Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms and Computa-
tion in Mathematics, no. 9, Springer, Berlin, 2003.

[15] Sergei V. Matveev, Complexity theory of three-dimensional manifolds, Acta Appl. Math. 19 (1990),
no. 2, 101–130.

[16] , Computer recognition of three-manifolds, Experiment. Math. 7 (1998), no. 2, 153–161.

[17] Aleksandar Mijatović, Simplifying triangulations of S3, Pacific J. Math. 208 (2003), no. 2, 291–324.

[18] , Triangulations of Seifert fibred manifolds, Math. Ann. 330 (2004), no. 2, 235–273.

[19] , Simplical structures of knot complements, Math. Res. Lett. 12 (2005), no. 5-6, 843–856.

[20] , Triangulations of fibre-free Haken 3-manifolds, Pacific J. Math. 219 (2005), no. 1, 139–186.

[21] Udo Pachner, P.L. homeomorphic manifolds are equivalent by elementary shellings, European J.
Combin. 12 (1991), no. 2, 129–145.

[22] J. Hyam Rubinstein, An algorithm to recognize the 3-sphere, Proceedings of the International
Congress of Mathematicians (Zürich, 1994), vol. 1, Birkhäuser, 1995, pp. 601–611.

[23] Abigail Thompson, Thin position and the recognition problem for S
3, Math. Res. Lett. 1 (1994),

no. 5, 613–630.

Benjamin A. Burton
School of Mathematics and Physics, The University of Queensland
Brisbane QLD 4072, Australia
(bab@maths.uq.edu.au)

13

Appendix: Additional proofs

In this appendix we offer full proofs of Theorem 4 and Lemma 5. These proofs were omitted
from the main text due to space considerations.

Theorem 4. The number of distinct isomorphism classes of 3-manifold triangulations of size
n grows at an asymptotic rate of exp(Θ(n logn)).

Proof. An upper bound of exp(O(n log n)) is easy to obtain. If we count all possible gluings of
tetrahedron faces, without regard for isomorphism classes or other constraints (such as the need
for the triangulation to represent a closed 3-manifold), we obtain an upper bound of

[(4n− 1)× (4n− 3)× · · · × 3× 1] · 62n < (4n)2n · 62n ∈ exp(O(n log n)).

Proving a lower bound of exp(Ω(n logn)) is more difficult—the main complication is that
most pairwise identifications of tetrahedron faces do not yield a 3-manifold at all [8]. We work
around this by first counting 2-manifold triangulations (since closed 2-manifolds are much easier
to obtain), and then giving a construction that “fattens” these into 3-manifold triangulations
without introducing any unwanted isomorphisms.

To create a 2-manifold triangulation of size 2m (the size must always be even), we identify
the 6m edges of 2m distinct triangles in pairs. Any such identification will always yield a closed
2-manifold (that is, nothing can “go wrong”, in contrast to the three-dimensional case). Each
of the 3m pairs of edges can be identified using one of two orientations, and so the number of
labelled 2-manifold triangulations is precisely

[(6m− 1)× (6m− 3)× · · · × 3× 1)] · 23m.

Each isomorphism class can contain at most (2m)! · 62m labelled triangulations, and so the
number of distinct isomorphism classes of 2-manifold triangulations is bounded below by

[(6m− 1)× (6m− 3)× · · · × 3× 1)] · 23m
(2m)! · 62m > [(6m− 1)× (6m− 3)× · · · × (4m+ 1)] ·

(

8
36

)m

> (4m)m ·
(

8
36

)m

∈ exp(Ω(m logm)).

We fatten a 2-manifold triangulation into a 3-manifold triangulation as follows. Let F denote
the closed 2-manifold described by the original triangulation.

1. Replace each triangle with a prism and glue the vertical faces of adjacent prisms together,
as illustrated in Figure 4(a). This represents a bounded 3-manifold, which is the product
space F × I.

2. Cap each prism at both ends with a triangular pillow, as illustrated in Figure 4(b). The
two faces of each pillow are glued to the top and bottom of the corresponding prism,
effectively converting each prism into a solid torus. This produces the closed 3-manifold
F × S1, and the complete construction is illustrated in Figure 4(c).

3. Triangulate each pillow using two tetrahedra, which are joined along three internal faces
surrounding an internal vertex. Triangulate each prism using 14 tetrahedra, which again
all meet at an internal vertex. Both triangulations are illustrated in Figure 4(d).

14

(a) Replacing triangles with prisms (b) Capping prisms with pillows

(c) The complete construction (d) Triangulating prisms and pillows

Figure 4: Fattening a 2-manifold triangulation into a 3-manifold triangulation

If the original 2-manifold triangulation uses 2m triangles, the resulting 3-manifold triangu-
lation uses n = 32m tetrahedra. Moreover, if two 3-manifold triangulations obtained using this
construction are isomorphic, the original 2-manifold triangulations must also be isomorphic.
The reason for this is as follows:

• Any isomorphism between two such 3-manifold triangulations must map triangular pillows
to triangular pillows. This is because the internal vertex of each triangular pillow meets
only two tetrahedra, and no other vertices under our construction have this property.

• By “flattening” the triangular pillows into 2-dimensional triangles, we thereby obtain an
isomorphism between the underlying 2-manifold triangulations.

It follows that, for n = 32m, we obtain a family of exp(Ω(m logm)) = exp(Ω(n logn))
pairwise non-isomorphic 3-manifold triangulations.

This result is easily extended to n 6≡ 0 mod 32. Let Vn denote the number of distinct
isomorphism classes of 3-manifold triangulations of size n.

• Each triangulation of size n has at least n− 1 distinct 2-3 moves available (since any face
joining two distinct tetrahedra defines a 2-3 move, and there are at least n− 1 such faces).

• On the other hand, each triangulation of size n+1 has at most 6(n+1) distinct 3-2 moves
available (since each 3-2 move is defined by an edge that meets three distinct tetrahedra,
and the triangulation has at most 6(n+ 1) edges in total).

It follows that Vn+1 ≥ Vn · n−1
6(n+1) ≥ Vn/18 for any n > 1. This gives V32m+k ≥ V32m/1831

for sufficiently large m and all 0 ≤ k < 32, and so we obtain Vn ∈ exp(Ω(n logn)) with no
restrictions on n.

15

Remark. Of course, we expect that Vn+1 ≫ Vn (and indeed we see this in the census). The
bounds that we use to show Vn+1 ≥ Vn/18 in the proof above are very loose, but they are
sufficient for the asymptotic result that we seek.

Lemma 5. For any triangulation T of size n, there are precisely 24n canonical labellings of T ,
and these can be enumerated in O(n2 logn) time.

Proof. For n = 1 the result is trivial, since all 24 = 4! possible labellings are canonical. For
n > 1 we observe that, if we choose (i) any one of the n tetrahedra to label as tetrahedron 1,
and (ii) any one of the 24 possible labellings of its four vertices, then there is one and only one
way to extend these choices to a canonical labelling of T .

To see this, we can walk through the list of faces F1,1, F1,2, F1,3, F1,4, F2,1, . . . , Fn,4, where
Ft,i represents face i of tetrahedron t. The first face amongst F1,1, . . . , F1,4 that is joined to
an unlabelled tetrahedron must in fact be joined to tetrahedron 2 using the identity map; this
allows us to deduce tetrahedron 2 as well as the labels of its four vertices.

We inductively extend the labelling in this manner: once we have labelled tetrahedra 1, . . . , k
and their corresponding vertices, the first face amongst F1,1, . . . , Fk,4 that is joined to an unla-
belled tetrahedron must give us tetrahedron k+1 and the labels for its four vertices (again using
the identity map). The resulting labelling is canonical, and all of the labels can be deduced in
O(n logn) time using a single pass through the list F1,1, . . . , Fn,4. The logn factor is required
for manipulating tetrahedron labels, each of which requires O(log n) bits.

It follows that there are precisely 24n canonical labellings of T , and that these can be
enumerated in O(n2 logn) time using 24n iterations of the procedure described above.

16

	1 Introduction
	2 Triangulations and the Pachner graph
	3 Key tools
	3.1 A census of triangulations
	3.2 Isomorphism signatures

	4 Analysing the Pachner graph
	4.1 Bounding path heights
	4.2 Bounding path lengths
	4.3 Parallelisation and performance

	5 Discussion

