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Abstract

After a short summary of known results on surface-complexity of
closed 3-manifolds, we will classify all closed orientable 3-manifolds
with surface-complexity one.
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Introduction

An approach to the study of closed 3-manifolds consists in filtering them.
The aim is to find a function from the set of closed 3-manifolds to the set of
natural (or real positive) numbers, so that the number associated to a closed
3-manifold is a measure of how much the manifold is complicated. For closed
surfaces, this can be achieved by means of genus. For closed 3-manifolds, the
problem has been studied very much and many possible functions has been
found. For example, the Heegaard genus, the Gromov norm, the Matveev
complexity have been considered.
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L (5%,(2,1),(2,1),(2,-1)) T’

Lss (5%,(2,1),(2,1),(3,-2)) (5%,(2,1),(4,1),(4,-3))

Lz (5%,(3,1),(3,1),(3,-2))

Luas (5%,(2,1),(2,1),(2,1),(2,-3))
(RP?,(2,1),(2,-1))

Table 1: Irreducible orientable closed 3-manifolds with surface-complexity
one.

All these functions fulfil many properties. For instance, they are additive
under connected sum. However, some of them have drawbacks. The Hee-
gaard genus and the Gromov norm are not finite-to-one, while the Matveev
complexity is. Hence, in order to carry out a classification process, the third
one is more suitable than the first two. The Matveev complexity is also a
natural measure of how much the manifold is complicated, because if a closed
3-manifold is P2-irreducible and different from the sphere S?, the projective
space RP? and the lens space Lj 1, then its Matveev complexity is the min-
imal number of tetrahedra in a triangulation of the manifold (the Matveev
complexity of S%, RP® and L3 is zero). Such functions could also be tools
to give proofs by induction.

The author [2] defined another function (called surface-complezity), from
the set of closed 3-manifolds to the set of natural numbers, by means of
triple points of particular immersions of closed surfaces. In this paper, we
will give a short summary of known results on surface-complexity of closed
3-manifolds and we will classify all closed orientable 3-manifolds of surface-
complexity one. Those with surface-complexity zero has been classified in [2],
and the irreducible ones are S, RP* and the lens space L,;. Among those
with surface-complexity one there are 11 irreducible ones, which are listed in
Table Il (For Seifert manifolds we have used the orbit invariants.) The list
up to complexity two has been obtained independently by Kazakov [6].

Vigara [13] used triple points of particular transverse immersions of con-
nected closed surfaces to define the triple point spectrum of a 3-manifold.
The definition of the surface-complexity is similar to Vigara’s one, but it
has the advantage of being more flexible. This flexibility has allowed to
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Figure 1: Neighbourhoods of points (marked by thick dots) of a Dehn surface.

prove many properties fulfilled by the surface-complexity, such as finiteness,
naturalness and subadditivity.
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1 Definitions

Throughout this paper, all 3-manifolds are assumed to be connected and
closed. By M, we will always denote such a (connected and closed) 3-
manifold. Using the Hauptvermutung, we will freely intermingle the dif-
ferentiable, piecewise linear and topological viewpoints.

Dehn surfaces A subset X of M is said to be a Dehn surface of M [10]
if there exists an abstract (possibly non-connected) closed surface S and a
transverse immersion f: .S — M such that 3 = f(S). By transversality, in
Y. there are only the three types of points shown in Fig. [ (called simple,
double and triple, respectively). The set of triple points is denoted by T'(X);
non-simple points are called singular and their set is denoted by S(X). In all
figures, triple points are always marked by thick dots and the singular set is
also drawn thick.

(Quasi-)filling Dehn surfaces and surface-complexity A Dehn sur-
face 3 of M will be called quasi-filling if M\ ¥ is made up of balls. Moreover,
Y is called filling [9] if its singularities induce a cell-decomposition of M; more
precisely,



o T(X) #0,

e S(X)\T(Y) is made up of intervals (called edges),
e ¥\ S(X) is made up of discs (called regions),

e M\ ¥ is made up of balls (i.e. ¥ is quasi-filling).

Since M is connected, the quasi-filling Dehn surface 3 is connected. More-
over, M minus some (suitably chosen) balls is a regular neighbourhood of X
and hence collapses to X. It is by now well-known that a filling Dehn surface
determines M up to homeomorphism and that every M has filling Dehn sur-
faces (see, for instance, Montesinos-Amilibia [9] and Vigara [12], see also [3]).

Surface-complexity The surface-complexity sc(M) of M is equal to c if
M possesses a quasi-filling Dehn surface with ¢ triple points and has no
quasi-filling Dehn surface with less than ¢ triple points [2].

2 Properties

In this section we will describe some results on surface-complexity and min-
imal quasi-filling Dehn surfaces. Details and proofs, unless explicitly stated,
can be found in [2].

Minimality and finiteness A quasi-filling Dehn surface ¥ of M is called
minimal if it has a minimal number of triple points among all quasi-filling
Dehn surfaces of M, i.e. |[T(X)| = sc(M).

Let us give some examples of quasi-filling Dehn surfaces without triple
points, which are clearly minimal. Only two surfaces are quasi-filling Dehn
surfaces of a 3-manifold: the sphere S? and the projective plane RP?, which
are quasi-filling Dehn surfaces of the sphere S® and the projective space RP?,
respectively. Two projective planes intersecting along a loop non-trivial in
both of them form a quasi-filling Dehn surface of RP?, which will be called
double projective plane. A sphere intersecting a torus (resp. a Klein bottle)
along a loop is a quasi-filling Dehn surface of S? x S! (resp. S? XS). The
quadruple hat (i.e. a disc whose boundary is glued four times along a circle)
is a quasi-filling Dehn surface of the lens-space L4 ;. Therefore, we have that

S3 RP?, S? x St S2XS! and Ly, have surface-complexity zero.
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Figure 2: Bubble-move.

Minimal quasi-filling Dehn surfaces without triple points are clearly not
filling, but if we take into account only P?-irreducible 3-manifolds (except for
three ones), we have minimal filling Dehn surfaces. More precisely, suppose
M is P%irreducible, then we have two cases:

e if sc(M) =0, then M is S® RP? or Ly;;
e if s¢(M) > 0, then M has a minimal filling Dehn surface.

Note that the only 3-manifolds that are prime but not irreducible are S? x S!
and S? X S!, hence the theorem implies that every prime 3-manifold, except
the five manifolds described above, has a minimal filling Dehn surface.

Since there is a finite number of filling Dehn surfaces having a fixed num-
ber of triple points, we have that for any integer ¢ there exists only a finite
number of P2-irreducible 3-manifolds having surface-complexity c.

Minimal quasi-filling Dehn surfaces Not all the minimal quasi-filling
Dehn surfaces of a P2-irreducible 3-manifold are indeed filling. However, they
can be all constructed starting from filling ones (except for S%, RP? and Ly,
for which non-filling ones must be used) and applying a simple move. The
move acts on a quasi-filling Dehn surface near a simple point as shown in
Fig.Rland is called a bubble-move. If a quasi-filling Dehn surface . is obtained
from a quasi-filling Dehn surface ¥ by repeatedly applying bubble-moves, we
will say that X is derived from X.

The result above on minimal filling Dehn surfaces in the P2-irreducible
case can be improved by means of a slightly subtler analysis. Suppose M is
P2-irreducible. If ¥ is a minimal quasi-filling Dehn surface of M, we have
the following cases:

o If s¢(M) = 0, one of the following holds:

— M is S? and ¥ is derived from S?,

— M is RP? and ¥ is derived from RP? or from the double projective
plane,



Figure 3: Local behaviour of duality.

— M is Ly; and ¥ is derived from the four-hat.

o If sc¢(M) > 0, then X is derived from a minimal filling Dehn surface of
M.

Cubulations and naturalness A cubulation of M is a cell-decomposition
of M such that

e cach 2-cell (called a face) is glued along 4 edges,

e cach 3-cell (called a cube) is glued along 6 faces arranged like the bound-
ary of a cube.

Note that self-adjacencies and multiple adjacencies are allowed.

The following construction is well-known (see [I], [5, 4], for instance). A
filling Dehn surface ¥ of M can be constructed from a cubulation C of M by
considering for each cube of C the three squares shown in Fig. Bland by gluing
them together (up to isotopy, we can suppose that the squares fit together
through the faces). Conversely, a cubulation C of M can be constructed from
a filling Dehn surface > of M by considering an abstract cube for each triple
point of 3 and by gluing the cubes together along the faces (the identification
of each pair of faces is chosen by following the four germs of regions adjacent
to the respective edge of ¥). The cubulation and the filling Dehn surface
constructed in such a way are said to be dual to each other.

The construction above allowed to prove that if M is P%irreducible and
is different from S°, RP® and Ly 1, then its surface-complexity is equal to the
minimal number of cubes in a cubulation of M.



Subadditivity An important feature of a complexity function is to behave
well with respect to the cut-and-paste operations. The surface-complexity
is subadditive under connected sum. Namely, the surface-complexity of the
connected sum of 3-manifolds is less than or equal to the sum of their surface-
complexities. We do not know whether it is indeed additive.

Estimations In general, calculating the surface-complexity sc(M) of M is
very difficult, but estimating it is relatively easy. More precisely, it is quite
easy to give upper bounds for it. If one constructs a quasi-filling Dehn surface
3} of M, the number of triple points of X is an upper bound for the surface-
complexity of M. Afterwards, the (usually difficult) problem of proving the
sharpness of this bound arises.

There are explicit constructions of quasi-filling Dehn surfaces of M start-
ing from triangulations, Heegaard splittings and Dehn surgery presentations
of M. They allow to prove some estimations.

Triangulations Suppose that M has a triangulation with n tetrahedra.
Then, the inequality sc(M) < 4n holds.

Heegaard splittings Suppose that H; U Hy is a Heegaard splitting of M
such that the meridians of the handlebody H; intersect those of Hy
transversely in n points. Then, the inequality sc(M) < 4n holds. This
estimation can be improved for any connected sum of P2-irreducible
3-manifolds My, such that no M}, is Lz ;. Indeed, suppose that H; U Ho
is a Heegaard splitting of such a 3-manifold M, that the meridians of
the handlebody H; intersect those of H, transversely in n points, and
that the closure of one of the components into which the meridians of
H, and H, divide 0H; = 0H, contains m of these points. Then, the
inequality sc(M) < 4n — 4m holds.

Dehn surgery Suppose that M is obtained by Dehn surgery along a framed
link L in S3 (hence M is orientable). Moreover, suppose that L has
a projection such that the framing is the blackboard one, such that
there are n crossing points, and such that there are m components
containing no overpass. Then, the inequality sc(M) < 8n + 4m holds.
If the framing is not the blackboard one, we have sc(M) < 8n + 4m +
4% | fri —w;|, where fr; and w; are, respectively, the framing and the
wirthe of the ¢-th component of the link.



Matveev complexity The surface-complexity is related to the Matveev
complexity, at least in the P%-irreducible case. The latter is defined using
simple spines. A polyhedron P is simple if the link of each point of P can be
embedded in the 1-skeleton of the tetrahedron. The points of P whose link is
the whole 1-skeleton of the tetrahedron are called vertices. A sub-polyhedron
P of M is a spineof M if M\ P is a ball. The Matveev complexity ¢(M) of M is
the minimal number of vertices of a simple spine of M. The interested reader
is referred to Matveev [7] for a complete discussion on Matveev complexity.

Suppose that M is P%-irreducible and different from L3; and L, ;. Then,
the inequalities sc(M) < 4e(M) and ¢(M) < 6sc(M) hold. The latter in-
equality has been proved in the weaker form c¢(M) < 8sc¢(M) in [2] and
then improved by Tarkaev [LI]. For the two missing manifolds, we have
C(L3,1> = 0, SC(Lg’l) = 2, C(L4’1) =1 and SC(L471) =0.

3 Orientable 3-manifolds with
surface-complexity one

In this section we will describe how we have obtained the list of the ori-
entable 3-manifolds with surface-complexity one. The list of the irreducible
orientable 3-manifolds with surface-complexity one is shown in Table [II
Note that six are elliptic and five are flat. Note also that the only miss-
ing flat 3-manifold is (52, (2,1),(3,1), (6, —5)). Finally, note that there are
no P2irreducible orientajle/ 3-manifolds having surface-complexity one of
geometric-type H? x R, SLyR, Sol, hyperbolic or non-geometric.

We will now explain the steps to obtain this list; we will not go into
detail. By means of duality, we can list cubulations with one cube up to
homeomorphism. There are three inequivalent ways to pair the six faces of
a cube. Each way involves three gluings of faces and each gluing can be
done in four ways. Therefore, we need to analyse 3 x 43 = 192 cubulations.
Among these we have ruled out those whose underlying topological space
is not a closed 3-manifold, and we have removed duplicates (up to isomor-
phism of the cubic structure); in order to carry out this step, we have used
a simple computer program. We have found 29 non-isomorphic cubulations
of orientable 3-manifolds.

We have then examined each of these 29 cubulations to identify the un-
derlying manifolds. Giving a name to many cubulations has been quite



easy. Sometimes the summands of a connected sum and the Seifert structure
are clear from the cubic structure. For the other cases we have recognised
the manifold by computing some topological invariants (homology, homo-
topy, e-invariant [8, [7], Matveev complexity) and by searching in the list of
Matveev [7].

In order to obtain the list of all orientable 3-manifolds with surface-
complexity one, we apply the results on minimality and subadditivity de-
scribed in the previous section. Since the only 3-manifolds that are prime
but not irreducible are S? x S' and S? X S!, each orientable 3-manifold with
surface-complexity one is the connected sum of one irreducible orientable 3-
manifold with surface-complexity one (listed in Table [I)) and some (possibly
none) among RP?, L, S? x S' and S?2 XSt
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