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Abstract.1

By open neighbourhood of an open subset Ω of Rn we mean an open subset

Ω′ of Cn such that Rn ∩Ω′ = Ω. A well known result of H. Grauert implies

that any open subset of R
n admits a fundamental system of Stein open

neighbourhoods in C
n. Another way to state this property is to say that

each open subset of Rn is Stein.

We shall prove a similar result in the subanalytic category, so under the

assumption that Ω is a subanalytic relatively compact open subset in a

real analytic manifold, we show that Ω admits a fundamental system of

subanalytic Stein open neighbourhoods in any of its complexifications.

1 Introduction.

A classical result of H. Grauert gives that an open set in a real analytic

manifold MR is locally the trace on MR of a Stein open set in any given
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complexification MC of MR.

The analogous result in the semi-analytic setting is easy to obtain because

when f is a real analytic function, say near 0 in R
n, the set {f > 0}

is near 0 the trace on R
n on the Stein open set {ℜ(f) > 0} cut with a

small open ball in C
n.

We solve the subanalytic case of this problem using the rather deep following

result (Theorem 2.1 below):

• a compact subanalytic set in R
n may be defined as the zero set of a

C 2 subanalytic function on R
n.

The construction of the subanalytic Stein open subset we are looking for is

then an easy consequence of H. Grauert’s idea.

We conclude this article by computing one very simple example which is

not semi-analytic in order to show that the subanalytic case is much more

involved and also to explain to non specialists of subanalytic geometry (as

we are) what are the ideas and tools hidden behind this construction.

We wish to thank Adam Parusinski for having pointed out to us a precise

reference of the above result.

2 Main results and proofs

We refer to [1], [3] and [10] for the basic material on subanalytic geometry.

The following result is due to Bierstone, Milman and Pawlucki in a pri-

vate letter to W. Schmid and K.Vilonen in 1995 (cf. [11]). We refer [4],

C.11, for a proof in the more general setting of o-minimal structures.

Theorem 2.1. Let A be a compact subanalytic set of R
n and let p ∈ N

be given. Then there exists a C p subanalytic function f in R
n such that

A = f−1(0).
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Using a C 2 subanalytic partition ( see for instance [8] for a detailed

proof of the existence, for any p, of subanalytic C p partitions of the unity),

gives the following corollary:

Corollary 2.2. Let Ω be a relatively compact subanalytic set in a real

paracompact analytic manifold MR. Then, for any complexification MC of

MR, there exists a subanalytic non negative real function f on MC of class

C 2 with compact support such that

{f > 0} ∩MR = Ω.

Moreover, f can be chosen so that Suppf is contained in any given

open set in MC containing the compact set Ω̄.

Proof. For ǫ > 0, let us denote Bǫ an open ball of R
n of radius ǫ and by

BC
ǫ the corresponding ball in C

n.

For each p ∈ Ω̄ (the closure of Ω) there exists two relatively compact open

subanalytic neighbourhoods V ⊂⊂ U of p in MC and a complex analytic

isomorphism ϕ defined in an open neighbourhood W of Ū to an open

ball BC
ǫ such that ϕ(V̄ ) is the closed ball B̄C

ǫ/2, and ϕ is real on W ∩MR.

In particular, V̄ ∩MR ⊂ U is a compact subanalytic subset, and Ū is a

compact subanalytic subset of W .

By compactness, we get a finite cover (Wi)i=1,...,q of Ω̄. On each Wi, by

Theorem 2.1, we may choose a C 2 non negative subanalytic function fi

whose zero set is Ūi \Vi∩Ω. Then take on W := ∪i=1,...,q Wi a subanalytic

C 2 partition of the unity (ψi)i=1,...,q subordinated to the cover (Ui)i=1,...,q

of the compact set ∪i=1,...,q Supp(fi) (so the support of each ψi is contained

in Ui), and define f as being the extension by zero on MC of
∑q

i=1 ψi fi.

It clearly satisfies our requirements.

The last assertion follows by applying this construction to any open

neighbourhood W of Ω̄ in MC regarded as a complexification of W ∩MR.

q.e.d.
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Remark 2.3.

We stated and proved the previous corollary in the exact form we shall use.

However, this corollary may be deduced from the fact that, with the same

argument, Theorem 2.1 is true when replacing R
n by any paracompact

real analytic manifold.

Theorem 2.4. Let Ω be a relatively compact subanalytic open set of a real

paracompact analytic manifold MR. Then, given a complexification MC of

MR, there exists a subanalytic Stein open subset ΩC of MC such that

Ω = ΩC ∩ MR (1)

Proof. Let n be the dimension of MR. By Grauert’s Theorem 3, page 470

of [5], there exist a natural number N ∈ N and a real analytic regular proper

embedding ϕ of MR in the euclidean space R
N . By complexification, one

defines a holomorphic map ϕC in a neighborhood V of MR in MC taking

values in C
N , such that ϕC|MR

= ϕ and such that the rank of ϕC is

everywhere equal to n. By the compacity of Ω̄, we may assume that V

contains a Stein open neighborhood W of Ω̄ subanalytic in MC. This

comes from the following facts :

• Grauert’s theorem gives a basis of open Stein neighbourhoods of Ω̄.

• Any compact set in a Stein manifold is contained in a compact analytic

polyhedron.

• A compact polyhedron is a compact semi-analytic set (which follows

by definition, see [6], ch.VII).

Note that the Levi form of the real analytic function g(z1, ..., zN ) =
∑

i=1,...N ℑ(zi)2 is half the square norm in C
N , hence g is strictly plurisub-

harmonic on C
N . By the maximality of the rank of ϕC, the function ϕ

∗
C
(g)

is also strictly plurisubharmonic on V and subanalytic (in fact analytic).
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On the other hand, by Proposition 2.2, there exists a subanalytic C 2

non negative function f with compact support on W such that

{f > 0} ∩MR = Ω.

As all partial derivatives of order 2 of f are bounded, there exists a

constant C ≥ 0 such the Levi form of the C 2 subanalytic function

h = C.ϕ∗
C(g)− f

is positive definite at each point of W . It follows that the open set

ΩC = {h < 0} ∩W

is Stein and subanalytic in MC. Moreover, as we have ϕ∗
C
(g) = 0 in MR,

it follows that ΩC ∩MR = Ω. q.e.d.

3 Example: A strange four-leaved trefoil

Our aim is now to give an explicit construction of the function f in Theo-

rem 2.1 in the case of one of the simplest example which is not semi-analytic.

For that purpose we shall only use Lojaciewicz inequalities and Theorem 3.2

which are basic tools in subanalytic geometry. We think that this analysis

will convince the reader of the strength and usefulness of Theorem 2.1 and

that this tool is far from being elementary.

We shall need the following refinement of subanalyticity.

3.1 Strong subanalyticity

For a continuous function f : Rn → R to be subanalytic simply means that

its graph is a subanalytic set in R
n × R, but in the non continuous case

we shall use a stronger assumption, in order to control the behaviour of the

graph near points where f is not locally bounded. We restrict ourself to

the context of the situation we need here.
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Definition 3.1. Let Ω ⊂⊂ R
n a relatively compact subanalytic open set,

and let

f : Ω → R

be a continuous function. We shall say that f is strongly subanalytic if

the function f̃ : Rn → R defined by extending f by 0 on R
n \Ω has a

subanalytic graph in R
n × P1, where P1 is the 1−dimensional projective

space R ∪ {∞}.

It is easy to see that such a condition implies that the growth of f near a

boundary point in ∂Ω has to be bounded by some power of the function

d(x, ∂Ω) thanks to Lojaciewiecz inequalities ([1]).

Remark that if f̃ is continuous this condition reduces to the usual suban-

alyticity of the graph of f̃ in R
n × R.

We shall need also the following theorem (for a detailed proof, see for in-

stance [2]).

Theorem 3.2. Let Ω ⊂⊂ R
n a relatively compact subanalytic open set,

and let

f : Ω → R

be a C 1 function which is strongly subanalytic. Then any partial derivative

of f in Ω is also strongly subanalytic.

Since, in Definition 3.1, the continuity of f̃ just means that f(x) goes to

0 when x ∈ Ω goes to the boundary ∂Ω, using Lojaciewiecz inequalities

we easily obtain the following corollary:

Corollary 3.3. In the situation of the previous theorem, assume that f̃ is

continuous. Then there exists an integer N1 such that f̃N1 is C 1 on

R
n and subanalytic.

Now applying again the ideas of the previous corollary we finally obtain:
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Corollary 3.4. In the situation of the previous corollary there exists an

integer N2 such that f̃N2 is C 2 on R
n and subanalytic.

Remark 3.5. As the reader can see in view of the preceding results, the

remaining and non trivial step to prove the existence of a subanalytic C 2

function which vanishes exactly on R
n \ Ω as stated in Theorem 2.1, is to

show the existence of a C 2 strictly positive (strongly) subanalytic func-

tion f on Ω which vanishes at the boundary. The natural candidate

is, of course, the function x 7→ d(x, ∂Ω). But all conditions are satisfied

excepted smoothness. And the non smoothness points may go to the bound-

ary. If one tries to use the ”desingularization theorem” of H. Hironaka to

solve this problem, a new difficulty comes then because the jacobian of the

modification may vanish inside Ω and not only on some points in ∂Ω.

3.2 Example

Let us consider the analytic map F : R3 → R
3 defined by

F (x, y, z) =
(

y.(ex − 1) + x2 + y2 + z2 − ε2, y.(ex.
√
2 − 1), y.(ex.

√
3 − 1)

)

.

Denote Ω the interior of the image Ω̃ of the compact ball B̄3(0, ε) which

contains Ω̄. Let us start by showing that the image by F of the sphere Sε

(the boundary of B̄(0, ε)), is a subanalytic compact subset of R
3 which is

not semi-analytic in the neighborhood of (0, 0, 0). This example is extracted

from [7]( example I.6).

Lemma 3.6. The compact F (Sε) is not semi-analytic in the neighbourhood

of the origin

Proof. Since this compact set has an empty interior, if it is semi-analytic in a

neighbourhood of the origin, there shall exist an analytic function f : U → R

on a ball U centered in 0, non identically zero, such that f−1(0) contains

U ∩ F (Sε). Let
f =

∑

m≥m0

Pm
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be the Taylor series of f at the origin, which we may assume to be con-

vergent in U provided that U is small enough. We shall assume that the

homogeneous polynomial Pm0
is not identically zero. Hence, considering

(x, y, z) ∈ Sε close enough to (0, 0, ε), the definition of F entails the

equality

0 ≡
∑

m≥m0

ym.Pm((ex − 1), (ex.
√
2 − 1), (ex.

√
3 − 1))

which holds for (x, y) ∈ R
2 close enough to (0, 0). We conclude that

Pm0
((ex − 1), (ex.

√
2 − 1), (ex.

√
3 − 1)) is identically zero for x in a neigh-

bourhood of 0. Hence this analytic function vanishes identically on R.

The behaviour at infinity of this function easily entails2 that we must have

Pm0
≡ 0, which gives a contradiction. q.e.d.

We shall now describe the open set Ω. Let us remark that the jacobian of

F is given by

J(F )(x, y, z) = 2yz.
(

(
√
2−

√
3).ex.(

√
2+

√
3) −

√
2.ex.

√
2 +

√
3.ex.

√
3
)

and for ε small enough, it doesn’t vanish on {x.y.z = 0} within the ball

B̄3(0, ε). Indeed, the brackets give an analytic function of a single variable

x; hence it has an isolated zero in x = 0. The image of {x.y = 0}∩ B̄3(0, ε)

by F is [−ε2, 0]× {(0, 0)} which is contained in 3 the boundary of Ω̃.

The image of {z = 0} is more complicated to describe.

Let us now consider the analytic morphism G : R2 → R
2 defined by

G(x, y) :=
(

y.(ex.
√
2 − 1), y.(ex.

√
3 − 1)

)

.

Let us denote by Γ the image by G of the ball B̄2(0, ε) of R
2. If

(v,w) ∈ Γ \ {(0, 0)} then the fiber G−1(v,w) is reduced to a single point

2 This is equivalent to prove the algebraic independency of the functions

(ex − 1), (ex.
√
2 − 1), (ex.

√
3 − 1).

3 See the description of Γ near (0, 0) given below
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(for ε small enough). In fact we must have v.w 6= 0 and

(ex.
√
2 − 1)

(ex.
√
3 − 1)

=
v

w
=

√
2√
3
.h(x)

whenever h ∈ C{x} converges for |x| < 2π/
√
3 et verifies h(0) = 1 and

h′(0) = (
√
2 −

√
3)/2; these equations determine a unique x ∈ [−ε, ε], for

ε ≪ 1, and hence a unique y. Remark that for x in a neighbourhood of

0, we have v/w close to
√
2/
√
3. Therefore Γ doesn’t approach (0, 0)

other than along that direction.

The fiber in (0, 0) of G is the curve {x.y = 0} ∩ B̄2(0, ε).

Remark that the points in the sphere {x2 + y2 = ε2} are mapped on

the boundary of Γ. Indeed, for those who lie on {x.y = 0} their image

is the origin. Otherwise, for each of such points not mapped on the origin,

the jacobian of G would vanish and the boundary of B̄2(0, ε) would be

mapped on the boundary of Γ in its neighbourhood.

Hence, any point of the interior Γ′ of Γ is the image by G of some point

in B2(0, ε) \ {x.y = 0}.

We shall denote ϕ : Γ \ {(0, 0)} → R the subanalytic function 4 given

by ϕ(v,w) = ||G−1(v,w)||2, in other words, the composition of G−1 with

the square of the euclidean norm in R
2.

We shall denote ψ : Γ \ {(0, 0)} → R the subanalytic function defined by

setting ψ(v,w) = y.(ex − 1) where G−1(v,w) = (x, y), and we set

∆+ :=
{

(ψ(v,w), v, w), for (v,w) ∈ Γ \ {(0, 0)}
}

∆− :=
{

(ψ(v,w) + ϕ(v,w) − ε2, v, w), for (v,w) ∈ Γ \ {(0, 0)}
}

∆0 := [−ε2, 0] × {(0, 0)}
4 The graph of G−1 : Γ \ {(0, 0)} → B̄2(0, ε \ {x.y = 0} is the same as that the graph

of G : B̄2(0, ε) \ {x.y = 0} → Γ \ {(0, 0)}.
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Note that

∆+∩∆− =
{

(u, v, w) ∈ R×(Γ\{(0, 0)}) / u = ψ(v,w) and ϕ(v,w) = ε2
}

is the graph of the restriction of ψ to ∂Γ \ {(0, 0)}.

We have now the following description of Ω̃ and of its interior Ω.

Lemma 3.7. One has ∂Ω̃ = ∆+ ∪∆− ∪∆0. The interior Ω is the open

set

Ω =
{

(u, v, w) ∈ R× Γ′ / ψ(v,w) + ϕ(v,w) − ε2 < u < ψ(v,w)
}

where Γ′ denotes the interior of Γ.

Proof. Let (u, v, w) ∈ Ω̃. If v.w = 0 then x.y = 0 and v = w = 0,

and u = x2 + y2 + z2 − ε2 belongs to [−ε2, 0] which is contained in ∆0.

Since the projection of Ω on R
2 is an open set contained in Γ, hence

in Γ′, the point (u, v, w) does not belong to Ω. Let us now exclude this case.

We have a point (x, y, z) ∈ B̄3(0, ε) such that F (x, y, z) = (u, v, w),

with x.y 6= 0. Then (x, y) ∈ B̄2(0, ε) \ {x.y = 0} and G(x, y) = (v,w) is

not (0, 0). Since ϕ(v,w) = x2 + y2 we have

u = ψ(v,w) + ϕ(v,w) + z2 − ε2

where z ∈ [−ε, ε] is, up to a sign, determined by this equation. We conclude

that the inequalities

ψ(v,w) + ϕ(v,w) − ε2 ≤ u ≤ ψ(v,w) (2)

hold on Ω̃. We have to check that ∂Ω̃ \ ∆0 is exactly described by the

equality

(u− ψ(v,w) − ϕ(v,w) + ε2)(ψ(v,w) − u) = 0. (3)

Since the projection on R
2 is open, if (v,w) 6∈ Γ′ then it must lie in

the boundary of Ω. It suffices to prove that for (v,w) ∈ Γ′ the equality
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above implies that (v,w) is in the boundary. This is clear because near

any (u, v, w) of Ω one can find δ > 0 such that ]u − δ, u + δ[×(v,w)

is contained in Ω, which is not possible by the inequalities (2) in a point

where the equality (3) is satisfied.

Hence it is sufficient to prove that Ω̃ \ ∆0 is the set of points (u, v, w)

in R × (Γ \ {(0, 0)}) satisfying the inequalities (2). Indeed, any choice

of (v,w) ∈ Γ \ {(0, 0)} gives a unique point (x, y) ∈ B2(0, ε) such that

G(x, y) = (v,w) and the inequalities (2) entail that we can find at least a

z ∈ R such that z2 = u−ψ(v,w)−ϕ(v,w)+ε2 and that ϕ(v,w)+z2 ≤ ε2.

Note that if u = ψ(v,w) + ϕ(v.w) − ε2 we will have z = 0. Therefore,

the boundary ∆− corresponds to the image of B̄3(0, ε) ∩ {z = 0} \ ∆0.

Similarly the equality u = ψ(v,w) corresponds to the image of the sphere

{x2 + y2 + z2 = ε2} deprived of ∆0 . q.e.d.

Let us now consider the function f : R3 → R
+ defined as follows:

• For (u, v, w) ∈ Ω one sets

f(u, v, w) = (ψ(v,w) − u)(u− ψ(v,w) − ϕ(v,w) + ε2)

• For (u, v, w) 6∈ Ω one sets f(u, v, w) = 0.

Note that f est strictly positive on Ω by Lemma 3.7, and that it is analytic

on the complement of ∂Ω, since the functions ϕ and ψ are analytic on

Γ′. Moeover f is bounded.

Let us now define f̃(u, v, w) = f(u, v, w).v2.w2.

Lemma 3.8. The function f̃ : R3 → R
+ is subanalytic and continuous, it

satisfies

Ω = {(u, v, w) ∈ R
3 / f̃(u, v, w) > 0}

and it is C∞ on R
3 \ ∂Ω.

Proof. First we prove that f is subanalytic. Since its graph is the union

of the graph of its restriction to Ω and the set (R3 \ Ω) × {0} which is
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subanalytic, Ω being an open subanalytic set of R
3, it is sufficient to prove

that the graph of the restriction of f to Ω is subanalytic.

Let us consider the polynomial morphism h : R3 → R given by

h(x, y, z) = (ε2 − (x2 + y2 + z2)).z2

and denote by X,X1,X2 the graph of the restriction of h respectively to

B̄3(0, ε), ∂B3(0, ε), B̄3(0, ε)∩{x.y = 0} and Y, Y1, Y2 the respective images

of these graphs by the morphism F × id : R3 × R → R
3 × R.

Let us prove that the graph of the restriction of f to Ω is equal to

Y \ (Y1 ∪ Y2). Indeed, for (u, v, w) ∈ Ω, if (x, y, z) ∈ B̄3(0, ε) verifies

F (x, y, z) = (u, v, w), we get ϕ(v,w) = x2 + y2, ψ(v,w) = y.(ex − 1) and

u = ψ(v,w) + ϕ(v,w) + z2 − ε2.

One sees that f(u, v, w) = (ε2− (x2+y2+z2)).z2. To finish, it is enough to

note that the points of F (B̄3(0, ε) ∩ {x.y = 0}) and of F (∂B3(0, ε)) are

never in Ω. Hence f̃ is subanalytic.

Let us show that it is continuous along ∂Ω, since it is C∞ on R
3 \ ∂Ω.

Let (u0, v0, w0) ∈ ∂Ω. First assume that (u0, v0, w0) belongs to ∆+.

Then u0 = ψ(v0, w0), in other words, we get the image by F of a point

(x, y, z) ∈ ∂B3(0, ε) \ {x.y = 0}. Hence the limit of (u − ψ(v,w)) when

(u, v, w) ∈ Ω tends to (u0, v0, w0) is zero. Since the functions ψ and ϕ

are bounded on Ω, the limit of f̃ is zero in such a point.

If (u0, v0, w0) ∈ ∆−, then we have the image of a point in

(B̄3(0, ε) ∩ {z = 0}) \ {x.y = 0}.

Since the function ψ is bounded on Γ the limit of f in such a point is

zero, and so it is for f̃ .

If (u0, v0, w0) ∈ ∆0 then we have v0 = w0 = 0 and the function f is

bounded, hence f̃ tends to 0 in such a point.

Let us finally show that Ω is the set where f̃ is strictly positive.

It is sufficient to check that v.w 6= 0 on Ω. But v.w = 0 entails
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x.y = 0 and so v = w = 0 and u = x2 + y2 + z2 − ε2, in other words,

(u, v, w) ∈ [−ε2, 0]× (0, 0) = ∆0. Hence such (v,w) belongs to ∂Ω.

We have now constructed a subanalytic function f̃ on R
3 which is

continuous and strictly positive exactly on Ω ⊂⊂ R
3. By Corollary 3.4

there exists a positive integer N such that f̃N is of class C 2. Then one

gets a Stein open subanalytic set of C
3 which cuts R

3 exactly on Ω as

in the general proof of Theorem 2.4. q.e.d.
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