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We study the effects of the Coulomb interaction in the one dimensional Kondo lattice model on
the phase diagram, the static magnetic susceptibility and electron spin relaxation. We show that
onsite Coulomb interaction supports ferromagnetic order and nearest neighbor Coulomb interaction
drives, depending on the electron filling, either a paramagnetic or ferromagnetic order. Furthermore
we calculate electron quasiparticle life times, which can be related to electron spin relaxation and
decoherence times, and explain their dependence on the strength of interactions and the electron
filling in order to find the sweet spot of parameters where the relaxation time is maximized. We find
that effective exchange processes between the electrons dominate the spin relaxation and decoherence
rate.
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I. INTRODUCTION

Recently, the interest in nanoscale systems has been
rapidly increasing. Among them are 13C carbon
nanotubes,1,2 nanowires3,4 and carbon nanotubes filled
with endohedral fullerenes or molecular magnets5. The
above mentioned systems have in common, that they
consist of local spins (electron or nuclear spins) which
interact via exchange interaction with itinerant conduc-
tion electrons. These are exactly the constituents of
the one dimensional Kondo lattice model6,7 (KLM ). To
make these materials available for spin electronics or
quantum information processing it is necessary to un-
derstand their properties in detail: ground state (e.g.
magnetic order), spectral (e.g. dispersion relation of elec-
trons) and dynamical (e.g. non-equilibrium, spin relax-
ation/decoherence) properties.

Interaction between the local spins in the KLM is
generated effectively due to the hopping t of electrons
and an onsite direct spin exchange J between the itin-
erant and localized spins, see Fig. 1. This interaction
is a result of the competition of onsite singlet forma-
tion and an effective RKKY (Ruderman-Kittel-Kasuya-
Yosida) interaction8. The order of the local spins due to
the interaction is captured in the phase diagram of the
KLM,6,9–12 which is basically divided into three phases
depending on J/t and the electron filling n (n = 1 is half
filling). At n = 1 the system turns out to order anti-

ferromagnetically for arbitrary coupling strength. A fer-
romagnetic (FM) phase is established, if either J is large
enough or n is small enough.13 Otherwise the local spin
lattice is in the paramagnetic (PM) phase, because then
the effective RKKY interaction dominates the system.
The mechanism of ferromagnetism in the KLM can

also be understood in terms of an electron quasiparticle
picture, where the quasiparticle is the so called spinpo-

laron15,16, see Fig. 2a. For a given FM order of the lo-
cal spins in a 1d system it was shown that the itinerant
electrons and the magnons of the local spin bath form a
bound spinpolaron state which is detectable in transport
measurements and was proposed as a long-living corre-
lated many-body spin state3 forming possibly one part
of a many-body spin qu-bit. In Ref. 13 it was shown for
the case of a single conduction electron that a spinpo-
laron develops with a huge extent over the whole lattice
leading to FM order in the ground state. In Ref. 17 this
was extended to finite electron fillings and it was shown
that long quasiparticle life times are connected with FM
order of the local spins. In Ref. 14, the quasiparticle dy-
namics of the half filled KLM (n=1) have been examined
as well. By means of a strong coupling expansion up to
11th order it has been possible to calculate the quasipar-
ticle dispersion relation to good accuracy and it could be
shown that the quasiparticles behave like nearly localized
f-electrons due to the strong correlation of the conduction
and localized electrons.
It is known that the main relaxation and decoherence
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FIG. 1. (Color online) The Kondo lattice model. The con-
duction electrons are depicted in the upper row (red) and the
localized electrons are depicted as bold arrows in the lower
row (grey).

source of single electron spins in semiconductor based
quantum dots arises from interactions with the nuclear
spin background.18,25,26 An appropriate path to diminish
the relaxation is the application of a large magnetic field,
whereas the decoherence rate is reduced by state distri-
bution narrowing.19,36 However, the initial preparation
of the nuclear bath in a pure state (e.g. full polariza-
tion) is an experimental challenge. Recently, the idea was
proposed to consider the nuclear bath at very low tem-
peratures in the FM phase, which is mediated by many
itinerant electons via the RKKY-interaction.2,3,17,20 In
Ref. 2 it was shown that the Coulomb interaction in a 2d
electron gas leads to an increased critical temperature of
order T ∼ 1mK for the nuclear spins, which might be
feasible in experiments. In Ref. 20 a C13 carbon nan-
otube was studied. By approximating the conduction
electrons by a Luttinger liquid and treating the large ef-
fective nuclear spins classically, the transition tempera-
ture between a helically ordered (FM for finite systems)
and unordered spin lattice was calculated.20 It could be
shown that a finite long-ranged Coulomb interaction is
required to have a finite transition temperature,2 which
is consistent with the Mermin-Wagner Theorem23 and its
recent extension.24 Taking backaction effects of the nu-
clear lattice on the electron spins into account increases
the transition temperature by another order of magni-
tude. This makes the KLM interesting for experiments,
which are always performed at finite temperature.
These developments motivate the study of the KLM

in the presence of a finite Coulomb interaction between
the itinerant electrons. The simplest extension to the
KLM in terms of lattice models is the onsite Coulomb
interaction U . In the case of half-filling a finite U leads
to the opening of a spin and charge gap.21 This work
has been extended within a continuum Luttinger liquid
approach to arbitrary fillings solved by bosonization.22

Lattice effects have been accounted for by means of a
phononic field and therefore there is no real lattice in-
volved in those calculations. Still, the authors of Ref. 22
find the interesting result of a shift of the phase boundary
between FM and PM phase, as expected.
In this paper, we use the density matrix renormaliza-

tion group method27–30 (DMRG) to study ground state
and dynamical properties of the one dimensional KLM
for local spins with spin 1/2 including onsite and near-
est neighbor Coulomb interaction. Our method benefits

from being numerically exact, acting in the lattice space
without any approximations and taking all backaction
effects of the local spin lattice on the conduction elec-
trons automatically into account. Furthermore it allows
for calculations in a broad parameter regime and works
especially well for one dimensional systems with open
boundary conditions and finite lattices. Here we are par-
ticularly interested in finite lattices, since nanoscale sys-
tems have finite sizes and show corresponding effects.

From ground state calculations we show that onsite
Coulomb interaction lowers the value of J required for a
transition from a PM to a FM ground state. For small
n . 0.4 nearest neighbor Coulomb interaction V acts the
same way on the magnetic order as U does. For n & 0.4
they compete with each other. As a different sensor of
magnetic order we utilize the static electron spin suscep-
tibility. For the PM phase a peak at 2kF is expected
(which diverges for L → ∞), while for the FM order
a minimum at the smallest possible quasimomentum q,
which is finite for finite lattices, should emerge. This was
stated similarly in Refs. 2,20 for small coupling constants
J .

Finally, we calculate the quasiparticle life-time broad-
ening Γ+ of an electron, its spin oriented in the opposite
direction than that of all other electrons in the ground
state. In Ref. 17 it was shown in the FM phase and for
electronic densities below half-filling that the effective in-
teraction between spinpolaron states is weak proving that
spinpolaron (spin-down) states are indeed well-defined
quasiparticles with small life-time broadening Γ− even in
the presence of many electrons. However we will show
here that the spin relaxation and decoherence rates will
be dominated by the life-time broadening Γ+ of the op-
posite spin-up state, which is higher in energy. We will
consider a single spin-up electron with quasimomentum k
on top of the FM ground state of the 1d KLM. Although
this spin has the same direction as the underlying local
spins and, thus, can not decay by direct exchange with
the local spins, we find that Γ+ is dominated by the ef-
fective exchange interaction with the sea of spinpolaron
spin-down states in the system. As a consequence, Γ+

turns out to be much larger than Γ− and dominates the
spin relaxation as well as the spin decoherence rate (the
pure dephasing term arising from the life-time broaden-
ing Γ− of the spin down spinpolaron state is negligible).
We analyze the life-time broadening Γ+ depending on J ,
U , n and the quasimomentum k and give explanations
for the observations. Although the spin relaxation rate
increases significantly in the presence of many electrons
we will show in appropriate parameter regimes that the
spin relaxation rate can be several order of magnitudes
smaller in the FM phase compared to the PM phase.
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II. MODEL

The Hamiltonian of the KLM with Coulomb interac-
tion is sketched in Fig. 1 and defined as

H =− t

L−1
∑

σ,i=1

(

c†iσci+1σ + c†i+1σciσ

)

+ J

L
∑

i=1

Si · si

+ U

L
∑

i=1

ni↑ni↓ + V

L−1
∑

i=1

nini+1

(1)

where t is the hopping integral, L the lattice size, c
(†)
iσ the

electron annihilation (creation) operator at site i with
spin σ, J > 0 the antiferromagnetic Kondo exchange
coupling, Si the spin operator of the local spin at site i,
si the spin operator of the conduction electron at site i, U

the onsite Coulomb interaction constant, niσ = c†iσciσ, V
the nearest neighbor Coulomb interaction constant and
ni = ni↑ + ni↓. All spins are considered to be spin 1/2.
We define the filling by n = N/L, where N denotes the
total number of itinerant electrons (n = 1 corresponds to
half-filling).

III. METHOD

A. DMRG

The DMRG method is a well established numerically
exact method for the calculation of ground states, dy-
namical properties and time evolution of one dimensional
lattice systems. Our algorithm is formulated in a matrix-
product language31 and makes use of Abelian, e.g. par-
ticle number conservation (U(1)) and non-Abelian, e.g.,
total spin conservation (SU(2)), symmetries. Depending
on the symmetry sector, the use of SU(2) symmetries in
addition to U(1) symmetries allows for computations up
to 10 times faster.

B. Ground states

Calculating the ground state of a given system is syn-
onymous to finding the symmetry sector with its corre-
sponding quantum numbers, where the energy is mini-
mal. The ground state phase diagram of the KLM is
shown in Fig. 3 in dependence of the Kondo constant
J and the filling n. Fixing J and n leaves the total
spin quantum number S as the only free parameter,
which distinguishes the order of the ground state, i. e.,
S = (L − N)/2 complies with FM order of local spins
and S = 0 with PM order. We choose SU(2) symmetry
for the spin here, first for computational reasons and sec-
ond it has the benefit that the states with different total
spin quantum numbers are non-degenerate in this case,
whereas in U(1) symmetry a partial degeneracy in the

FIG. 2. (Color online) (a) Sketch of a configuration with three
spinpolarons, each consisting of a delocalized spin singlet state
with the local spins. (b) Sketch of a configuration with two
spinpolarons and one spin up electron.

total spin in the direction of quantization exists. Consid-
ering Coulomb interaction in addition, we have another
two variables that have to be fixed in advance and this
means we have a quadruple of variables {n, J, U, V }, or
a four dimensional phase diagram.

C. Susceptibility

We calculate the static electron spin susceptibility
χ(ω = 0) by means of Green’s functions and the applica-
tion of dynamical DMRG32,33 with GMRES.34,35 Details
of our implementation can be found in Ref. 17.
The definition of the spin susceptibility is

χ+−
q (ω) = − 1

L

[

〈0|s̃+q
1

H − E0 + ω − iη
s̃−q |0〉+

〈0|s̃−q
1

H − E0 − ω + iη
s̃+q |0〉

] (2)

with (for open boundary conditions)

s̃q =

L
∑

l=1

sl sin

(

qlπ

L+ 1

)

,

where H is the Hamiltonian given in Eq. (1), |0〉 is the
ground state of the system, and E0 the ground state en-
ergy. η is a finite artificial broadening factor, needed
to avoid finite size effects29 and which can be choosen
smaller with larger lattice size.

D. Quasiparticle life-times

In Ref. 17 the quasiparticle life-time of the spinpolaron
was calculated (cf. Fig. 2a), by evaluating the electronic
Green’s function in momentum and frequency space

Gkσ(ω + iη) =

1

ω + iη − (ǫ0(k)− µ+Σσ(k, ω + iη))
, (3)

where ω is the energy, ǫ0(k) the free electron dispersion
relation, µ the electrochemical potential (which does not
play a role in the calculation of broadenings of spec-
tral densities) and Σσ(k, ω+ iη) the complex self-energy.
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From the imaginary part of the self-energy, which is given
by the broadening of the Lorentzian shaped peak in the
spectral density Aσ(k, ω) = −(1/π) Im Gkσ(ω) we can
determine the quasiparticle life-time in dependence of
all parameters. On the technical side, we use again the
above mentioned GMRES method and calculate spectral
densities as described in Ref. 17.
Basically, there exist four different scenarios for which

the electronic quasiparticle life-time broadenings can be
calculated assuming that in the FM ground state the
local spins point up and the conduction electron spins
point down (for large J the most dominant part of a spin-
polaron state consists of a conduction electron pointing
down with a small admixture of the spin up state plus a
local magnon):

• 1 In the FM phase for a spin down electron (cf.
Fig. 2a);

• 2 In the FM phase for a spin up electron (cf.
Fig. 2b);

• 3 and 4 are the corresponding cases for the PM
phase.

1 corresponds to the spinpolaron life-time broadening Γ−

and 2 to its natural counter part Γ+. 3 and 4 are iden-
tical, since the spins in the PM ground state have no
specific direction.
In addition to Ref. 17 we calculate here the life-time

broadening Γ+. As shown in this paper this rate is very
large in the presence of many electrons, Γ+ ≫ Γ−, and,
as a consequence, dominates the spin relaxation and de-
coherence rates, as can be understood from the following
qualitative analysis. The two many-body spin states |±〉
depicted in Fig. 2 are not exact eigenstates but are ex-
pected to be part of a sharp many-body continuum with
long life-times. The spin down state |−〉 is protected from
magnon absorption and emission processes since the spin-
polarons can lower their energy by the entanglement with
the local spins in a singlet state. Only virtual processes
and weak spinpolaron-spinpolaron interactions lead to a
small broadening Γ− of this state, as shown in detail
in Ref. 17. The spin-up state |+〉 is protected due to
the spin polarization of the local spins. Due to effective
exchange interaction between the spinpolarons and the
spin-up electron mediated by the magnons, as discussed
in detail in this paper in section IVC, this state has a life-
time broadening Γ+ ≫ Γ−. Denoting the quasienergies
of the two spin states by E±, we get a decay according
to 〈±|e−iHt|±〉 ∼ e−iE±te−(Γ±/2)t. To define the spin re-
laxation and decoherence rates, we introduce pseudo-spin
operators Pz = (1/2)(|+〉〈+|−|−〉〈−|) and P± = |±〉〈∓|.
Using spin conservation, we obtain after a straigthfor-
ward calculation that 〈Pz(t)〉 = (1/2)|〈+|e−iHt|+〉|2, if
the system is prepared at t = 0 in the state |+〉, and
〈P+(t)〉 = (1/2)〈+|e−iHt|+〉∗〈−|e−iHt|−〉, if the system

is prepared in the state (1/
√
2)(|−〉 + |+〉) intially. As

a result we find for the two different initial preparations
that 〈Pz(t)〉 ∼ e−Γ1t and 〈P+(t)〉 ∼ ei∆te−Γ2t, where

∆ = E+ − E− is the quasienergy splitting and the spin
relaxation/decoherence rates are given by

Γ1 = Γ+ , Γ2 =
1

2
Γ1 +

1

2
Γ− . (4)

This result shows that the dominant part to Γ1/2 is given
by the broadening Γ+ of the spin-up state |+〉, whereas
the broadening Γ− of the spinpolaron state |−〉 enters
only into the pure dephasing term of longitudinal fluctu-
ations and can be neglected.

E. Dispersion relation

The dispersion relation ωσ(k) can be constructed from
the resonance of the single particle spectral density
Aσ(k, ω) at ω = ωσ(k). The number of k values is re-
stricted by the lattice size L.

IV. RESULTS

In nearly all cases we have choosen L = 48, which is
suitable from two different points of view. First, physi-
cally, we are especially interested in finite systems, which
would more closely resemble, e.g., nanotubes in the real
world. And second, from the point of view of compu-
tational cost, it is not convenient to take larger systems
into account, since we already needed up to 3000 DMRG
states in some of the calculations, which is a large num-
ber considering the number of executed calculations. All
calculations are done with high computational precision,
partly up to machine precision. We set t = 1 in all cal-
culations.

A. Phase diagram

We will first investigate the influence of Coulomb in-
teraction on the ground state of the Kondo lattice model.
The phase diagram6 of the KLM (without Coulomb inter-
action) is well established and shows two different phases,
an FM and a PM one, see Fig. 3. The PM phase lies in
the lower-right triangular of the phase diagram and for
all other values of J and n < 1 the KLM has an FM
ground state. Especially for N = 1 it was shown that
the KLM is FM for any J .13 As can be seen from Fig. 3,
applying a finite onsite Coulomb interaction shifts the
phase boundary downwards for all values of n. This is
consistent with the analysis of Ref. 20, where a higher
crossover temperature has been predicted in the pres-
ence of Coulomb interaction. However, we note that the
two mechanism are quite different. Whereas in Ref. 20
the local nuclear spins have been treated quasiclassically
due to their large effective spin, the present analysis is
in the full quantummechanical regime of local spins with
spin 1/2. Roughly speaking the present result is consis-
tent with the Stoner picture of ferromagnetism, where
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FIG. 3. (Color online) Phase boundary between the FM (up-
per part) and the PM (lower part) ground state of the Kondo
lattice model with L = 48 for three different cases of Coulomb
interaction.

a finite Coulomb interaction leads to the preference of
a fully spin-polarized state for the itinerant electrons.
This state coincides with the qualitative picture of spin-
polaron states pointing into the opposite direction of the
local spins, see Fig. 2a.

For finite nearest neighbor Coulomb interaction V we
find the qualitatively different result, that the phase
boundary is shifted downwards for n . 0.4 and upwards
for n & 0.4 and therefore crosses the phase boundary of
the KLM without Coulomb interaction. For small fill-
ings this can be explained in the same way as for the
onsite Coulomb interaction case. For filling n > 0.4 the
electrons are relatively close to each other and therefore
strongly influenced by V . The possibility to occupy the
same site with two electrons of opposite spin does not
lead to an increasing energy due to Coulomb interaction
and increases the kinetic energy at the same time. There-
fore, in this regime, the unordered state becomes more
favorable.

Summarizing, the onsite and nearest neighbor
Coulomb interaction are concurring for small n < 0.4
and behave competitively for large n > 0.4. These re-
sults are pictured in Fig. 3: The solid blue line is the
phase boundary of the non-interacting KLM. If Coulomb
interaction is switched on, the phase boundary is lowered
for all values of n (dashed dark blue line). For U = 0 and
V finite, the phase boundary is lowered for small n and
raised above the non-interacting case phase boundary for
larger n.

B. Susceptibilities

For small J the order of the local spins manifests itself
also in the static electron spin susceptibility. As was
shown in Ref. 20 the effective coupling between the local
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S
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FIG. 4. (Color online) Static electron spin susceptibility
χ(ω = 0) for a Kondo lattice model with L = 48, N = 6 and
J = 0.15 with (dashed line) and without (solid line) Coulomb
interaction. The thin vertical line marks 2kF in the PM phase.

FIG. 5. (Color online) Dispersion relation of a ↑-electron in
a KLM with J = 0.5, N = 4 and U = V = 0.

spins for small J is

JRKKY ∝ −χ±(ω = 0, k, J, U). (5)

Therefore the order of the local spin lattice should cor-
respond to the absolute maximum of the static electron
spin susceptibility. In Fig. 4 we show this for two extreme
cases with L = 48 and N = 6. The first case (solid black
line in the figure) with U = 0, V = 0 has a PM ground
state and shows the susceptibility in the non-interacting
case. It has an absolute maximum at k = 2kF . This
evidences that for the chosen set of parameters the state
indeed orders paramagnetically in a RKKY like fashion.
If Coulomb interaction is switched on with U = 10, V = 2
(dashed brown line in the figure) the absolute maximum
is at k = 0. In this case FM order becomes dominant.

C. Dispersion relation

We calculated the dispersion relation of a ↑-electron in
a KLM with L = 48, N = 4, J = 0.5 and U = V = 0.
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TABLE I. k-dependence of relaxation rates for N = 2 for different values of J and U .

k [π/(L+ 1)] 1 2 3 4

J=0.5, U=0 0.00097 ± 0.00003 0.00128 ± 0.00002 0.00166 ± 0.00003 0.00204 ± 0.00005

J=0.5, U=0.2 0.00220 ± 0.00009 0.00299 ± 0.00005 0.00403 ± 0.00005 0.0048 ± 0.0001

J=0.3, U=0 0.00035 ± 0.00001 0.000470 ± 0.000004 0.00066 ± 0.00002 0.00077 ± 0.00002

J=0.3, U=0.2 0.00146 ± 0.00006 0.00198 ± 0.00004 0.00280 ± 0.00007 0.00331 ± 0.00008

 0

 0.005

 0.01

 0.015

 0.02

0 π/4 π/2 3π/4 π

<
S

- q 
S

+
q 

>
 / 

L

q

N=2
N=4
N=6
N=8

FIG. 6. (Color online) Magnon density in the KLM with
L = 48, t = J = 1, U = V = 0 in dependence of the quasimo-
mentum. The number of electrons is varied between 2 and 8
in steps of 2.

The result is shown in Fig. 5. It shows a cosine shaped
dispersion, which leads to the conclusion that the elec-
tron behaves more or less like a free electron, only slightly
affected by the presence of the local spin lattice. This can
be explained by the fact that a ↑-electron can not flip its
spin directly by an exchange process with a local spin due
to spin conservation. In contrast, a ↓-electron can do so,
leading to the formation of spinpolarons, which can lower
their energy by this process and obtain a larger effective
mass leading to a sharper dispersion relation. However,
as shown in the next section, the life-time broadening of
↑-electrons is generically larger than those of ↓-electrons,
since the decay processes for spinpolarons start in higher
order in J than those for ↑-electrons.

D. Quasiparticle life-times

From the electronic spectral density A↑(k, ω) we obtain
the quasiparticle life-time broadenings Γ+ in dependence
of J , U , k and N . As we calculate the Green’s func-
tion G↑(k, ω) in frequency space, we obtain two branches:

The c†k↑– and the ck↑–branch, respectively. The first one
corresponds to an additional electron placed in a certain
k-mode and interacting with the other electrons and the
local spins. The second type addresses the spin up-part
of the already existing electrons in the system. Therefore

FIG. 7. (Color online) (a) Simplified itinerant electron band
structure in k-space. Light blue electrons on the left side are
electrons initially in the ground state and electrons on the
right side are additionally added to the ground state. The
process shown correspond to a spin flip of the added electron
at k = k1. After the spin flip, the electron has opposite spin
with k = k2 and has absorbed a magnon with q = k2 − k1.
(b) Accumulated magnon density ρk1

as given in Eq. (6), for
L = 48, N = 4 and J = 0.5. (c) Decay rates for L = 48,
N = 4 and J = 0.5 in dependence of k.

the two branches address two different sets of states in
the spectrum of the Hamiltonian. Here we are interested
in the first case only, since we would like to know, what
happens to a spin up electron brought into the system in
addition to the other electrons.
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TABLE II. Relaxation rates in dependence of the electron numberN , J and U . k is set to the lowest possible value k = π/(L+1).
The given number of N is the number of electrons taken into account during the ground state calculations, i.e., the spin up
electron is in addition to this number. (p) mark parameters, which correspond to the paramagnetic phase.

N 1 2 3 4 6 12

J=1.0, U=0 0.00263 ± 0.00012 0.00199 ± 0.00013 0.00185 ± 0.00017 0.00085 ± 0.00018

J=1.0, U=0.2 0.00432 ± 0.00070 0.00294 ± 0.00019 0.00249 ± 0.00027 0.0011 ± 0.0002

J=0.8, U=0 0.00188 ± 0.00008 0.00130 ± 0.00009 0.00087 ± 0.00009 0.00213 ± 0.00024

J=0.8, U=0.2 0.00303 ± 0.00021 0.00221 ± 0.00017 0.00184 ± 0.00017 0.00238 ± 0.00038

J=0.6, U=0 0.00115 ± 0.00005 0.00078 ± 0.00005 0.00081 ± 0.00007 (p)0.00508 ± 0.00031

J=0.6, U=0.2 0.00239 ± 0.00012 0.00156 ± 0.00012

J=0.5, U=0 0.00104 ± 0.00002 0.00097 ± 0.00003 0.00082 ± 0.00003 0.00062 ± 0.00004 0.00066 ± 0.00005

J=0.5, U=0.2 0.00233 ± 0.00004 0.0022 ± 0.0001 0.00205 ± 0.00008 0.00126 ± 0.00011 0.00141 ± 0.00013

J=0.5, U=0.4 0.00142 ± 0.00021

J=0.5, U=0.6 0.00245 ± 0.00018

J=0.5, U=0.8 0.00384 ± 0.00045

J=0.3, U=0 0.00041 ± 0.00001 0.00035 ± 0.00001 0.00033 ± 0.00001 (p) 0.00144 ± 0.00010 0.00150 ± 0.00020

J=0.3, U=0.2 0.00158 ± 0.0003 0.00146 ± 0.000016 0.00123 ± 0.00008 0.00084 ± 0.00007

J=0.1, U=0.0 0.000030 ± 0.000001 0.00004 ± 0.0000009 (p) 0.00593 ± 0.00024

J=0.1, U=0.2 0.00061 ± 0.00003 (p) 0.00460 ± 0.00011

1. Decay rate dependence on k

In Tab. I we show decay rates of a spin up electron
added to the N = 2 ground state. For all sets of U and J
we find that the decay rate increases with increasing k as
long as k is smaller than 2kF . Here we give an expla-
nation considering momentum conservation and phase
space arguments. In the FM ground state the lowest
electronic orbitals in k space are occupied up to 2kF by
the available electrons all with spin down. A state with
wave vector k has quasimomentum ±k due to the open
boundary conditions. An additionally superimposed spin
up electron with a certain wave vector k1 has to change
to the state k2 > 2kF in order to flip its spin, see Fig. 7a.
This decay channel can only happen if a magnon is ab-
sorbed with wave vector q = |k1 ± k2|. Such magnons
are present in the ground state because each spinpolaron
state consisting of a spin down electron with wave vec-
tor k has a small admixture of spin up states with wave
vector |k ± q| and a local magnon in state q. Smaller
values of k1 decreases the number of magnons with small
wave vector q = |k1 − k2| to enable this process. This
can be quantified by the magnon density per electron
mq =

〈

S−
q S+

q

〉

/N (see Fig. 6) and further by the accu-
mulated magnon density

ρk1
=

∑

σ=±

∑

q=|k1+σk2|
0<q<π , 2kF<k2<π

mq , (6)

which is shown in Fig. 7b and clearly states that the
number of suitable magnons increases with increasing k1
even above 2kF until it falls off finally. This result qual-
itatively reflects the decay rate for the spin up electron
shown in Fig. 7c for a KLM with L = 48, N = 4, J = 0.5
and U = V = 0. The decay rate first increases for small
k as indicated by the accumulated magnon density. For

values above 2kF the decay rate even surpasses the val-
ues at 2kF until it decreases finally for larger values of
k. We note that this is only a qualitative explanation
since other decay channels involving absorption of many
magnons are present as well.

The discussed process for the decay of the spin up elec-
tron is essentially an exchange process between a spin
up electron in state k1 and a spinpolaron in state k.
The spinpolaron provides the magnon with wave vec-
tor q = |k1 ± k2| to flip the spin up electron from state
k1 → k2, leaving the spinpolaron as a spin up electron
in state |k ± q|. As a result, by mediation of a local
magnon, the spins of two electrons have been exchanged,
whereas the local spin lattice is unaffected. This spin ex-
change process is the essential process leading to a large
life-time broadening of the spin-up electrons if many elec-
trons are present in the system. In contrast, the spinpo-
laron states have life-time broadenings, which are sev-
eral orders of magnitude smaller compared to those of
the spin-up states. The reason is that the spinpolaron-
spinpolaron interaction is rather weak and can only be
mediated via multi-magnon processes.

2. Decay rate dependencies on U, J,N

In this section we will explain how the quasiparticle
decay rate of the spin up state depends on U, J and N
and why the found tendencies are to be expected. The
results for these cases are shown in Tab. II.

Let us first consider the J-dependency. Picking one of
the columns and considering only one of the two U -values
we immediately recognize that the decay rate shrinks
with decreasing J . The exchange strength J determines
the time scale on which spins will flip, therefore with
decreasing J flipping will be suppressed and the rate de-
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creases. We note that this is different for the decay rate of
the spinpolaron, where an increasing J stabilizes each po-
laron and makes it insensitive to interactions with other
electrons. For small J close to or even in the PM phase
the decay rate of the spin up state increases notably, see
N = 4. This is natural, since in a paramagnetically or-
dered system many additional decay channels will open
up.

Considering the U dependence we find that with in-
creasing U the rate increases in most cases. In section
IVA we have found that an onsite Coulomb interaction
has the tendency to order the local spins ferromagneti-
cally. The additional spin up electron tries to align paral-
lel to the other electrons to minimize interaction energy
from the Coulomb potential. This infers a larger decay
rate, if U becomes larger. Therefore this tendency here
complies with the influence of the onsite Coulomb inter-
action found above. Only when a finite U triggers the
crossover from the PM to the FM phase, the rate de-
creases with increasing U , see N = 4 and J = 0.3. This
is obvious since in the PM phase the phase space argu-
ments presented in section IVD1 are no longer valid and
many more decay channels are possible.

If we increase the number of electrons N in the system
and keep the quasimomentum k fixed we find that the
rates decrease with increasing N , for small N deep in
the FM phase. This can be explained analog to the dis-
cussion in section IVD1. In the ground state, all initially
available electrons fill the spinpolaron-band successively
up to 2kF mainly in the spin down state. An additional
spin up electron can be added to any k-mode. In Tab. II
we considered the lowest state k = π/(L+1) in all cases.
Considering one of the rows the electron number is in-
creased from left to right and with each electron more in
the ground state the respectively next higher k-mode is
occupied by this additional electron. As a consequence,
as shown in section IVD1, by increasing N we decrease
the number of magnons suitable for scattering processes
and therefore the decay rate has to decrease. However,
in competition to this effect, increasing N means also
approaching the PM phase. Then we expect that differ-
ent and also more decay channels open up, which should
lead to an increasing decay rate. This can be seen in
Tab. II for J = 0.8 between N = 6 and N = 12. We
have also calculated lifetimes for N = 7, 9, 10, 11 (not
shown), showing that the decay rates are monotonically
increasing with increasing N for large N . For values of
N close to half-filling of the conduction band and large
values of J , such that we can switch between PM and
FM phase, we find decay rates of the order of 0.01. As
a consequence, the decay rate depends nonmonotonically
on N , it decreases for small values of N deep in the FM
phase and increases for larger values of N when the PM
phase is approached.

Nonetheless we find the sweet spot of the system by
decreasing the number of electrons going from N = 4 to
N = 3 electrons at J = 0.1. There we find that the de-
cay rate of the spin up electron decreases by two orders of

magnitude when comparing the rates in the PM and FM
phase. Still it is important to note that a minimum num-
ber of electrons in the system is important to maintain
the FM order, especially at finite temperatures.

V. DISCUSSION

In this work we discussed the phase diagram and the
spin relaxation properties of the 1d spin-1/2 Kondo lat-
tice model with Coulomb interaction. We found that a
finite onsite or nearest neighbor interaction favors a FM
order of the local spin lattice for small enough electronic
densities. This gives further strong support to the anal-
ysis of Refs. 2,20, where similiar results have been found
in 2d semiconductor systems and C13 carbon nanotubes.
It provides a pathway to achieve a spontaneous and full
polarization of the nuclear spins by lowering the temper-
ature below the critical one. This configuration is desir-
able for applications in quantum information processing,
since it reduces the spin relaxation and decoherence rates
of the electronic spins. It is important to notice that a
finite crossover temperature can only be expected, if the
density of electrons is finite. Thus, many electrons are
necessary to achieve the FM state. Once the FM state is
achieved, one can in principle perform quantum informa-
tion processing by realizing quantum dots with external
gates on time scales which are small compared to the time
the nuclear spins need to return to the PM phase. If this
is possible one can effectively realize a system consisting
of one single electron N = 1 in contact with a ferromag-
netically ordered nuclear spin lattice. In this case the spin
up state and the spinpolaron are exact eigenstates, i.e.,
the ideal situation with Γ± = 0 is achieved. In this paper
we discussed the spin relaxation properties for N > 1, i.e.
we analysed the question whether the spins in a many-
body system could possibly be used as candidates for
spin qu-bits. In Ref. 17 we already found that spinpo-
larons are indeed very long living states, indicating that
the spinpolaron-spinpolaron interaction is rather weak.
However, in this paper we found that the spin up state is
strongly influenced by exchange interaction between the
spin up and spinpolaron states. This exchange process
does not require any finite energy and, therefore, can not
even be suppressed by application of a finite magnetic
field. We analysed in detail the dependence of Γ+ on the
Coulomb interaction U , the exchange interaction J , the
particle number N and the quasimomentum k. In the
FM phase we found that the rate decreases for smaller
values of U , J , k, and larger values for N , unless we ap-
proach the PM phase. For appropriate parameter sets
we have shown that the life-time of spin up states can
be two orders of magnitude larger in the FM phase than
in the PM phase. However, compared to the life-time of
spin down spinpolaron states, their life-time is orders of
magnitudes smaller, regardless of the chosen parameter
regime in the FM phase.
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Schoeller, U. Schollwöck and S. Smerat acknowledge the

support from the DFG-Forschergruppe 912 on “Coher-
ence and relaxation properties of electron spins”.

∗ Sebastian.Smerat@physik.uni-muenchen.de
1 H. O. H. Churchill, A. J. Bestwick, J. W. Harlow, F. Kuem-
meth, D. Marcos, C. H. Stwertka, S. K. Watson, and
C. M. Marcus, Nature Phys. 5, 321 (2007).

2 B. Braunecker, P. Simon, and D. Loss,
Phys. Rev. Lett. 102, 116403 (2009).

3 F. Reininghaus, T. Korb, and H. Schoeller,
Phys. Rev. Lett. 97, 026803 (2006).

4 V. Rodrigues, J. Bettini, P.C. Silva, and D. Ugarte,
Phys. Rev. Lett. 91, 096801 (2003).

5 I. V. Krive, R. I. Shekhter, and M. Jonson ,
Low Temp. Phys. 32, 887 (2006).

6 H. Tsunetsugu, M. Sigrist, and K. Ueda,
Rev. Mod. Phys. 69, 809 (1997).

7 J. R. Schrieffer, and P. A. Wolff, Phys. Rev. B 149, 491
(1966).

8 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954);
T. Kasuya, Prog. of Th. Physics 16, 45 (1956); K. Yosida,
Phys. Rev. 106, 893 (1957).

9 H. Tsunetsugu, M. Sigrist, and K. Ueda, Phys. Rev. B 47,
8345 (1993);

10 G. Honner and M. Gulacsi, Phys. Rev. Lett. 78, 2180
(1997).

11 I. P. McCulloch, A. Juozapavicius, A. Rosengren, and
M. Gulacsi, Phil. Mag. Lett. 81, 869 (2001).

12 I. P. McCulloch, A. Juozapavicius, A. Rosengren, and
M. Gulacsi, Phys. Rev. B 65, 52410 (2002).

13 M. Sigrist, H. Tsunetsugu, and K. Ueda,
Phys. Rev. Lett. 67, 2211 (1991).

14 S. Trebst, H. Monien, A. Grzesik, M. Sigrist,
Phys. Rev. B 73, 165101 (2006).

15 P. Richmond, J. Phys. C: Solid St. Phys. 3, 2402 (1970).
16 B.S. Shastry, and D.C. Mattis, Phys. Rev. B 24, 5340

(1981).
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