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Abstract. A directed graph is set-homogeneous if, whenever U and V are isomorphic finite subdi-
graphs, there is an automorphism g of the digraph with Ug = V . Here, extending work of Lachlan
on finite homogeneous digraphs, we classify finite set-homogeneous digraphs, where we allow some
pairs of vertices to have arcs in both directions. Under the assumption that such pairs of vertices are
not allowed, we obtain initial results on countably infinite set-homogeneous digraphs, classifying those
which are not 2-homogeneous.

1. Introduction

The notion of homogeneous structure (sometimes called ultrahomogeneous) dates back to the pio-
neering work of Fräıssé; see [12], or originally [11]. A relational structure M is called homogeneous
if any isomorphism between finite induced substructures of M extends to an automorphism of M .
Homogeneity is a strong symmetry condition and, as a result of this, for several natural classes of
relational structures those that are homogeneous have been classified. The finite homogeneous graphs
were determined by Gardiner in [13], and the countable homogeneous graphs were classified by Lachlan
and Woodrow in [20]. The countable homogeneous posets were described by Schmerl in [27], and the
corresponding classification for tournaments was given by Lachlan [22]. Generalising the results for
posets and tournaments, Cherlin [7] classified the homogeneous countable digraphs in a major piece of
work. Homogeneous structures continue to receive a lot of attention in the literature; see for example
[17, 18, 19, 28].

There are various natural ways in which the condition of homogeneity can be weakened. In this article
we consider one such weakening called set-homogeneity: a relational structure M is set-homogeneous if,
whenever U and V are isomorphic finite induced substructures of M , there is g ∈ Aut(M) with Ug = V .

2000 Mathematics Subject Classification. 05C20; 05C75, 05C25, 20B05.
Key words and phrases. Digraphs, Homogeneous structures, Set-homogeneous structures.
1Supported by an EPSRC Postdoctoral Fellowship EP/E043194/1 held at the University of St Andrews, Scotland.

Partially supported by FCT and FEDER, project POCTI-ISFL-1-143 of Centro de Álgebra da Universidade de Lisboa,
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2 SET-HOMOGENEOUS DIGRAPHS

The notion of a set-homogeneous structure was introduced by Fräıssé in [12], although unpublished
observations had been made on it earlier by Fräıssé and Pouzet.

In this paper we investigate the extent to which homogeneity is stronger than set-homogeneity. For
instance, it was shown by Ronse [26] that any finite set-homogeneous graph is in fact homogeneous.
Enomoto gave a short and very elegant direct proof of this fact in [10]. (We shall rehearse Enomoto’s
proof below when showing that every finite set-homogeneous tournament is homogeneous.) On the
other hand, for infinite graphs homogeneity is known to be strictly stronger than set-homogeneity;
see [9]. Here, we consider how set-homogeneity compares with homogeneity for other natural families
of relational structures, in particular for directed graphs. Lachlan classified the finite homogeneous
digraphs in [21]. In fact, he considers two notions of digraph, differing according to whether or not
one allows a pair of vertices with arcs in each direction. As we shall see (Theorem 1.1(ii)), for finite
digraphs (where one allows at most one arc between any pair of vertices), set-homogeneity is close to
being equivalent to homogeneity in the sense that there is just one digraph – the directed pentagon – that
is set-homogeneous but not homogeneous. On the other hand, for the more general notion of digraph
where one does allow arcs in both directions between pairs of vertices, there are (up to complementation)
three infinite families – the digraphs Jn,Kn[D5], D5[Kn] – and several small sporadic examples of finite
digraphs which are set-homogeneous but not homogeneous (Theorem 1.1(iii)). We also obtain partial
results on countably infinite set-homogeneous digraphs (Theorem 1.4).

Digraph definitions: Before stating the main theorems, we list the relevant classes of graphs and
digraphs. We view graphs as structures with a single symmetric irreflexive binary relation, denoted
∼. An antisymmetric digraph, or a-digraph, has a single binary relation → which is irreflexive and
antisymmetric. A symmetric digraph, or s-digraph, is endowed with a symmetric relation ∼ and an
antisymmetric relation →, both irreflexive. We refer to pairs {u, v} with u ∼ v as edges, and to
pairs (u, v) with u → v as arcs. An edge {u, v} may be viewed as a pair of vertices with an arc in
each direction. Both a graph and an a-digraph can be viewed as an s-digraph (with → or ∼ empty,
respectively), so our main theorem is a classification of set-homogeneous s-digraphs. Some definitions
are phrased just for s-digraphs.

(a) If U and V are s-digraphs, then, as in [21], U × V denotes their product, and U [V ] their
compositional product. Both have domain the cartesian product U × V . In the product
U × V , we have (u1, v1) → (u2, v2) if and only if u1 → u2 and v1 → v2, and likewise for
∼. On the other hand, U [V ] consists of |U | copies of V : the → relation consists of the
pairs (u, v1) → (u, v2) where v1 → v2 in V , and (u1, v1) → (u2, v2) where u1 → u2 in U .
Likewise, the ∼ relation in U [V ] consists of the pairs (u, v1) ∼ (u, v2) where v1 ∼ v2 in V ,
and (u1, v1) ∼ (u2, v2) where u1 ∼ u2 in U .

(b) For each n, Kn denotes the complete graph on n vertices, Km,n the complete bipartite graph
with parts of size m and n, Cn the undirected cycle on n vertices, and Dn the directed
cycle on n vertices. So we may view Cn as having vertex set {0, . . . , n − 1} with edge set
{{i, j} : j ≡ i+1 (mod n)}, and Dn, on the same vertex set, just has arcs i→ i+1 (mod n).

(c) We define three additional s-digraphsH0, H1, H2 constructed in [21] and depicted in Figures 1,
2 and 3 below, and described there. A further s-digraph, denoted H3, is constructed in
Section 2; it has 27 vertices.

(d) We use P3 to denote a tournament on 3 vertices which is totally ordered by →. Let E6 be a
copy of D6 with vertex set {0, 1, 2, 3, 4, 5}, and, in addition, edges i ∼ i+ 3 (mod 6). Let E7

be the corresponding expansion of D7 on {0, 1, 2, 3, 4, 5, 6} with edges i ∼ i+3 (mod 7). Also,
let F6 be the s-digraph with vertex set {x1, y1, z1, x2, y2, z2} such that each xiyizi is a copy
of D3 with arcs xi → yi, yi → zi and zi → xi and with edges x1 ∼ x2, y1 ∼ y2 and z1 ∼ z2.
The s-digraph Jn (for n > 1) is defined as follows. Let B0, B1, B2 be disjoint independent
sets each of size n. Let f01 : B0 → B1, f02 : B0 → B2, and f12 : B1 → B2 be bijections, with
f02 = f12 ◦ f01. If x ∈ Bi and y ∈ Bi+1 ( mod 3), there is an arc x → y except in the case
when x, y are matched by the fij , in which case they are ∼-related.

(e) Finally, if M is an s-digraph, then M , the complement, is the s-digraph with the same vertex
set, such that u ∼ v in M if and only if they are unrelated in M , and u→ v in M if and only
if v → u in M . Thus, for example, J2 ∼= E6.
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Figure 1. The digraph H0. This digraph has the following description. The vertices
are the 8 non-zero vectors in GF (3)2 and there is an arc from u to v if

∣

∣uT vT
∣

∣ = 1

(where
∣

∣uT vT
∣

∣ is the determinant of the 2× 2 matrix with columns uT and vT ).

(f) We let L, A, and S denote respectively the collections of finite set-homogeneous graphs, finite
set-homogeneous a-digraphs, and finite set-homogeneous s-digraphs.

Our main theorem is part (iii) of the following, with part (ii) as a special case. Part (i) is due to
Gardiner [13] (for homogeneous graphs), Ronse [26] and Enomoto [10].

Theorem 1.1. Let M be a finite symmetric digraph. Then, with the above notation

(i) M ∈ L if and only if M or M is one of: C5, K3 ×K3, Km[Kn] (for 1 ≤ m,n ∈ N);
(ii) M ∈ A if and only if M is one of: D1, D3, D4, D5, H0, Kn, Kn[D3], or D3[Kn], for some n ∈ N

with 1 ≤ n;
(iii) M ∈ S if and only if either M or M is isomorphic to an s-digraph of one of the following forms:

Kn[A], A[Kn], L, D3[L], L[D3], H1, H2, H3, E6, E7, F6, Jn, where n ∈ N with 1 ≤ n, A ∈ A
and L ∈ L.

We note that, for the classes A and S, set-homogeneity is strictly weaker than homogeneity – see
Example 1.2. Thus, the short argument of Enomoto for graphs, in combination with the Lachlan
classification of finite homogeneous a-digraphs and s-digraphs, is not directly applicable for us. Our
proof yields a proof of the Lachlan theorem [21]. It is expressed differently, though some of the ideas
are similar, and some arguments are taken from [21].

Example 1.2.

(i) The directed cycle D5 on {a0, a1, a2, a3, a4}, with ai → aj if and only if j = i + 1 (mod 5), is an
a-digraph which is set-homogeneous but not homogeneous. To see this, observe that the two sets
W = {a0, a2} and W ′ = {a0, a3} induce isomorphic digraphs but there is no automorphism of D5

extending the isomorphism h : W →W ′ given by h : a0 → a0, a2 → a3.
(ii) The s-digraphs E6, E7, F6, H3,Kn[D5], D5[Kn] and Jn (for n ≥ 2) are set-homogeneous but not

homogeneous.

Remark 1.3.

(i) By inspection of the lists in Theorem 1.1, we see that the only finite set-homogeneous s-
digraphs with vertex-primitive automorphism group are, up to complementation, Kn, C5, D3,
D5, E7,K3 ×K3.



4 SET-HOMOGENEOUS DIGRAPHS

1 2

Figure 2. The digraphsH1 and H2. As in [21], in the diagram for H2 we have omitted
most of the arcs. The remaining arcs are obtained by carrying out the following process.
In H2 each vertex v has a unique mate v′ to which it is joined by an undirected edge
(as shown in the diagram). Now if v → w then w → v′ where v′ is the mate of v.
Similarly, if w → v then v′ → w. This leads to the insertion of another 36 arcs. The
resulting digraph, with all the arcs included, is depicted in Figure 3.

Figure 3. The digraph H2 with all of the arcs included.

(ii) The a-digraph H0 is isomorphic to the one obtained from it by reversing arcs. One such
isomorphism is the following map g (in the notation of Figure 1). (1,−1)g = (1,−1);
(−1, 1)g = (−1, 1); ((0,−1), (−1,−1))g = ((−1,−1), (0,−1)); ((1, 1), (0, 1))g = ((0, 1), (1, 1));
((1, 0), (−1, 0))g = ((−1, 0), (1, 0)).

(iii) Under our definition above, one obtains the complement M of an s-digraph M by reversing
arcs, and interchanging the relation ∼ with the relation ‘unrelated’. We could have defined
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an alternative notion of weak complement M c of M , whereby u ∼ v in M c if and only if u ∼ v
in M , but u → v in M c if and only if v → u in M . However, it can be checked that each
s-digraph in Theorem 1.1 is isomorphic to its weak complement. (An isomorphism in the case
of H0 is given in part (b).)

A relational structure M will be said to be k-homogeneous if any isomorphism between induced
substructures of M of size k extends to an automorphism. We say that M is k-set-homogeneous if,
whenever U, V are isomorphic induced substructures of M of size k, there is g ∈ Aut(M) with Ug = V .

In Sections 6 and 7, we investigate countably infinite set-homogeneous a-digraphs, and classify those
which are not 2-homogeneous. As a particular case, Droste [8, Proposition 8.13], using different ter-
minology, showed that every countably infinite set-homogeneous partial order is homogeneous. A com-
plete classification of the countably infinite set-homogeneous a-digraphs seems difficult. Our methods
are rather similar to those of [9], where countably infinite set-homogeneous graphs which are not 3-
homogeneous were classified. We define a-digraphs T (4) and Rn (for n ≥ 2), proving that they are all
set-homogeneous but not 2-homogeneous, and that the automorphism group of T (4) is vertex-primitive
while those for the Rn are imprimitive on vertices (see Lemma 6.1). Our main result, below, proved in
Section 6, is that T (4) and the Rn are the only examples which are not 2-homogeneous.

Theorem 1.4. Let M be a countably infinite set-homogeneous digraph which is not 2-homogeneous.
Then M is isomorphic to T (4) or to Rn for some n ≥ 2.

We recall one standard piece of permutation group terminology. IfG is a transitive permutation group
on a set Ω, then an orbital of G is aG-orbit Λ on Ω2. The orbital paired to Λ is Λ∗ := {(y, x) : (x, y) ∈ Λ}.
We may view Λ as the arc set of a directed graph with vertex set Ω on which G acts arc-transitively
as a group of automorphisms. We write Λ(α) := {x : (α, x) ∈ Λ}. By easy counting arguments, if Ω
is finite then |Λ(α)| = |Λ∗(α)|. The Gα-orbits Λ(α) and Λ∗(α) are referred to as paired suborbits of G.
We write Λ ◦ Λ for {(α, β) : ∃γ((α, γ), (γ, β) ∈ Λ)}. Also, Λ ◦ Λ(α) := {β : (α, β) ∈ Λ ◦ Λ}.

We say that a permutation group G on Ω is k-homogeneous if it is transitive on the collection of
unordered k-subsets of Ω, and that it is k-transitive if it is transitive on the ordered k-tuples of distinct
points of Ω. It is highly homogeneous (respectively, highly transitive) if it is k-homogeneous (respectively,
k-transitive) for all k. We freely use without explicit reference the following result, which follows from
Theorem 2 of [23].

Fact 1.5. Any highly homogeneous finite permutation group, other than the cyclic group of order 3
acting regularly, is 2-transitive.

Notation 1.6. In Section 1–5, M always denotes a finite set-homogeneous s-digraph (possibly an a-
digraph), and G = Aut(M). We describe below three orbitals Γ,∆,Λ, but slightly abusing convention,
we allow the possibility that some of these are empty. We denote by Γ the G-orbital such that α → β
if and only if (α, β) ∈ Γ. (The symbol → may occasionally be used also for functions f : A → B, but
no confusion should arise.) If M has undirected edges, then there is another specified orbital ∆ such
that if (α, β) ∈ ∆ then α ∼ β. The orbital ∆ may or may not be self-paired (often a key case division
in proofs – note that set-homogeneity implies that the pairs {α, β} with α ∼ β form a single G-orbit).
We say α, β are ∼-related if (α, β) ∈ ∆ ∪∆∗. We reserve the words edge for ∼-related pairs, and arc
for pairs (x, y) with x→ y. We use Λ to denote an orbital on independent pairs (also called ‘unrelated’
pairs), which again, may or may not be self-paired, and write α ‖ β if and only if (α, β) ∈ Λ ∪ Λ∗.
So α ‖ β means that α, β are distinct and are unrelated, that is, not related by either Γ or ∆ (again,
set-homogeneity implies that such unordered pairs form a single G-orbit). A set S of vertices in an
s-digraph or a-digraph is independent if it carries an induced digraph structure with no ∆-edges and
no Γ-arcs. If u, v are vertices of an s-digraph or a-digraph, then d(u, v) denotes the number of arcs in
a shortest directed path from u to v, and takes value ∞ if there is no such path. A 2-arc in a digraph
with arc set Γ is a sequence (x, y, z) such that (x, y) ∈ Γ and (y, z) ∈ Γ. If A is a subset of the vertex
set of the s-digraph M , and x is a vertex, we say x dominates A if x → a for all a ∈ A. Likewise, we
say x dominates a if x→ a. We use the symbols ⊃ and ⊂ for strict set containment.

Where a permutation group G on X is imprimitive, and there is a specific system of imprimitivity
(or proper non-trivial G-congruence) clear from the context, we occasionally refer to the classes of this
congruence as blocks.

We denote by Zn the cyclic group of order n.
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The proof of Theorem 1.1 is intricate, but the basic ideas are very simple. It is quite straightforward
to verify that each of the digraphs listed in the theorem is set-homogeneous (in the case of H3, for
convenience, this verification may be made computationally; see Section 2). Thus, Sections 3-5 are
concerned with proving the converse result, that every finite set-homogeneous digraph appears in our
list. We run in parallel the proofs of (ii) and (iii), at least the initial steps, but the proof of (ii) is
much simpler, since there are fewer examples. First, we reduce to the case when M is Γ-connected
(Lemma 3.2). Under this assumption, we classify examples in the special case where there are distinct
α, β ∈ M with Γ(α) = Γ(β) (Lemma 3.3). Next, it is easily seen (Lemma 3.4) that the subdigraphs
induced on Γ(α) and Γ∗(α) are themselves set-homogeneous. In Lemma 3.5 (for a-digraphs) and Section
4 (for s-digraphs) we handle the case where Γ(α) ∼= Γ∗(α); there is g ∈ G with (Γ(α))g = Γ∗(α), and

α, αg and αg−1

are equivalent under a natural G-conguence (Lemma 4.1). Thus, we reduce to the case
when Γ(α) and Γ∗(α) are non-isomorphic set-homogeneous a-digraphs (or s-digraphs, in (iii)). Arguing
inductively, we may assume they belong to the list in Theorem 1.1 (ii) (or (iii)). As noted above,
|Γ(α)| = |Γ∗(α)|. Thus, there are very limited possibilities, and these are handled by ad hoc arguments,
which ultimately prove that every finite set-homogeneous digraph M satisfies Γ(α) ∼= Γ∗(α). This case
is handled easily for a-digraphs at the end of Section 3, but it requires a lot of work for s-digraphs –
see Section 5.

Only elementary group theory is used – in particular, there is no use of the classification of finite
simple groups.

2. A 27 vertex set-homogeneous digraph

Before embarking on the proof of the main theorem, in this section we shall first complete our
description of the set-homogeneous digraphs listed in Theorem 1.1, by giving a construction for the
largest sporadic example H3. We begin with a description of a distance transitive undirected graph,
and then go on to use it to define the digraph H3.

The 3-fold cover of K9. Consider the graph X with 27 vertices

V (X) = {(u, α) | u ∈ GF (3)2, α ∈ GF (3)}

where GF (3)2 is the space of 2-dimensional row vectors. The ∼-relation is given by

(u, α) ∼ (v, β)⇐⇒
∣

∣uT vT
∣

∣ = α− β

where
∣

∣uT vT
∣

∣ is the determinant of the 2× 2 matrix with columns uT and vT .
Then nauty [25] tells us that G = Aut(X) has order 1296 = 48 × 27, and with a little thought we

can identify its elements.

• For each x ∈ GF (3)2, there is an automorphism

(u, α) 7→
(

u+ x,
∣

∣uT xT
∣

∣+ α
)

Also, for each γ ∈ GF (3) there is an automorphism (u, α) 7→ (u, α+ γ). The automorphisms
of these two types generate a group K of order 27 isomorphic to (C3 × C3)× C3, which acts
regularly on V (X).
• each M ∈ GL(2, 3) acts as follows

(u, α) 7→ (uM, |M |α)

where |M | is the determinant of M . Notice that GL(2, 3) stabilizes ((0, 0), 0) and as it has
order 48, this is the full vertex stabilizer.

Every element of the group G is then a product of elements from these two subgroups and so G =
GL(2, 3)K. It is now possible to completely determine the structure of G, but for our purposes this
will not be necessary.

The graph X is a distance-transitive graph of diameter three with parameters {8, 6, 1; 1, 3, 8} and
hence (see for example [15, Section 4.5]) it is a 3-fold cover of K9. Each of the fibres of the cover consists
of a triple of vertices of the form

{(u, 0), (u, 1), (u,−1)}

and these vertices are mutually at distance 3 from each other. The 9 triples form a system of imprimi-
tivity.

The group G has four self-paired orbitals, namely the diagonal and three others:
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O1: The orbit containing (((0, 0), 0), ((0, 1), 0)), which consists of the edges or “distance-1-graph”
of X .

O2: The orbit containing (((0, 0), 0), ((0, 1), 1)), which forms the “distance-2-graph” of X .
O3: The orbit containing (((0, 0), 0), ((0, 0), 1)) which forms the the “distance-3-graph” of X and

is a collection of 9 triangles.

The 3-fold cover of K9 was first constructed as a coset graph in Example 3.5 of [14], and proved
there to be distance transitive. Moreover, it was proved to be the unique distance transitive antipodal
3-fold cover of K9 in the classification result “Main Theorem” of that paper. It occurs in case (5)(c)
with q = 2. (Note that such a graph is not bipartite so does not occur in case (1), and note also that
in Example 3.4 of [14] the value of r is at least 5 in the unitary case so that the graph does not occur
in case (4)(b).)

The s-digraph H3. If two vertices (u, α) and (v, β) have distance 2 in X then u 6= v and either

(1)
∣

∣uT vT
∣

∣ = (α− β) + 1

or

(2)
∣

∣uT vT
∣

∣ = (α− β)− 1

and so we can define two relationships O+
2 , O

−
2 according to whether (1) or (2) holds respectively, where

clearly O2 = O+
2 ∪ O

−
2 . Similarly we can partition O3 = O+

3 ∪ O
−
3 . The relations O1, O

+
2 , O

−
2 , O

+
3 ,

O−
3 are then the orbitals of the group H = SL(2, 3)K which is a subgroup of index two in G.
The s-graph H3 is obtained by taking the relation ∼ to consist of the pairs in O+

3 ∪ O−
3 , and the

relation → to consist of the pairs in O+
2 .

E(H3) = O
+
2 ∪ O3

In other words, we take 9 triangles on the fibres and “one half” of each edge of the distance-2 graph,
while the unrelated pairs form a copy of the 3-fold cover of K9. In the terminology of Notation 1.6,

∆ = O+
3 ,Γ = O+

2 , and Λ = O1.

For ω = ((0, 0), 0) the “out-neighbourhood” Γ(ω) of ω consists of 8 vertices

((0, 1), 1) ((0,−1), 1) ((1, 0), 1) ((−1, 0), 1)
((1, 1), 1) ((−1,−1), 1) ((1,−1), 1) ((−1, 1), 1)

and Figure 1 above shows the digraph that they induce is in fact H0 (where each vertex (u, 1) is simply
labelled with u). The “in-neighbourhood” Γ∗(ω) is simply the 8 vertices

((0, 1),−1) ((0,−1),−1) ((1, 0),−1) ((−1, 0),−1)
((1, 1),−1) ((−1,−1),−1) ((1,−1),−1) ((−1, 1),−1)

and obviously the mapping (u, 1) 7→ (u,−1) is an isomorphism from Γ(ω) to Γ∗(ω).
Testing set-homogeneity appears to be a task best suited to a computer; using an orderly algorithm

we compute one representative of each orbit of H on subsets of H3, and then confirm that the induced
subdigraphs are pairwise non-isomorphic.

3. Proof of Theorem 1.1 parts (i) and (ii).

We first prove some lemmas which yield a rapid proof of Theorem 1.1(ii). Very similar ideas, together
with knowledge of (ii), then yield a (much longer) proof of (iii).

Throughout, M will always denote a finite set-homogeneous s-digraph (possibly an a-digraph), and
G = Aut(M). We freely use without specific mention that, by set-homogeneity, G is transitive on the
vertex set of M . We remark that any finite vertex-transitive connected digraph is strongly connected;
that is, if there is an unoriented path between any two vertices, then between any two vertices, there is
an oriented path in each direction. See for example Lemma 5.9 of [1].

Recall that a tournament is an a-digraph M such that for any distinct vertices a, b of M , exactly one
of a→ b or b→ a holds.

Lemma 3.1. Let M be a finite set-homogeneous tournament. Then M is homogeneous, so of size 1 or
isomorphic to D3.
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Proof. To show that M is homogeneous, we use the idea of Enomoto [10] for finite set-homogeneous
graphs. For the second assertion, by [21] any finite homogeneous tournament has size 1 or is isomorphic
to the directed triangle D3.

Let M be a finite set-homogeneous tournament and let φ : A → B be an isomorphism between
induced subdigraphs of M . We show how to extend φ to an isomorphism A ∪ {a} → B ∪ {b} for some
a ∈ M \ A, b ∈ M \ B. Repeating this process several times extends φ to an automorphism of M .
Among all vertices of M \A choose a ∈M \A so that the set A′ := Γ(a)∩A is as large as possible. (We
may assume A′ 6= ∅; for if A′ = ∅, then either apply the argument below to the tournament obtained
from M by reversing all arcs, or argue directly as follows. If A′ = ∅ then x → a for all x ∈ A and
a ∈ M \ A; by set-homogeneity there is an automorphism g of M taking A to B, and hence y → b for
all y ∈ B, b ∈ M \ B; thus, for any a ∈ M \ A and b ∈ M \ B the map φ has a one-point extension

φ̂ with φ̂(a) = b.) Define B′ := A′φ. By set-homogeneity, since A′ ∼= B′ there is an automorphism
of M sending A′ to B′ (setwise). It follows that the number of vertices of M dominating A′ equals
the number dominating B′. Also the isomorphism φ : A → B sends the set of vertices of A that
dominate A′ bijectively to the set of vertices of B dominating B′. It follows that there exists b ∈M \B
dominating B′. Moreover, b does not dominate any vertex of B \ B′, since if it did then applying the
above argument in reverse would yield a vertex a′ ∈ M \ A dominating more than |A′| vertices of A,
contradicting the maximality of |Γ(a) ∩ A| for the original choice of a. It follows that the extension of

φ to φ̂ : A ∪ {a} → B ∪ {b} given by defining aφ̂ = b is an isomorphism. �

We say that M ∈ S is Γ-connected if between every pair of vertices of M there is a path where
successive terms in the path are (Γ∪Γ∗)-related (that is, the a-digraph obtained by removing every ∆-
edge from M is connected). Recall Notation 1.6, which is used in the next lemma and indeed throughout
the proof of Theorem 1.1.

Lemma 3.2.

(i) Suppose M ∈ A, and that M is not Γ-connected. Then M is isomorphic to Kn or Kn[D3] for
some n ≥ 1.

(ii) Suppose M ∈ S, and that M is not Γ-connected. Then M or M is isomorphic to one of: Kn[A]
for some A ∈ A and n > 1; L or L[D3], for some L ∈ L; or F6.

Proof. (i) The collection of Γ-connected components forms a system of imprimitivity. Thus, by 2-set-
homogeneity, if α, β lie in the same Γ-connected component then α and β cannot be unrelated, so the
connected components are all tournaments. These components are all set-homogeneous, and are all
isomorphic. Thus, by Lemma 3.1, they are all isomorphic to D3 or all of size 1.

(ii) Write x ≡ y if x, y lie in the same Γ-connected component of M . So ≡ is a G-congruence. By
2-set-homogeneity, either there are no independent pairs in the same ≡-class, or there are no ∼-related
pairs in the same ≡-class; for at least one of these binary relations must hold of some pair from distinct
≡-classes. There are two cases to consider.

Case 1: There are no ∼-related pairs in an ≡-class.

Then each ≡-class is a set-homogeneous a-digraph, so lies in A, and all such are isomorphic, to A,
say. If A is not a tournament, then by 2-set-homogeneity applied to unrelated pairs, any two vertices
from distinct ≡-classes are ∼-related, so M ∼= Kn[A] for some n > 1. On the other hand, if A is a
tournament, then it is isomorphic to D1 or D3. If A ∼= D1, then M has no Γ-arcs, so is a homogeneous
graph so lies in L.

Thus, we may suppose A ∼= D3.
Suppose first that there do not exist distinct ≡-classes B1 and B2 such that B1 ×B2 contains both

∼-related and unrelated pairs. Then, for each pair of ≡-classes, either all possible edges exist between
the ≡-classes, or none exist. In this case, there is an induced graph on M/ ≡, and it is easy to see that
this is set-homogeneous. Thus, M ∼= L[D3] for some L ∈ L.

In the other case there are distinct ≡-classes B1 and B2 such that B1 ×B2 contains both ∼-related
and unrelated pairs. Then by 2-set-homogeneity, all such pairs of distinct ≡-classes have this form. We
claim that in this case, either M or M is isomorphic to F6.

Put Bi = {xi, yi, zi} with xi → yi → zi → xi for i = 1, 2.
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Claim. Each vertex of B1 is ∼-related to a vertex of B2, and is unrelated to a vertex in B2.

Proof of Claim. Suppose that some vertex of B1, say x1, is ∼-related to all members of B2; the other
case, when some vertex of B1 is unrelated to every vertex of B2, is handled similarly. Now if say y1 is
∼-related to an element of B2, without loss of generality x2, then there is g ∈ G with (x1, y1, x2)

g =
(x2, y2, x1). In particular (x1, x2)

g = (x2, x1), so ∆ is self-paired. Hence there is h ∈ G with (x1, x2)
h =

(y1, x2), so ∆(y1) = ∆(x1)
h contains Bh

2 = B2. Also, yh1 = z1, so ∆(z1) contains B2. Thus, all pairs
from B1 ×B2 are ∼-related, contradicting our assumption. Thus, y1, and likewise z1, are unrelated to
all vertices of B2.

By 3-set-homogeneity, there is g ∈ G with (y1, z1, x2)
g = (x2, y2, y1). In particular (y1, x2)

g =
(x2, y1), so the G-orbit Λ is self-paired. Thus Λ(y2) = Λ(z1)

g contains Bg
2 = B1, contradicting our

assumption that x1 and y2 are ∼-related. �

Thus, by the claim, we may suppose x1 is ∼-related to some but not all members of B2, and we
suppose that it is ∼-related just to x2 (there is a similar argument, recovering F6, when x1 is ∼-related
to two vertices of B2). By the claim, x2 is unrelated to some vertex of B1, say to y1; the case where x2

is unrelated to z1 is similar – note that the s-digraphs F6 and F6 which we are recovering are isomorphic
to their weak complements in the sense of Remark 1.3. Now by set-homogeneity there is g ∈ G with
(x1, x2, y1)

g = (x2, x1, y2). In particular, (x1, x2)
g = (x2, x1), so ∆ is self-paired; that is, G is transitive

on ordered ∼-edges. Now let {i, j} = {1, 2}. Since by the claim each vertex of Bi is ∼-related to some
vertex of Bj , and since x1 is ∼-related to a unique member of B2, it follows that each vertex of Bi is
∼-related to a unique vertex of Bj .

If y1 ∼ z2, then there is k ∈ G with (x1, z2, x2)
k = (z2, x1, y1), so in this case the orbital Λ on

independent pairs is self-paired. Hence there is h ∈ G with (x1, y2)
h = (y1, y2), and we must have

yh1 = z1 which is impossible as y1 6∼ y2 and z1 ∼ y2. Thus, y1 ∼ y2, and similarly, z1 ∼ z2. It follows
that B1 ∪B2 carries a structure isomorphic to F6, as indeed does the union of any two blocks. Also, Λ
is not self-paired, for if g ∈ G with (x1, y2)

g = (y2, x1), then also yg1 = z2 (as y1 is the only vertex with
x1 → y1), but y1 ∼ y2 and z2 6∼ x1.

Thus, to see that M ∼= F6, it suffices to show M = B1 ∪B2. So suppose that there is a third block
B3 = {x3, y3, z3}, with x3 → y3 → z3 → x3 and x2 ∼ x3, y2 ∼ y3, z2 ∼ z3.

We first eliminate the case when x1 ∼ x3, so suppose this holds. Then also y1 ∼ y3 and z1 ∼ z3.
Thus, there is g ∈ G with {x1, y2, y3}g = {z1, y2, y3}. Then g fixes B1 setwise and yg1 = y1 as y1 is the
unique element of B1 ∼-related to y2 and y3, but x1 → y1 and y1 → z1, contradicting xg

1 = z1.
Thus, x1 ∼ z3 or x1 ∼ y3. If x1 ∼ z3 then since B1 ∪B3 induces a copy of F6 it follows that z1 ∼ y3

and y1 ∼ x3. The resulting structure may be viewed as a 9-gon with the vertices ordered x1, x2, x3, y1,
y2, y3, z1, z2, z3 and with the three directed triangles inscribed. Let Y9 denote this 9 vertex digraph.
Viewed in this way, it is easy to describe the automorphisms of the graph Y9. On the other hand, if
x1 ∼ y3 then since B1 ∪B3 induces a copy of F6 it follows that z1 ∼ x3 and y1 ∼ z3. Again, the three
≡-classes induce a copy of Y9.

Thus, we may suppose that there are at least three ≡-classes, and the induced digraph on the union
of any three is isomorphic to Y9. In particular this means that M does not embed any ∆-triangles
(copies of K3). Now fix x1 ∈M and consider ∆(x1). Since M does not embed any ∆-triangles, ∆(x1)
is an independent set. It follows that Gx1

is highly homogeneous on ∆(x1) so since Λ is not self-paired
the only possibility is |∆(x1)| = 3. So we just need to consider the case where there are exactly
four ≡-classes, B1, B2, B3 and B4. Let x1 ∈ B1 and put ∆(x1) = {α, β, γ}. By set-homogeneity
there is an automorphism g ∈ Gx1

with {α, β}g = {β, γ}, and since Λ is not self paired this forces
(α, β, γ)g = (β, γ, α). But then g restricted to B2 ∪ B3 ∪ B4 is an automorphism of Y9 that cyclically
permutes a copy of K3. This is a contradiction, since by inspection of Y9 it is clear that no such
automorphism exists. We conclude that there are just two blocks and that M ∼= F6 (or M ∼= F6 in the
other case mentioned after the claim).

Case 2: There are no independent pairs in the same ≡-class.
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In this case, the argument of Case 1 applies, with the roles of independent pairs and ∼-connected pairs
reversed. We find that M ∼= Kn[A] for some A ∈ A, or again M is isomorphic to L or to L[D3] for
some L ∈ L, or to F6 or F6. �

Lemma 3.3.

(i) Let M ∈ A, and suppose that M is Γ-connected and there are distinct α, β ∈M with Γ(α) = Γ(β).
Then M is isomorphic to D3[Kn] for some n ≥ 2.

(ii) Let M ∈ S, and suppose that M is Γ-connected and there are distinct α, β ∈M with Γ(α) = Γ(β).
Then M or M is isomorphic to one of: L or D3[L] for some L ∈ L, or A[Kn] for some A ∈ A
and n > 1.

Proof. (i) By assumption, |M | > 1. Since M is Γ-connected, M is not an independent set. Define x ≡ y
to hold if and only if Γ(x) = Γ(y). Then ≡ is a G-congruence. Since x → y implies x 6≡ y, there is
more than one class. The classes are isomorphic, of size greater than one. By set-homogeneity applied
to arcs, the ≡-classes are all isomorphic to Kn for some fixed n > 1. Also by 2-set-homogeneity applied
to independent pairs, if x 6≡ y then x→ y or y → x (recall that a ≡-class contains no Γ-arcs).

Suppose B1, B2 are distinct ≡-classes, α1 ∈ B1 and α2 ∈ B2, and α1 → α2. Then, as B1 is a ≡-class,
x→ α2 for all x ∈ B1. It follows that x→ y for all x ∈ B1 and y ∈ B2; for as y ∈ B2 we have y ≡ α2,
and as x → α2 holds, y → x cannot hold. Thus, there is a tournament structure on {Bg

1 : g ∈ G},
with Bg

1 → Bh
1 if and only if there is x ∈ Bg

1 and y ∈ Bh
1 with x → y. This tournament is clearly

set-homogeneous, so by Lemma 3.1 must be isomorphic to D3 (since M is Γ-connected). The conclusion
follows.

(ii) We argue as in (i), with the same congruence ≡. The structure induced on each ≡-class is a
graph with respect to ∼, and is set-homogeneous so belongs to L. If this graph is neither complete
nor independent, then no pair from B1 × B2 is ∼-related or unrelated, and as in (i) we find that M is
isomorphic to L or D3[L] for some L ∈ L. Suppose next that each ≡-class induces Kn. We claim that
in this case, for any two distinct ≡-classes B1 and B2, we have one of: all possible arcs from B1 to B2,
or all possible arcs from B2 to B1, or no arcs between B1 and B2. From this it will follow that there is
an induced member of A on M/ ≡, so M ∼= A[Kn] for some A ∈ A and n > 1. Likewise, if each ≡-class
is an independent set then M ∼= A[Kn] for some A ∈ A and n > 1.

To prove the claim, suppose there are distinct ≡-classes B1, B2, and x1 ∈ B1, x2 ∈ B2 with x1 → x2.
We cannot have y1 ∈ B1, y2 ∈ B2 with y2 → y1: indeed, otherwise, by definition of ≡, z → x2 for all
z ∈ B1 and w → y1 for all w ∈ B2, so y1 → x2 and x2 → y1, which is impossible. Thus, seeking a
contradiction we may suppose there are unrelated y1 ∈ B1 and y2 ∈ B2. Since B1 is a ≡-class, x→ x2

for all x ∈ B1; in fact, there is a subset C2 of B2 with x2 ∈ C2, y2 6∈ C2, such that for any x ∈ B1,
x→ y for all y ∈ C2 and x is unrelated to all elements of B2 \ C2. Since the pair of ≡-classes (B1, B2)
cannot be interchanged, there are two distinct paired orbitals Λ,Λ∗ on unrelated pairs.

Now |B2 \ C2| = 1; for if there is z2 ∈ B2 \ C2 with z2 6= y2 then by set-homogeneity, for any
x ∈ B1 \ {y1} there is g ∈ G with {x, y2, z2}g = {x, y1, y2}, and this g interchanges B1 and B2, which
is a contradiction.

Pick h ∈ G with yh2 = x2 and put B3 := Bh
1 , so B3 6= B1, B2. Then z → y2 and {z, x2} are unrelated

for all z ∈ B3. We can write the relationship between B1 and B2 as B1 ⇒ B2. So B1 ⇒ B2, and
B3 ⇒ B2, and either B1 ⇒ B3 or B3 ⇒ B1. In the first case, by 2-set-homogeneity there is k ∈ G such
that Bk

1 = B1 and Bk
2 = B3, and in the second case there is k fixing B3 setwise with Bk

1 = B2. We
assume the former, the second case being similar.

Now put C3 := Ck
2 , and let B3 \ C3 := {y3}. We have x1 → x2, y3 → y2, and the pairs

{x1, y2}, {x1, y3} and {x2, y3} are unrelated. Thus, the map (x1, y3, x2) 7→ (y3, x1, y2) is an isomor-
phism; this extends by set-homogeneity to an automorphism (as the structure on {x1, y3, x2} is rigid),
and the latter interchanges the pair {x1, y3}, contrary to the fact that these are unrelated. This is a
contradiction and so establishes the claim in the first paragraph of the proof of part (ii). �

Of course, the dual of the above lemma also holds, and deals with the case that there are distinct
vertices α, β ∈M with Γ∗(α) = Γ∗(β).

Lemma 3.4. Let M ∈ S, and α ∈ M . Then the induced s-digraphs on Γ(α) and Γ∗(α) are set-
homogeneous, so lie in S.
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Proof. Suppose that U, V are induced subdigraphs of Γ(α), and φ : U → V is an isomorphism. Then
φ extends to an isomorphism U ∪ {α} → V ∪ {α} fixing α. Thus, by set-homogeneity of M , there is
g ∈ G with (U ∪ {α})g = V ∪ {α}. Since α is the unique element of U ∪ {α} which dominates the rest
of this set, g must fix α, so induces an automorphism of Γ(α).

The same argument applies to Γ∗(α). �

Lemma 3.5. Let M ∈ A, α ∈ M , and suppose that the induced a-digraphs on Γ(α) and Γ∗(α) are
isomorphic. Then M is isomorphic to one of the a-digraphs listed in Theorem 1.1(ii).

Proof. By Lemma 3.2, we may assume that M is Γ-connected. If |Γ(α)| = 1, then M has in and out
degree 1, so by connectedness is isomorphic to Dn for some n. In this case, by set-homogeneity on
unrelated pairs, n ≤ 5. Thus, we may suppose |Γ(α)| > 1.

By set-homogeneity, there is g ∈ G with (Γ(α))g = Γ∗(α). Put γ := αg and β := αg−1

. Then
Γ∗(α) = Γ(γ) and Γ(α) = Γ∗(β).

We may assume that for any vertices x and y, if Γ(x) = Γ(y) or Γ∗(x) = Γ∗(y) then x = y; for
otherwise our result follows by Lemma 3.3 and the remark following it. As Gα fixes Γ(α) and Γ∗(α), it
follows that Gα fixes β and γ, and hence that Gα = Gβ = Gγ .

Suppose first that γ ∈ Γ(α). Now β = αg−1

6∈ Γ(α)g
−1

= Γ(α), so γ 6= β. Since Gα acts transitively
on Γ(α) and fixes Γ∗(α) setwise, Γ(γ) = Γ(γ′) for all γ′ ∈ Γ(α). Since by assumption, |Γ(α)| > 1, this
contradicts our assumption in the last paragraph. Thus γ 6∈ Γ(α) ∪ Γ∗(α) so α and γ are unrelated.

Next, suppose that β = γ. If x ∈ Γ(α) and y ∈ Γ∗(α) then by set-homogeneity there is g ∈ G with
(α, x, γ)g = (γ, y, α). Thus, the ordered pairs of unrelated points form a single self-paired orbital.

We claim now that M = {α, γ} ∪ Γ(α) ∪ Γ∗(α). For suppose x ∈ Γ(α), and y ∈ Γ(x), with
y 6∈ Γ(α)∪Γ∗(α). Then α and y are unrelated, so by 3-set-homogeneity there is g ∈ G with (α, x, y)g =
(α, x, γ). As Gα fixes γ, it follows that y = γ, as required.

It follows that there is a G-congruence ≡ on M with classes of size 2, where x ≡ y if and only if
Γ(x) ∪ Γ∗(x) = Γ(y) ∪ Γ∗(y). By 2-set-homogeneity, any two vertices in distinct ≡-classes are joined
by an arc. Clearly if x ≡ y and x 6= y then Γ(x) = Γ∗(y), so the digraph induced on the union of
any two blocks is isomorphic to D4. By set-homogeneity applied to arcs, G acts 2-transitively on the
set of ≡-classes. Thus, Γ(α) (and likewise Γ∗(α)) meets each ≡-class other than {α, γ} in a singleton,
so carries the structure of a set-homogeneous tournament. Since we have |Γ(α)| > 1, it follows from
Lemma 3.1 that each of Γ(α) and Γ∗(α) is isomorphic to D3, so |M | = 8. Once the arcs within Γ(α)
are chosen, the rest of the construction is forced, and it can be checked that whatever the arcs are on
Γ(α) the resulting digraph is isomorphic to H0.

Finally, suppose that β 6= γ and γ 6∈ Γ(α). Then, as in the fourth paragraph of the proof, we may
assume β 6∈ Γ∗(α). Thus, {α, β} and {α, γ} are both unrelated pairs. There is no x ∈ Γ∗(α) with
β → x, for otherwise there would be g ∈ G with (α, x, β)g = (α, x, γ), which is impossible as Gα fixes
β. Thus, d(β, α) > 2 and likewise d(α, γ) > 2, so the orbital which contains (α, β) and (γ, α) is not
self-paired. Define x ≡ y on M if Gx = Gy; then β ≡ α and γ ≡ α, as noted above. If α ≡ x then clearly
x 6∈ Γ(α) ∪ Γ∗(α), so if also x 6= α then {α, x} is an unrelated pair. In this case, (α, x) lies in the same
orbit as one of (α, β), (α, γ), and since Gα fixes x this implies that x ∈ {β, γ}. Thus ≡-classes have size
three, and must be independent sets. Moreover, two elements in distinct ≡-classes cannot be unrelated.
Hence it follows from set-homogeneity on arcs that G is 2-homogeneous on M/ ≡. If x ∈ Γ(α), then
there is an arc from α to x and an arc from x to β. Since α ≡ β, it follows by 2-homogeneity on the
set of ≡-classes that there are arcs in both directions between any two classes. Thus, if B1 and B2 are
≡-classes then there is g ∈ G interchanging B1 and B2. However, the number of arcs between B1 and
B2 is 9, which is odd, so the number of arcs from B1 to B2 does not equal the number from B2 to B1,
a contradiction to the existence of g. �

Lemma 3.6. [21, Lemma 1.2(4)] Suppose that M ∈ S, α ∈ M , β ∈ Γ(α) and γ ∈ Γ∗(α). Then
Γ(α) ∩ Γ∗(β) ∼= Γ(γ) ∩ Γ∗(α).

Proof. This follows from 2-set-homogeneity, which ensures that there is g ∈ G with (α, β)g = (γ, α). �

We are now in a position to prove the first two parts of our main result.

Proof of Theorem 1.1(i), (ii). For part (i), by [10] and [26], if M ∈ L then M is homogeneous, and
by [13] the listed graphs are precisely the finite homogeneous graphs.
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For part (ii), first, by Lemma 3.2 (i), we may suppose that M is connected. We now argue by
induction on |M |. By Lemma 3.4 and the inductive hypothesis, Γ(α) and Γ∗(α) belong to the list in
(ii), and as Γ and Γ∗ are paired orbitals, |Γ(α)| = |Γ∗(α)|.

By Lemma 3.5, we may suppose that Γ(α) 6∼= Γ∗(α). Also, if one of Γ(α) or Γ∗(α) has no arc,
then M does not embed P3, and hence both are isomorphic to Kn for some n, so are isomorphic, a
contradiction. Thus, by inspection of the list in (ii), we may suppose that for some n > 1, Γ(α) ∼= Kn[D3]
and Γ∗(α) ∼= D3[Kn], or vice versa. Since the first case is obtained from the second by reversing all arcs
(and the list of examples in Theorem 1.1(ii) is closed under this operation), we suppose Γ(α) ∼= Kn[D3]
and Γ∗(α) ∼= D3[Kn]. Now, however, we find that if β ∈ Γ(α) and γ ∈ Γ∗(α) then |Γ(α) ∩ Γ∗(β)| = 1
but |Γ∗(α) ∩ Γ(γ)| = n > 1. This contradicts Lemma 3.6. �

4. Proof of Theorem 1.1(iii): case Γ(α) ∼= Γ∗(α)

Let M be a finite set-homogeneous s-digraph, with G := Aut(M). In proving Theorem 1.1(iii), it
follows from Lemma 3.2 that we may assume that M is Γ-connected. If |Γ(α)| = 1, then the Γ-structure
is just a cycle, and it can be checked using set-homogeneity that M is up to complementation one of D1,
D3, D4, D5, E6, E7. In this section we deal with the case where Γ(α) ∼= Γ∗(α). We argue by induction
on |M |, and note that the result certainly holds when |M | ≤ 2. By Lemma 3.4, and the inductive
hypothesis, we therefore have that Γ(α) and Γ∗(α) lie in the list of s-digraphs in Theorem 1.1(iii).
Thus, our assumption throughout the section is:

(A)

M is a finite Γ-connected set-homogeneous s-digraph with Γ-connected complement;
Γ(α) ∼= Γ∗(α) for some α ∈M , and |Γ(α)| > 1;
Γ(α) and Γ∗(α) belong to the list in Theorem 1.1(iii); and the following statement (∗),
justified by Lemma 3.3(ii) and the remark following Lemma 3.3:
(∗) for any distinct α, β, Γ(α) 6= Γ(β) and Γ∗(α) 6= Γ∗(β).

Observe that the complement of any s-digraph satisfying (A) also satisfies (A).
Our first lemma uses Lemma 3.3 to identify two major sub-cases to be considered.

Lemma 4.1. Suppose M ∈ S satisfies (A). Then there exist unique vertices β, γ such that Γ∗(β) = Γ(α),
and Γ∗(α) = Γ(γ). Moreover, after replacing M by its complement if necessary, one of the following
holds.

(a) β 6= γ and there is an equivalence relation ≡ on M given by

u ≡ v ⇔ Gu = Gv

such that the induced structure on each ≡-class is Cj for some j ∈ {3, 4, 5}, with the corre-
sponding cyclic group induced by the setwise stabiliser;

(b) β = γ and there is a G-congruence ≡ on M given by

u ≡ v ⇔ ((Γ(u) = Γ∗(v)) ∧ (Γ∗(u) = Γ(v)) ∨ u = v)

with ≡-classes of size two such that: u ≡ v ⇔ u ∼ v and the restriction of the relation ∆ to
Γ(α) ∪ Γ∗(α) is a matching between Γ(α) and Γ∗(α); moreover Γ(α) is isomorphic to one of
the a-digraphs of Theorem 1.1(ii), and the s-digraph induced on the union of any two ≡-classes
is isomorphic to either D4 or K2,2.

Proof. By set-homogeneity, and the assumption of the lemma, there exists g ∈ G such that Γ(α)g =

Γ∗(α), so for β := αg−1

and γ := αg we have Γ∗(β) = Γ(α) and Γ∗(α) = Γ(γ). By assumption (A), the
vertices β, γ are unique. There are then two possibilities, depending on whether or not β = γ.

First suppose β 6= γ. Define an equivalence relation ≡ on M by x ≡ y if and only if Gx = Gy . In
this case the vertices α, β, γ are ≡-equivalent. Since |Γ(α)| > 1, there are distinct δ, δ′ ∈ Γ∗(α) and
g ∈ Gα with δg = δ′, so α 6≡ δ. Thus, the induced structure on each ≡-class is an undirected graph
and its setwise stabiliser in G induces on it a set-homogeneous group of automorphisms that is regular
on vertices, by definition of ≡. It follows from Theorem 1.1(i) that the only such graphs are, up to
complementation, one of: K3

∼= C3, K2,2
∼= C4, or the pentagon C5. Moreover, in each case, the only

set-homogeneous group that is regular on vertices is a cyclic group. Thus, (a) holds.
Now suppose that β = γ (so that g interchanges α and β). Because of assumption (A) the relation

given in part (b) is a G-congruence ≡ on M and the ≡-class containing α is [α] := {α, β}. All ≡-classes
have size 2, and we cannot have a Γ-arc between ≡-related elements. By 2-set-homogeneity and since
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≡ is a G-congruence, either ‘u ≡ v ⇔ (u = v ∨ u ∼ v)’, or ‘u ≡ v ⇔ (u = v ∨ u and v are unrelated)’.
In the latter case, we may replace M by M . Thus we may assume that u ≡ v ⇔ (u = v ∨ u ∼ v).

Let a ∈ Γ(α). By 2-set-homogeneity there is an element h ∈ G such that (α, a)h = (a, β), and
then b := βh must lie in Γ(β) = Γ∗(α) and the ≡-class [a] = [α]h = {a, b}. This yields the claimed
∆-matching between Γ(α) and Γ∗(α), and that [α] ∪ [a] ∼= D4. It also implies that Γ(α) does not
contain any ≡-classes and hence the induced digraph on Γ(α) does not contain undirected edges. Thus
by induction Γ(α) is isomorphic to one of the a-digraphs of Theorem 1.1(ii). Finally, to determine the
possibilities for the induced s-digraph on the union of two ≡-classes we may assume that one of the
classes is {α, β}. If the other class is [a] for some a ∈ Γ(α) then the induced s-digraph is D4, and
otherwise it is K2,2. �

It follows from Lemma 4.1 that, for the case where Γ(α) ∼= Γ∗(α), it is sufficient to prove Theo-
rem 1.1(iii) in the case where part (a) holds, and the case where part (b) holds. From now on we shall
use [α] to denote the ≡-class of the vertex α, with ≡ as in Lemma 4.1(a) or (b).

4.1. Dealing with Lemma 4.1(b). Throughout this subsection M will denote an s-digraph satisfying
assumption (A) and the conditions of Lemma 4.1(b). In what follows we prove that the pair (Γ(α),M)
is isomorphic to (D3, H0), (D4, H2), or (K2, H1), completing the proof of Theorem 1.1(iii) in this case.
We use the notation of Lemma 4.1.

Lemma 4.2. Γ(α) is not isomorphic to D5.

Proof. Suppose that Γ(α) ∼= D5. Let Γ(α) = {a1, a2, a3, a4, a5} with ai → ai+1 (mod 5) for all i. Let
bi be the corresponding elements of Γ(β) under the matching given by ≡. Since a5 → a1, it follows
from Lemma 4.1(b) that the subdigraph induced on [a1] ∪ [a5] is isomorphic to D4, and in particular
a1 → b5 → b1 → a5. Likewise b1 → b2 → b3 → b4 → b5. Similarly b5 → a4 → b3, and the subdigraphs
induced on {a1, a2, a3, a4} and B := {a1, b5, a4, b3} are both isomorphic to a directed path of length
3 (which is rigid). Thus there is a unique isomorphism mapping (a1, a2, a3, a4) 7→ (a1, b5, a4, b3) and
by 4-set-homogeneity this extends to an automorphism φ of M . Let α′ = αφ and β′ = βφ so that
[α′] = {α′, β′}. Then Γ(α′) contains B, and this implies that α′ 6∈ {α, β} ∪ Γ(α) ∪ Γ∗(α). A similar
consideration of Γ∗(β′) shows that β′ does not lie in this set either.

Now [α′] ∪ [a1] = ([α] ∪ [a1])
φ induces D4, by Lemma 4.1(b), and it follows that the subdigraph

induced on {α} ∪ [α′] ∪ [a1] is rigid. A similar argument shows that this digraph is isomorphic to
the digraph induced on {α} ∪ [α′] ∪ [a5]. By 5-set-homogeneity there is an automorphism π of M
extending the unique isomorphism (α, a1, b1, α

′, β′) 7→ (α, a5, b5, β
′, α′). Since π fixes α and maps a1

to a5 it follows that π : ai 7→ ai−1 (mod 5), bi 7→ bi−1 (mod 5) for each i. Consequently Γ(β′) =
Γ(α′)π ⊇ {a1, b5, a4, b3}π = {a5, b4, a3, b2}. Now (considering the induced subdigraphs on [α′] ∪ [ai] for
i = 1, 3, 4, 5), Γ(β′) ⊇ {b1, a5, b4, a3}, and we conclude that Γ(β′) = Γ(α′)π = {a5, b4, a3, b2, b1}. This is
a contradiction since the digraph induced by these vertices is not isomorphic to D5. �

Lemma 4.3. If Γ(α) is a tournament, or is not Γ-connected, then (Γ(α),M) ∼= (K2, H1) or (Γ(α),M)
∼= (D3, H0).

Proof. First suppose that Γ(α) is a tournament. Then, as |Γ(α)| > 1, by Lemma 3.1 we have Γ(α) ∼= D3.
By Lemma 4.1(b) (last clause), it follows that each vertex of Γ(α) dominates one in Γ∗(α), and hence,
since |Γ(α)| = 3, no arc has just one vertex in {α, β} ∪ Γ(α) ∪ Γ(β), so by Γ-connectedness of M this
set equals M . This implies that M has no unrelated pairs, and so M must be the complement of a
set-homogeneous a-digraph. By Theorem 1.1(ii), the only possibility is that M = H0 (which satisfies
the conditions).

Thus, we may suppose that Γ(α) is not Γ-connected. Then, by Theorem 1.1(ii), Γ(α) ∼= Kn or
Kn[D3] for some n > 1. In the latter case, if A := (a → a′ → a′′ → a) is a connected component of
Γ(α), and b, b′, b′′ ∈ Γ∗(α) are such that a ≡ b, a′ ≡ b′, and a′′ ≡ b′′, then it follows from Lemma 4.1(b)
that B := (b → b′ → b′′ → b) is a connected component of Γ∗(α). Thus, by Lemma 4.1(b), Γ(α) ∼=
A ∪ (Γ∗(α) \ B). If Γ(α) ∼= Kn, let A = {a} ⊆ Γ(α) and B = {b} ⊆ Γ∗(α) with a ≡ b. Then in either
case, by set-homogeneity, there is an automorphism θ of M such that Γ(α)θ = A ∪ (Γ∗(α) \ B). Let
α′ = αθ and β′ = βθ. Then [α′] = {α′, β′} 6= [α]. Also, [α′] ∩ (Γ(α) ∪ Γ∗(α)) = ∅, so [α] ∪ [α′] carries a
copy of K2,2. Note that since θ preserves ≡, Γ(α) ∩ Γ(β′) = Γ(α) \A.
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Let a2 ∈ Γ(α) \ A and b2 ∈ Γ∗(α) \ B such that a2 ≡ b2. Then it can be checked that (α →
a ∼ b → α′ ∼ β′) ∼= (α → a2 ∼ b2 → β′ ∼ α′), and this configuration is rigid. Thus there is an
automorphism of M fixing α and swapping α′ and β′, and in particular, Γ(α) ∩ Γ(α′) ∼= Γ(α) ∩ Γ(β′).
This implies that n = 2 so Γ(α) is isomorphic either to K2 or to K2[D3]. If Γ(α) ∼= K2[D3], then Γ(a)
contains {β, β′, a′, b′′}. However, the subdigraph induced by these four vertices is Γ-connected, whereas
Γ(a) ∼= K2[D3], and this is a contradiction.

The only remaining possibility is that Γ(α) ∼= K2. In this case, let Γ(α) = {a, a′} and Γ(β) = {b, b′}
with a ≡ b and a′ ≡ b′. With θ defined as in the second paragraph of the proof, we have Γ(α′) = Γ(α)θ =
{a, a′}θ = {a, b′} and since automorphisms preserve≡ we deduce that Γ(β′) = Γ(β)θ = {b, b′}θ = {a′, b},
that Γ∗(α′) = Γ∗(α)θ = Γ(β)θ = {a′, b} and similarly that Γ∗(β′) = {a, b′}. Now since Γ(v) ∼= K2

and in particular |Γ(v)| = 2 for every vertex v of M , by Γ-connectedness of M we conclude that
M = {α, β} ∪ Γ(α) ∪ Γ∗(α) ∪ {α′, β′}, all relations have been determined, and M ∼= H1. �

Lemma 4.4. Let m be the largest size of an independent set that embeds into Γ(α). Suppose that for
every vertex v ∈ Γ(α) there is a unique independent subset of Γ(α), of size m, containing v. Then M
is isomorphic to one of the s-digraphs listed in Theorem 1.1 (iii).

Proof. By Lemma 4.3, we may assume that Γ(α) is Γ-connected and m ≥ 2.

Claim. We have m = 2.

Proof of Claim. Suppose to the contrary that m ≥ 3. Let Im = {a1, . . . , am} be an independent subset
of Γ(α) of size m. Arguing along similar lines to the proof of Lemma 4.3, let I ′m = {b1, . . . , bm} be the
corresponding set of elements in Γ(β) = Γ∗(α) under the matching given by ≡, so ai ≡ bi for each i.
By Lemma 4.1(b), {a1, b2, . . . , bm} is independent so, by m-set-homogeneity, there is an automorphism
θ of M such that Iθm = {a1, b2, . . . , bm}. Since θ preserves the ≡ relation, (I ′m)θ = {b1, a2, . . . , am}.
Let α′ = αθ and β′ = βθ, so b1, a2 ∈ (I ′m)θ ⊂ Γ(β′). Thus {α, β} 6= {α′, β′}, and also, since α, β 6∈
{a1, . . . , am, b1, . . . , bm}, we have {α′, β′} ∩ {a1, . . . , am, b1, . . . , bm} = ∅.

We claim that {α′, β′}∩(Γ(α)∪Γ∗(α)) = ∅. Indeed, by the uniqueness assumption of the lemma, the
fact that m ≥ 3, and inspection of the list in Theorem 1.1(ii), it is easy to see that the only possibilities
are that either Γ(α) ∼= Kn or Γ(α) ∼= D3[Kn] for some n ≥ 3. Now suppose, for instance, that α′ ∈ Γ(α).
Then we would have {α′, a1, a2} ⊆ Γ(α) with a1 ← α′ ← a2 and a1 ‖ a2. But this is impossible, since
this structure clearly does not embed into either Kn or D3[Kn]. Similarly we can show α′ 6∈ Γ∗(α),
β′ 6∈ Γ(α) and β′ 6∈ Γ∗(α), proving that {α′, β′} ∩ (Γ(α) ∪ Γ∗(α)) = ∅.

Now (α, a1, b1, α
′, β′) ∼= (α, a2, b2, β

′, α′) and this configuration is rigid. By 5-set-homogeneity there
is an automorphism π of M that extends this isomorphism. In particular, π fixes α and sends a1 to a2.
Since Im is both the unique independent set in Γ(α) of size m containing a1, and the unique independent
set in Γ(α) of size m containing a2, it follows that Iπm = Im. Thus a2 = aπ1 ∈ Iθπm ⊆ Γ(αθπ) = Γ(β′),
so a2 ∈ Γ(α) ∩ Γ(β′) ∩ Im and hence aπ2 ∈ Γ(απ) ∩ Γ(β′π) ∩ Iπm = Γ(α) ∩ Γ(α′) ∩ Im. Since (I ′m)θ =
{b1, a2, . . . , am} ⊆ Γ∗(α′), which is disjoint from Γ(α′), it follows that Γ(α) ∩ Γ(α′) ∩ Im = {a1}.
Hence aπ2 = a1. Also, b3 ∈ Iθm ⊆ Γ(α′), and so a3 ∈ Γ(β′). Thus a3 ∈ Γ(α) ∩ Γ(β′) ∩ Im, whence
aπ3 ∈ Γ(α) ∩ Γ(α′) ∩ Im = {a1}, which implies aπ3 = a1 = aπ2 , and this contradiction yields the claim.

Thus m = 2, and the digraph Γ(α) has the property that for every vertex v ∈ Γ(α) there is a unique
vertex v′ in Γ(α) unrelated to v. In particular |Γ(α)| is even. There are no edges or arcs between the
≡-classes [v] and [v′], so the subset [v] ∪ [v′] induces K2,2, by Lemma 4.1(b). It follows that there is at
least one ≡-class {α′, β′} unrelated to {α, β}.

Also, since v, v′ ∈ Γ(α) = Γ∗(β), it follows from 2-set-homogeneity that, given any independent pair
u, u′, the set Γ(u) ∩ Γ(u′) is non-empty.

We aim to show that M is equal to the disjoint union of {α, β}, {α′, β′}, and Γ(α) ∪ Γ(β). Define
the following sets

A1 = Γ(α) ∩ Γ(α′), A2 = Γ(α) ∩ Γ(β′)
B1 = Γ(β) ∩ Γ(β′), B2 = Γ(β) ∩ Γ(α′).

It follows from the observation in the previous paragraph that A1, A2, B1, B2 are all non-empty, and
by 2-set-homogeneity we have A1

∼= A2
∼= B1

∼= B2. Let a1 ∈ A1, and [a1] = {a1, b1}. Then [a1] ∪ [α]
and [a1] ∪ [α′] both induce D4, and it follows that b1 ∈ B1. Similarly there exist a2 ∈ A2 and b2 ∈ B2
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with a2 ≡ b2. Then (α, a1, b1, α
′, β′) ∼= (α, a2, b2, β

′, α′) and this configuration is rigid, so by 5-set-
homogeneity there is an automorphism of M that fixes α, β and swaps α′, β′. Also, note that since
every vertex in Γ(α) is independent from a unique vertex in Γ(α), it follows that the orbital Λ is
self-paired.

Now we show that Γ(α) = A1 ∪ A2. Let N = |Γ(α)| = |Γ∗(α)|, so N is even. Let v, v′ ∈ Γ(α) with
v unrelated to v′, and let w,w′ be the corresponding elements in Γ(β) such that v ≡ w and v′ ≡ w′.
Define the following sets:

X1 = Γ(v) ∩ Γ(v′) ∩ Γ(β), X2 = Γ∗(v) ∩ Γ∗(v′) ∩ Γ(β)
Y1 = Γ(v) ∩ Γ∗(v′) ∩ Γ(β), Y2 = Γ∗(v) ∩ Γ(v′) ∩ Γ(β).

For each vertex x in Γ∗(α) = Γ(β) there is, in Γ∗(α), a unique vertex x′ unrelated to x, and it follows
(on considering [v] ∪ [x] and [v′] ∪ [x], for x ∈ Γ(β) \ {w,w′} and by Lemma 4.1(b)) that

Γ(β) \ {w,w′} = X1 ∪X2 ∪ Y1 ∪ Y2.

Let X ′
1, X

′
2, Y

′
1 , Y

′
2 be the corresponding subsets of Γ(α) given by the ≡-matching. Note that |Γ(β) \

{w,w′}| = N − 2. So we have N − 2 = |X1 ∪X2|+ |Y1 ∪ Y2|.
We claim that |Γ(v)∩Γ(v′)| ≥ N/2. If |X1∪X2| ≥ |Y1 ∪Y2| then since Γ(v)∩Γ(v′) ⊇ X1∪X ′

2∪{β},
it follows that

|Γ(v) ∩ Γ(v′)| ≥ |X1 ∪X ′
2|+ 1 ≥ (N − 2)/2 + 1 = N/2.

On the other hand, if |X1 ∪X2| < |Y1 ∪ Y2|, then since Γ(v) ∩ Γ∗(v′) ⊇ Y1 ∪ Y ′
2 we have

|Γ(v) ∩ Γ∗(v′)| ≥ |Y1 ∪ Y ′
2 | > (N − 2)/2

and hence |Γ(v) ∩ Γ∗(v′)| ≥ N/2. Since Γ(v′) = Γ∗(w′) and, as we showed above, some automorphism
of M fixes v and w and swaps v′ and w′, we see also in this case that

|Γ(v) ∩ Γ(v′)| = |Γ(v) ∩ Γ∗(w′)| = |Γ(v) ∩ Γ∗(v′)| ≥ N/2

proving the claim.
Thus, since G is transitive on independent pairs, for any independent pair x, y in the graph M we

have |Γ(x) ∩ Γ(y)| ≥ N/2. In particular this is true for the pairs (α, α′), (α, β′), (β, α′), (β, β′) and we
conclude that

|A1| = |A2| = |B1| = |B2| = N/2 = |Γ(α)|/2.

Therefore we have Γ(α) = A1 ∪A2 and Γ(β) = B1 ∪B2. Since we are assuming that M is Γ-connected,
and every vertex in the set below has the correct number 2N of (Γ∪Γ∗)-neighbours, we have accounted
for all the vertices and

M = {α, β} ∪ A1 ∪ A2 ∪B1 ∪B2 ∪ {α
′, β′}.

In particular, [α′] is the unique ≡-class unrelated to [α], and hence is Gα-invariant. Since Γ(α) is
connected, there is an arc between A1 and A2. Moreover, the partition A1 ∪A2 of Γ(α) is preserved by
Gα, so it follows from 3-set-homogeneity that neither A1 nor A2 contains an arc. Therefore each Ai is
an independent set, and since m = 2 it follows that |Ai| = 2 and between every a1 ∈ A1 and a2 ∈ A2

there is an arc. Along with the fact that Γ(α) is set-homogeneous, this implies that Γ(α) is isomorphic
to D4. The structure on M is now fully determined, and we can verify that M ∼= H2. �

Now we return to the proof of Theorem 1.1(iii) in the case where Lemma 4.1(b) holds. The case
|Γ(α)| = 1 is dealt with in the first paragraph of Section 4 so we may assume that |Γ(α)| > 1. Also,
as noted there, we may assume inductively that assumption (A) holds and in particular that Γ(α) is
isomorphic to a set-homogeneous a-digraph listed in Theorem 1.1(ii). The case Γ(α) ∼= D5 is dealt
with by Lemma 4.2, and the cases with Γ(α) isomorphic to D3, Kn, or Kn[D3] (n ≥ 1) are handled by
Lemma 4.3. Finally if Γ(α) is isomorphic to D4, H0, or D3[Kn] (n ≥ 2), then it satisfies the conditions
of Lemma 4.4, and so these cases are dealt with by that lemma. This covers all possibilities for Γ(α)
and so completes the proof of Theorem 1.1(iii) in the case where Lemma 4.1(b) holds.

It remains to consider the case where Lemma 4.1(a) holds, that is, where β 6= γ.
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4.2. Dealing with Lemma 4.1(a). Throughout this subsection, replacing M by M if necessary, we
may assume that M is a symmetric digraph satisfying the conditions of Lemma 4.1(a), so that each
≡-class is isomorphic to one of C3 = K3, C4 or C5. Also, as noted in the first paragraph of Section 4,
we may assume that Assumption (A) holds. The rest of this section will be spent dealing with this
case, and the examples Jn (for n ≥ 3) and H3 are identified.

Lemma 4.5. Under the assumptions for this subsection listed above, each ≡-class is isomorphic to K3.

Proof. Suppose to the contrary that each ≡-class B induces Cj , where j ∈ {4, 5}. Then B contains
both a ∼-related pair and an independent pair, and so by 2-set-homogeneity, any two vertices in distinct
≡-classes are related by an arc. Let B1, B2 be distinct ≡-classes. Suppose that all arcs go from B1

to B2. Then the set of ≡-classes carries the structure of a set-homogeneous tournament, which, by
Lemma 3.1, must be D1 or D3, and hence M is Cj or D3[Cj ]. However, neither of these examples
satisfies Assumption (A) (as either |Γ(α)| = 1 or condition (*) fails).

Thus we may assume that there are arcs in both directions between B1 and B2, so there is an
automorphism of M interchanging B1 and B2. In particular the number of arcs from B1 to B2 equals
the number from B2 to B1. Since the total number of such arcs is j2, and must be even, it follows that
j = 4. So the ≡-classes Bi are cycles C4 and as noted in Lemma 4.1(a), the group induced on Bi is
cyclic of order 4. Furthermore, for each µ ∈ B2, |Γ(µ)∩B1| = 2 and |Γ∗(µ)∩B1| = 2, (for by transitivity
on arcs, if µ, ν ∈ B2 and Γ(µ)∩B1 and Γ(ν)∩B1 are non-empty, then both sets have the same size, and
as the number of arcs from B1 to B2 equals the number from B2 to B1, the only remaining possibility is
that there are two elements x ∈ B2 such that Γ(x) ⊇ B1, and that for the remaining elements y ∈ B2,
Γ∗(y) ⊇ B1 – an impossibility as B1 and B2 can be swapped).

Let B1 = {βi : 0 ≤ i ≤ 3}, with βi ∼ βi+1(mod 4) for each i. Also let µ ∈ B2 such that Γ(µ) ∩ B1

contains β0. As Γ
∗(β) = Γ(α), there is no δ with α, β ∈ Γ(δ). Hence, if α ∼ β, then by 2-set-homogeneity

on edges, Γ(α) has no edges, so Γ(µ) ∩ B1 cannot contain an edge of B1; hence, as |Γ(µ) ∩ B1| = 2,
Γ(µ) ∩ B1 = {β0, β2}. On the other hand if α 6∼ β then, as [α] ∼= C4, we have α ∼ γ ∼ β, and as
Γ∗(γ) = Γ(β) we again find that Γ(β) contains no edges, and hence that Γ(µ) ∩B1 = {β0, β2}.

Since |Γ∗(x) ∩B2| = 2 for all x ∈ B1, there is δ ∈ B2 with Γ(δ) ∩ B1 = {β1, β3}. Then (β0, β1, µ) ∼=
(β1, β0, δ) and this configuration is rigid, but any automorphism of M extending this isomorphism fixes
B1 setwise and interchanges β0, β1, which is impossible since the group induced on B1 is the cyclic
group Z4. �

The rest of this subsection will be spent dealing with the remaining case where each ≡-class is
isomorphic to K3.

Lemma 4.6. Suppose that each ≡-class of M induces K3, and let B1 denote the ≡-class {α, β, γ}.
Then we have the following.

(i) ∆ is not self-paired.
(ii) The following equalities hold:

• Γ(α) = Γ∗(β) = Λ(γ)
• Γ(β) = Γ∗(γ) = Λ(α)
• Γ(γ) = Γ∗(α) = Λ(β)

(iii) For any two ≡-classes B and B′ the subdigraph induced by B ∪ B′ is isomorphic to E6, so Λ is
self-paired.

(iv) The set Γ(α) intersects every ≡-class other than B1 in exactly one vertex. The same is true for
Γ∗(α) and Λ(α).

(v) The vertex set of M is B1 ∪ Γ(α) ∪ Γ(β) ∪ Γ(γ).

Proof. (i) As noted in Lemma 4.1(a), the group induced on B1 is cyclic of order 3, so admits the cycle
(α, β, γ). An automorphism inducing (α, β) would have to fix B1 so would fix γ, which is impossible.

(ii) By Lemma 4.1, Γ(α) = Γ∗(β), Γ∗(α) = Γ(γ), and it follows using an automorphism inducing
the 3-cycle (α, β, γ) that also Γ(β) = Γ∗(γ). In particular, the sets Γ(α),Γ(β),Γ(γ) are disjoint. Thus
(possibly replacing Λ by Λ∗ if necessary – but see the second assertion of (iii)) we have Γ(α) = Λ(γ),
and hence also Λ(α) = Γ(β) and Λ(β) = Γ(γ).

(iii) Let B2 be another ≡-class such that there are arcs between B1 and B2. Without loss of generality
we may suppose that α′ ∈ B2 with α → α′, and hence also α′ → β. Thus, by 2-set-homogeneity there
is g ∈ G with (α, α′)g = (α′, β), and g interchanges B1 and B2. As Γ(α′) ∩ B1 6= ∅, we also have
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Γ(β) ∩B2 6= ∅. It is now easily seen that B1 ∪B2 carries the structure of E6. If {a1, a2, a3, a4, a5, a6}
is a copy of E6 with ai → ai+1 ( mod 6) then by 4-set-homogeneity there is an automorphism taking
(a1, a2, a3, a4) to (a4, a5, a6, a1), and hence interchanging a1 and a4. So Λ is self-paired.

Since B1 × B2 has pairs in Γ, Γ∗ and Λ, and since, for each pair C1, C2 of distinct ≡-classes,
C1 × C2 contains a pair in at least one of these orbitals, it follows from 2-set-homogeneity that G
is 2-homogeneous on the set of ≡-classes, and in fact (as g above swaps B1 and B2) this action is
2-transitive. Thus B ∪B′ induces E6 for each pair B,B′ of distinct ≡-classes.

(iv), (v) These follow immediately from (iii) and 2-transitivity on the set of ≡-classes. �

As noted in Assumption (A), the subdigraph induced by Γ(α) is a set-homogeneous s-digraph iso-
morphic to one of the digraphs listed in Theorem 1.1(iii). We restrict the possibilities further.

Lemma 4.7. If each ≡-class of M induces K3, then the subdigraph induced by Γ(α) is isomorphic
to one of: D3, D4, D5, H0, Kn, Kn[D3] or D3[Kn], for some n ≥ 2. Also, M has more than two
≡-classes.

Proof. It follows from Lemma 4.6(iv) that Γ(α) contains no pairs of vertices that are ∼-related. Along
with Lemma 3.4 this implies that Γ(α) is a set-homogeneous a-digraph, and hence is in the list of
Theorem 1.1(ii). Note that, by Assumption (A), |Γ(α)| > 1, and each ≡-class meets Γ(α) in at most
one point, so there are at least 3 ≡-classes. �

Lemma 4.8. If each ≡-class of M induces K3 then Γ(α) 6∼= D3, and in particular Γ(α) contains an
unrelated pair.

Proof. By Lemma 4.7 the only possibility for Γ(α) that does not contain an unrelated pair is D3, so it
is sufficient to prove that D3 does not arise. Assume to the contrary that Γ(α) ∼= D3.

Now by Lemma 4.6, M has exactly four ≡-classes, say B1 = {α, β, γ} and Bi = {xi, yi, zi}, for
i = 2, 3, 4, where the vertices have been labelled so that Γ(α) = Γ∗(β) = Λ(γ) = {x2, x3, x4}, Γ(β) =
Γ∗(γ) = Λ(α) = {y2, y3, y4}, and Γ(γ) = Γ∗(α) = Λ(β) = {z2, z3, z4}.

By assumption Γ(α) = {x2, x3, x4} ∼= D3, and we may suppose that the vertices are labelled so that
x2 → x3 → x4 → x2. Since M embeds D3, by set-homogeneity applied to arcs it follows that every
arc of M belongs to at least one copy of D3. In particular this applies to the arc α → x2. Now since
Γ∗(α) = Γ(γ) = {z2, z3, z4}, and since it is not the case that x2 → z2 (because x2 ∼ z2), it follows
that either we have α → x2 → z3 → α or α → x2 → z4 → α. Suppose the latter – the former
case is dealt with in the same way. Now we have z4 ∈ Γ(γ) so γ ∈ Γ∗(z4), and also x2 ∈ Γ∗(z4).
But x2 ∈ Γ(α) = Λ(γ) (by Lemma 4.6) and it follows that {γ, x2} ⊆ Γ∗(z4) is an unrelated pair,
contradicting the fact that Γ∗(z4) ∼= D3. �

Now we deal with the case that M does not embed the 3-chain P3. Recall from Section 1 the
definition of the s-digraph Jn listed in Theorem 1.1(iii).

Lemma 4.9. If each ≡-class induces K3, and Γ(α) ∼= Kn, then M is isomorphic to Jn, where n =
1 + |Γ(α)|.

Proof. Let m = |Γ(α)|. By assumption m ≥ 2 and Γ(α) contains no arcs. It follows from Lemma 4.6
(especially part (v)) that ‘independence or equality’ is an equivalence relation E on M , and there are
precisely three E-classes, namely {α} ∪ Λ(α), {β} ∪ Λ(β), and {γ} ∪ Λ(γ).

It is now straightforward to show that M ∼= Jm+1. For example, we must show that if α′ ∈ Λ(α)
and β′ ∈ Λ(β) with α′ 6≡ β′, then β′ → α′. To see this, by 2-set-homogeneity there is g ∈ G with
(α, β′)g = (α′, β) (as both pairs are in Γ∗). Then g fixes the three E-classes, and as x → α for all
x ∈ ({β} ∪ Λ(β)) with x 6≡ α, also x→ α′ for all x ∈ ({β} ∪ Λ(β)) with x 6≡ α′. �

By Lemmas 4.7, 4.8 and 4.9, we may assume that Γ(α) is isomorphic to one of D4, D5, H0, Kn[D3]
or D3[Kn] (for some n ≥ 2). In each case Γ(α) contains an arc and hence M embeds a 3-chain P3. We
shall see that under the latter assumption M is uniquely determined. Over the next few lemmas we
consider each of the possibilities for Γ(α) in turn, ruling them all out, with the exception of H0. Then
in Lemma 4.18 we show that Γ(α) ∼= H0 implies that M ∼= H3.

Lemma 4.10. If each ≡-class of M induces K3, then Γ(α) 6∼= D5.
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Proof. Suppose that Γ(α) ∼= D5. Let v ∈ Λ(α). Then Gαv fixes the ≡-class [v], and hence fixes the
unique point u in [v] ∩ Γ(α). It follows, since Aut(D5) is regular, that Gαv fixes M pointwise. Let
w ≡ v with w ∈ Γ∗(α), so [v] = {u, v, w}. By Lemma 4.6(ii), Γ(α) = Γ∗(β) = Λ(γ) and it follows that
α→ u→ β → v → γ → w → α.

Since Λ is self-paired (by Lemma 4.6(iii)), there is an automorphism π extending the transposition
(α v), and π must swap the ≡-classes of α and v, and fix Γ(α) ∩ Γ(v) setwise. Thus, as |Gαv| = 1, π
induces one of the transpositions (β u) or (γ u), and it follows on considering the directed 6-cycle in
the previous paragraph that π must induce (γ u)(β w).

Now, as |Γ(v)| = 5 it follows that Γ(v) contains at least two points u1, u2 in one of Λ(α), Γ∗(α) or
Γ(α). In the first two cases, {α, v, ui} is rigid for each i, so by set-homogeneity there is an automorphism
fixing α and v and mapping u1 to u2, contradicting Gαv = 1. Thus Γ(α) ∩ Γ(v) ⊇ {u1, u2}.

Suppose that equality holds. By Lemma 4.6(ii), Γ(α) = Γ∗(β) = Λ(γ) and since {u1, u2} ⊆ Γ(α) it
follows that ui → β and (γ, ui) ∈ Λ for i = 1, 2. Since π induces (γ u)(β w) and fixes {u1, u2}, it follows
that ui → w and (u, ui) ∈ Λ for i = 1, 2. But now the isomorphism (α, v, w, u1) 7→ (α, v, w, u2) extends
to an automorphism, since this configuration is rigid; this is impossible since Gαv = 1.

Thus |Γ(v) ∩ Γ(α)| ≥ 3, say Γ(v) ∩ Γ(α) ⊇ {u1, u2, u3}. The induced digraphs on {α, v, ui} are
isomorphic but not rigid, for i = 1, 2, 3, so by 3-set-homogeneity there are automorphisms πij of M
that map {α, v, ui} to {α, v, uj} for distinct i, j. Now u

πij

i = uj , and since Gαv = 1 it follows that πij

interchanges α and v. However this implies that the composition π12 ◦ π23 lies in Gαv and maps u1 to
u3, which is a contradiction. �

Lemma 4.11. If each ≡-class of M induces K3, then Γ(α) 6∼= D3[Kn] for any n ≥ 2.

Proof. Suppose to the contrary that Γ(α) ∼= D3[Kn] (n ≥ 2). Fix a ∈ Γ(α) and consider Γ(a). Since
M embeds D3[Kn] as an induced subgraph it follows that every arc in M extends to a copy of D3 in
at least n different ways, in particular this is true of the arc (α, a). In other words |Γ∗(α) ∩ Γ(a)| ≥ n.
Let Γ∗(α) ∩ Γ(a) ⊇ {x1, . . . , xn}. By Lemma 4.6 we have Γ∗(β) = Γ(α) so a → β, and Λ(β) = Γ∗(α).
Now {β, x1, . . . , xn} ⊆ Γ(a) where β is Λ-related to xi for all i. This is a contradiction since in Γ(a)
each vertex is Λ-related to exactly n− 1 other vertices. �

Lemma 4.12. If Γ(α) is isomorphic to one of: D4, H0, or Kn[D3] for some n > 1, then for all
a1, a2 ∈ Γ(α), if (a1, a2) ∈ Λ then there exists g ∈ Gα such that ag1 = a2 and ag2 = a1.

Proof. Suppose first that Γ(α) ∼= D4. Say Γ(α) = {d1, d2, d3, d4} with di → di+1 (mod 4). Then by
set-homogeneity the isomorphism (α, d1, d2, d3) 7→ (α, d3, d4, d1) extends to an automorphism (since
this configuration is rigid) interchanging the non-adjacent pair {d1, d3} and also the pair {d2, d4}.

Similar arguments allow us to deal with the cases Γ(α) isomorphic to H0, and Kn[D3] for n > 1. �

Lemma 4.13. Suppose that each ≡-class induces K3. Let f : Γ(α) → Γ∗(α) be the bijection de-
fined by (a, f(a)) ∈ ∆ ∪ ∆∗ for all a ∈ Γ(α). Then for all a1, a2 ∈ Γ(α), the subdigraph induced
by {a1, a2, f(a1), f(a2)} is one of the 6 digraphs illustrated in Figure 4. In particular f is a digraph
isomorphism.

Proof. By Lemmas 4.7 – 4.11 the digraph Γ(α) is isomorphic to one of: D4, H0, or Kn[D3] for some
n > 1. Let a1, a2 ∈ Γ(α). By Lemma 4.6(iii), the substructure induced by {a1, a2, f(a1), f(a2)} embeds
in the s-digraph E6. Also if (a1, a2) ∈ Λ then by Lemma 4.12 it follows that there exists g ∈ Gα such
that ag1 = a2 and ag2 = a1.

First suppose that (a1, a2) ∈ Λ. Then from the comment in the previous paragraph there exists
g ∈ Gα such that ag1 = a2 and ag2 = a1, and so f(a1)

g = f(a2) and f(a2)
g = f(a1), which since

Γ∗(α) is an a-digraph implies (f(a1), f(a2)) ∈ Λ. With these restrictions, since {a1, a2, f(a1), f(a2)}
embeds in the digraph E6 we see by inspection that the only possibilities for the digraph induced by
{a1, a2, f(a1), f(a2)} are the last two of the six illustrated in Figure 4.

Now suppose that a1 → a2 (the case a2 → a1 is dual to this one). If f(a1) and f(a2) were unrelated
then a similar argument to that of the prevous paragraph would imply that a1 and a2 are unrelated,
which is not the case. It follows that either f(a1)→ f(a2) or f(a2)→ f(a1). We claim that the second
of these possibilities cannot happen. Indeed, if f(a2) → f(a1) then by inspection of the substructures
of E6 it would follow that the subdigraph induced by {a1, a2, f(a1), f(a2)} has a1 → a2, f(a2)→ f(a1),
(a1, f(a1)) ∈ ∆∪∆∗, (a2, f(a2)) ∈ ∆∪∆∗, and every other pair Λ-related. But then by set-homogeneity
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a1 a2

f(a1) f(a2)

a1 a2

f(a1) f(a2)

a1 a2

f(a1) f(a2)

a1 a2

f(a1) f(a2)

a1 a2

f(a1) f(a2)

a1 a2

f(a1) f(a2)

Figure 4. The 6 possibilities for the digraph induced by {a1, a2, f(a1), f(a2)} in Lemma 4.13.

the isomorphism (f(a1), α, a2) 7→ (f(a2), α, a1) extends to an automorphism π (since this configuration
is rigid). But this forces aπ1 = a2 (since f(a1)

π = f(a2)) and aπ2 = a1, contradicting a1 → a2.
We conclude that if a1 → a2 then f(a1) → f(a2). Consideration of the substructures of E6 shows

that the only possibilities for the subdigraph induced by {a1, a2, f(a1), f(a2)} are those illustrated in
Figure 4. �

Lemma 4.14. Suppose that each ≡-class induces K3. Let A and B be any distinct pair from {Γ(α),
Γ∗(α),Λ(α)}. Then the bijection f : A → B defined by (a, f(a)) ∈ ∆ ∪∆∗ for all a ∈ A, is a digraph
isomorphism.

Proof. This follows from Lemma 4.6(ii) and Lemma 4.13.
�

Lemma 4.15. Suppose that each ≡-class induces K3. Let a1, a2 ∈ Γ(α) with a1 → a2. Then there does
not exist c ∈ Γ∗(α) ∪ Λ(α) such that both a2 → c and c→ a1.

Proof. Suppose, seeking a contradiction, that there exists c ∈ Γ∗(α) ∪ Λ(α) with a2 → c and c → a1.
If c ∈ Γ∗(α) then let {a′1, a

′
2} ⊆ Γ∗(α) where ai is ∼-related to a′i for i = 1, 2. If c ∈ Λ(α) then let

{a′1, a
′
2} ⊆ Λ(α) = Γ(β) where ai is ∼-related to a′i for i = 1, 2. Also let c′ ∈ Γ(α) be the unique vertex

of Γ(α) to which c is ∼-related. By Lemmas 4.7–4.11, Γ(α) is isomorphic to one of: D4, H0, or Kn[D3]
for some n > 1.

For i = 1, 2, if c ∈ Γ∗(α) then Lemma 4.13 applies with c′, ai ∈ Γ(α) and c, a′i ∈ Γ∗(α), while if
c ∈ Λ(α) then the lemma applies with c, a′i ∈ Γ(β) and c′, ai ∈ Γ∗(β). In both cases, by comparing the
configuration on {c, c′, ai, a′i} with those in Lemma 4.13, since c→ a1 and a2 → c, we see that both of
the following hold:

(1) either (a) a′1 → c & a1 → c′ & (c′, a′1) ∈ Λ, or (b) (c′, a1), (c, a
′
1) ∈ Λ;

(2) either (a) c→ a′2 & c′ → a2 & (c′, a′2) ∈ Λ, or (b) (c′, a2), (c, a
′
2) ∈ Λ.

Suppose first that (1a) and (2a) hold. Then the isomorphism (α, c′, a2) 7→ (α, a1, c
′) is between rigid

configurations and so extends to an automorphism g, and we must have cg = a′1. However, this is
impossible since a2 → c implies c′ = ag2 → cg = a′1 while in (1a), (c′, a′1) ∈ Λ.

Suppose next that (1b) and (2a) hold. In this case a1 → a2 ← c′ (with (c′, a1) ∈ Λ) embeds into
Γ(α) which is a contradiction since none of D4, H0, or Kn[D3] embeds this digraph. Similarly if (1a)
and (2b) hold then c′ ← a1 → a2 (with (c′, a2) ∈ Λ) embeds into Γ(α), again a contradiction.

This leaves the case where (1b) and (2b) hold. Here, by 3-set-homogeneity and Lemma 4.12, there
exists g ∈ Gα with (a1, c

′)g = (a2, c
′), and we must have cg = c. This implies that a2 → c and

a2 = ag1 ← cg = c both hold, whch is a contradiction. �

Lemma 4.16. If each ≡-class of M induces K3, then Γ(α) 6∼= D4.
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Proof. Suppose to the contrary that Γ(α) ∼= D4. There are two cases to consider depending on whether
or not M embeds D3.

Suppose that M embeds D3. Let a1, a2 ∈ Γ(α) with a1 → a2. Since M embeds D3, by set-
homogeneity applied to arcs it follows that there exists c ∈ M with a1 → a2 → c → a1. Since
Γ(α) ∼= D4 we know c 6∈ Γ(α), and so by Lemma 4.6(ii) and (iv) it follows that c ∈ Γ∗(α) ∪ Λ(α). But
this contradicts Lemma 4.15.

Now suppose that M does not embed D3. Therefore for any a ∈ Γ(α) and b ∈ Γ∗(α) either (a, b) ∈ Λ,
(a, b) ∈ ∆∪∆∗, or b→ a. Let Γ(α) = {a1, a2, a3, a4} with ai → ai+1 (mod 4), and Γ∗(α) = {b1, b2, b3, b4}
with bi → bi+1 (mod 4), and with (ai, bi) ∈ ∆ ∪ ∆∗ for i = 1, 2, 3, 4 (that such bi exist follows from
Lemmas 4.6 and 4.13). By Lemma 4.13, and since M does not embed D3 by assumption, we have
b1 → a4, b1 → a3 and b2 → a4. But then {b2, a3, a4} ⊆ Γ(b1) with a3 → a4 ← b2, contradicting
Γ(b1) ∼= D4. �

Lemma 4.17. If each ≡-class of M induces K3, then Γ(α) 6∼= Kn[D3] for any n ≥ 2.

Proof. Suppose that Γ(α) is isomorphic to Kn[D3] for some n > 1. Since M embeds D3 it follows that
for all a ∈ Γ(α) we have |Γ(a) ∩ Γ∗(α)| ≥ 1.

Suppose that |Γ(a) ∩ Γ∗(α)| > 1. Then there exist distinct d, d′ ∈ Γ∗(α) with α → a → d → α and
α → a → d′ → α. Choosing a1, a2 ∈ Γ(α) with a1 → a2, by set-homogeneity applied to arcs, mapping
the arc α→ a to the arc a1 → a2, shows that there exist distinct vertices e, e′ with a1 → a2 → e→ a1
and a1 → a2 → e′ → a1. At most one of e or e′ can belong to Γ(α) (since Γ(α) ∼= Kn[D3]), and hence
one of e or e′ belongs to Γ∗(α) ∪ Λ(α), contradicting Lemma 4.15.

We conclude that

|Γ(a) ∩ Γ∗(α)| = 1 for all a ∈ Γ(α).(3)

Now let a1, a2, a3 ∈ Γ(α) with a1 → a2 → a3 → a1, and let b1, b2, b3 ∈ Γ∗(α) with (ai, bi) ∈ ∆ ∪∆∗

for i = 1, 2, 3. Let {d} = Γ(a1)∩Γ∗(α). We claim that d ∈ {b1, b2, b3}. Indeed, suppose d 6∈ {b1, b2, b3},
say d = b′1 ∈ {b

′
1, b

′
2, b

′
3} ⊆ Γ∗(α) with b′1 → b′2 → b′3 → b′1 and {a′1, a

′
2, a

′
3} ⊆ Γ(α) and (a′i, b

′
i) ∈ ∆ ∪∆∗

for i = 1, 2, 3. Then by 3-set-homogeneity and Lemma 4.12 applied to the subdigraphs induced on
{α, a1, a1} and {α, a1, a

′
2}, there is an automorphism g ∈ Gα,a1

with a′1
g
= a′2. But then b′1

g
= b′2 and

so as a1 → d = b′1, we have a1 = ag1 → b′1
g
= b′2, contradicting (3).

Therefore with {d} = Γ(a1) ∩ Γ∗(α) we have d ∈ {b1, b2, b3}. By Lemma 4.13, d = b3. Now by
Lemma 4.13, we find Γ(b1) ∩ {a1, a2, a3} = ∅.

Now since Γ(b1) ∼= Kn[D3] we have |Γ(b1)| = 3n. Since Γ(b1) ∩ {a1, a2, a3} = ∅ it follows that
|Γ(b1)∩Γ(α)| ≤ 3n−3. Now if |Γ(b1)∩Γ(α)| = 3n−3 then since Γ(α) ∼= Kn[D3] and Γ(b1)∩{a1, a2, a3} =
∅ there would exist {a′1, a

′
2, a

′
3} ⊆ Γ(α) ∩ Γ(b1) with a′i → a′

i+1 (mod 3). But then the digraph induced

by {α, a′1, a
′
2, a

′
3} ⊆ Γ(b1) would contradict Γ(b1) ∼= Kn[D3].

We conclude that |Γ(b1) ∩ Γ(α)| < 3n− 3 which, since Γ(b1) ∩ {α, β, γ} = {α}, implies that |Γ(b1) ∩
Λ(α)| ≥ 2. But then by Lemma 4.6(ii) we have b1 ∈ Γ∗(α) = Γ(γ) and |Γ(b1)∩Γ∗(γ)| = |Γ(b1)∩Λ(α)| ≥
2, which contradicts (3) above. �

Lemma 4.18. If each ≡-class of M induces K3, then (Γ(α),M) ∼= (H0, H3).

Proof. Since M embeds P3, it follows by Lemmas 4.7–4.17 that that Γ(α) ∼= Γ∗(α) ∼= Λ(α) ∼= H0.
Let a ∈ Γ(α), let {u, v} ⊆ Γ(α)∩Γ(a), and {w, x} ⊆ Γ(α)∩Γ∗(a). Also let a′ ∈ Γ∗(α) be the unique

vertex ∼-related to a. Similarly we define w′, x′, u′, and v′ in Γ∗(α) which are ∼-related to w, x, u and
v respectively. By Lemma 4.13 either (i) u′ → a and (a′, u) ∈ Λ, or (ii) u→ a′ and (a, u′) ∈ Λ.

We now rule out possibility (ii). Indeed, if (ii) holds then we have a → w′ (since there is an
automorphism taking (α, a, u) to (α,w, a), and this takes a′ to w′). Similarly, a → x′. Thus, |Γ(a) ∩
Γ∗(α)| ≥ 2 and hence the arc α → a extends to a copy of D3 in at least 2 distinct ways. Thus by
set-homogeneity applied to arcs, the arc w → a extends to D3 in at least 2 ways, and since in H0 every
arc extends to a unique copy of D3 it follows that there exists y ∈ Γ∗(α) ∪ Λ(α) such that {w, a, y}
induces a copy of D3, and this contradicts Lemma 4.15. Hence configuration (ii) cannot arise.

Since H0, and therefore also M , embeds D3 it follows that there exists b′ ∈ Γ∗(α) with a→ b′. Let
a′ ∈ Γ∗(α) with (a, a′) ∈ ∆ ∪∆∗ and b ∈ Γ(α) with (b, b′) ∈ ∆ ∪∆∗. If there were an arc between a
and b then by Lemma 4.13, we would have b→ a, but then we would have configuration (ii) (with (b, a)
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in place of (a, u)). It follows that (a, b) ∈ Λ and then from Lemma 4.13 that (a′, b′) ∈ Λ and b → a′.
Since Gα is transitive on independent 2-sets from Γ(α) it follows that for all c, d ∈ Γ(α) with c and d
unrelated the digraph induced by {c, d, c′, d′} is isomorphic to that induced by {a, b, a′, b′}.

These observations determine all the relations between Γ(α) and Γ∗(α). Applying automorphisms
mapping α to β, and separately α to γ, this determines all the other relations in the structure M . (That
is to say, such a structure is unique if it exists.) It can be checked that the 27 vertex set-homogeneous
digraph H3 described in Section 2 satisfies the conditions of this lemma. Thus, M ∼= H3. �

This completes the proof of Theorem 1.1(iii) in the case Γ(α) ∼= Γ∗(α).

5. Proof of Theorem 1.1(iii): case Γ(α) 6∼= Γ∗(α)

In this section we complete the proof of Theorem 1.1(iii) and therefore also the proof of Theorem 1.1.
We argue inductively as in the proof of Theorem 1.1(ii). Let M be a finite set-homogeneous s-digraph.
As Γ(α) and Γ∗(α) are set-homogeneous, by induction we may assume that they belong to the list in
Theorem 1.1(iii). From the main result of Section 4, along with Lemmas 3.2, 3.5 and 3.3(ii), it follows
that we may suppose that the following hold.

(I) The Γ-digraph of M is connected.
(II) The digraphs Γ(α) and Γ∗(α) both belong to the list in Theorem 1.1(iii), and Γ(α) is not isomor-

phic to Γ∗(α). In particular |Γ(α)| > 1.
(III) If α 6= β then Γ(α) 6= Γ(β) and Γ∗(α) 6= Γ∗(β).

Ultimately we shall prove that there are in fact no finite set-homogeneous s-digraphs satisfying
Γ(α) 6∼= Γ∗(α).

Throughout this section we assume that (I), (II) and (III) all hold.

For any vertex-transitive digraph Σ and β ∈ Σ, let Σ+ denote the isomorphism type of {x ∈ Σ : β →
x} and Σ− denote that of {x ∈ Σ : x→ β}.

Lemma 5.1. Let M be a finite set-homogeneous digraph. Then we have the following.

(i) |Γ(α)| = |Γ∗(α)|, and if one of G
Γ(α)
α , G

Γ∗(α)
α is 2-homogeneous, then they both are.

(ii) Γ(α)− ∼= Γ∗(α)+.

Proof. Part (i) follows from the fact that Γ(α) and Γ∗(α) are paired suborbits, along with [2, p. 230]

(see also [6, Exercise 2.18] for the case when one of G
Γ(α)
α or G

Γ∗(α)
α is 2-transitive). Part (ii) was proved

above in Lemma 3.6. �

A common theme below will be searching for subdigraphs X of Γ(α) which are maximal subject to
having isomorphic copies in Γ∗(α). By set-homogeneity, such X will lie in Γ∗(µ) for some µ, and if
there are many copies of X counting arguments are available.

Lemma 5.2. If Γ(α) 6∼= Γ∗(α) then neither Γ(α) nor Γ∗(α) is isomorphic to Kn or to Kn.

Proof. Suppose that one of Γ(α) or Γ∗(α) is isomorphic to Kn or Kn.

In this case, one of G
Γ(α)
α , G

Γ∗(α)
α is 2-homogeneous, so both are, by Lemma 5.1. Also, P3 does not

embed in M , so Γ∗(α) has no arcs and Γ(α) and Γ∗(α) both lie in L. By Theorem 1.1(i) since they are
not isomorphic, one of them is isomorphic to Kn and the other to Kn.

Without loss of generality suppose that Γ(α) ∼= Kn and Γ∗(α) ∼= Kn. Now, as Γ
∗(α) has no ∆-edges,

er have:

(a) if β1, β2 ∈ Γ(α) are distinct then Γ(β1) ∩ Γ(β2) = ∅;
(b) likewise, if γ1, γ2 ∈ Γ∗(α) are distinct, then Γ∗(γ1) ∩ Γ∗(γ2) = ∅;
(c) furthermore, if β ∈ Γ(α) then |Γ(β) ∩ Γ∗(α)| ≤ 1, and Γ∗(β) ∩ Γ∗(α) = ∅.

Claim 1. Both ∼-related pairs and independent pairs come from self-paired orbitals.

Proof of Claim 1. We prove this for ∼-related pairs; the proof for unrelated pairs is similar. By set-
homogeneity Gα is highly homogeneous on Γ(α), so by Fact 1.5 we may suppose that |Γ(α)| = 3. Pick
distinct β, γ, δ ∈ Γ(α), and let Γ(β) = {β1, β2, β3} and Γ(γ) = {γ1, γ2, γ3}.

First suppose that β ∼ γ1 and β ∼ γ2 with γ1 6= γ2. Then {β, γ1, γ2} induces K3, so equals Γ(ǫ)
for some ǫ 6= γ (by 3-set-homogeneity) and we have |Γ(α) ∩ Γ(ǫ)| = 1. Thus, γ1, γ2 ∈ Γ(γ) ∩ Γ(ǫ),
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so by 2-set-homogeneity, for any 2-subset X of Γ(α), there is η 6= α with Γ(η) ∩ Γ(α) ⊇ X . In fact,
by property (III), Γ(η) ∩ Γ(α) = X , and distinct 2-subsets of Γ(α) give rise to distinct η. Thus there
are distinct such η1, η2 with η1 → β, η2 → β, and hence the 4-set {α, ǫ, η1, η2} ⊆ Γ∗(β), contradicting
|Γ∗(β)| = 3. Thus β is ∼-related to at most one γi.

Now |Γ∗(β) ∩ Γ(γ)| ≤ 1 (since Γ∗(β) has no ∆-edges), and Γ(β) ∩ Γ(γ) = ∅, so there is at least
one element of Γ(γ), say γ1, which is Λ-related to β. Likewise, there is an element of Γ(β), say β1

which is Λ-related to γ. The isomorphism (β, γ, γ1) → (γ, β, β1) of these rigid subdigraphs extends to
an automorphism of M which interchanges β and γ and hence ∆ is self-paired. �

Claim 2. There exist a ∈ Γ(α) and b ∈ Γ∗(α) with (a, b) ∈ ∆, if and only if there exist a′ ∈ Γ(α) and
b′ ∈ Γ∗(α) with (a′, b′) ∈ Λ.

Proof of Claim 2. Let a ∈ Γ(α) and b ∈ Γ∗(α) and suppose that a ∼ b. By transitivity on ∼-related
pairs, there exists γ with {a, b} ⊆ Γ(γ). Since {γ, α} ⊆ Γ∗(a) it follows that (γ, α) ∈ Λ. But γ ∈ Γ∗(b)
and α ∈ Γ(b), so for any automorphism g of M taking b to α we have γg ∈ Γ∗(α), αg ∈ Γ(α) and
(γg, αg) ∈ Λ.

The converse is proved using a dual argument. �

Claim 3. If β ∈ Γ(α), then Γ(β) ∩ Γ∗(α) = ∅ (that is, M does not embed D3).

Proof of Claim 3. Suppose to the contrary that β ∈ Γ(α) and Γ(β)∩Γ∗(α) 6= ∅. Since, as we observed
in (c) before Claim 1, |Γ(β) ∩ Γ∗(α)| ≤ 1, it follows that the arcs determine a matching between Γ(α)
and Γ∗(α). Also by observation (c), |Γ∗(α) ∩ (Γ(β) ∪ Γ∗(β))| ≤ 1, and hence as |Γ∗(α)| > 1, it follows
by Claim 1 that (Λ(β) ∪∆(β)) ∩ Γ∗(α) 6= ∅. Thus, by Claims 1 and 2, whenever (u, v) ∈ ∆ ∪ Λ, there
is w with u→ w→ v.

Now if |Γ(α)| 6= 3 then Gα is doubly transitive on Γ(α) and Γ∗(α) by Fact 1.5, so Gαβ fixes β′, where
{β′} = Γ∗(α) ∩ Γ(β), and is transitive on both Γ(α) \ {β} and Γ∗(α) \ {β′}. Since ∆(β) ∩ Γ∗(α) 6= ∅,
it follows that there is a ∆-edge between β and every vertex in Γ∗(α) \ {β′}. But this is true of every
vertex in Γ(α) and that contradicts Claim 2.

Now suppose |Γ(α)| = 3, say Γ(α) = {a, b, c}. Let A = Γ(a) \ Γ∗(α) and note that (by Claim 2 with
a replacing α) |A| = 2, α is ∼-related to one vertex of A, and α is unrelated to the other vertex of A.
The same is true for each of the sets Γ(b) \ Γ∗(α) and Γ(c) \ Γ∗(α), and the three sets Γ(a) \ Γ∗(α),
Γ(b) \Γ∗(α) and Γ(c) \Γ∗(α) are pairwise disjoint by observation (a) above. It follows that |∆(α)| = 3,
since ∆(α) ⊆ Γ◦Γ(α) and we have described all elements of Γ◦Γ(α). As ∆ is self-paired it follows that
Ga is transitive on ∆(a). However, ∆(a) consists of a disjoint union of the ∆-edge {b, c} together with
a point d of Γ∗(α). This is a contradiction since ∆(a) is not a transitive digraph, since d is ∼-related
to at most one element of Γ(α). �

To finish the proof of the lemma, by Claim 3, each pair {a, b} with a ∈ Γ(α) and b ∈ Γ∗(α) is
∼-related or unrelated, and by Claims 2 and 3, Γ ◦Γ(α) contains both ∆(α) and Λ(α). It follows using
set-homogeneity fixing α that the bipartite graph “between” Γ(α) and Γ∗(α) is a set-homogeneous
bipartite graph. (This bipartite graph is obtained by dropping the edges within Γ(α), and the two parts
are ‘coloured’ as in the next paragraph.) Using the argument of Enomoto (see [10] and also the proof
of Lemma 3.1) this implies that this bipartite graph is actually a homogeneous bipartite graph.

The finite homogeneous bipartite graphs were classified in [16]. They are the complete bipartite
graph, the null bipartite graph (with no edges), the perfect matching, and the ‘complement of perfect
matching’ bipartite graph (with vertex set X ∪ Y and edge set {{x, y} : x ∈ X, y ∈ Y, y 6= f(x)} where
f : X → Y is a fixed bijection). (Here, as in [16], we view the two parts of the bipartition as ‘coloured’
with distinct unary predicates.) From Claim 3 it follows that the bipartite graph “between” Γ(α) and
Γ∗(α) is not isomorphic either to the complete bipartite graph Kn,n or to the null bipartite graph. Thus
the only remaining possibility is the case of a perfect matching (or its complement). We deal with the
former case. The latter case is then eliminated automatically, since it is complementary to the former.

Put Γ(α) = {β1, . . . , βn} and Γ∗(α) = {γ1, . . . , γn} with βi ∼ γi for each i. Define Bi = Γ(βi) noting
that i 6= j implies Bi ∩ Bj = ∅ by observation (a). The arc γ1 → α has the property that there is a
unique vertex β1 such that α→ β1 and (γ1, β1) ∈ ∆. By set-homogeneity applied to arcs it follows that
the same is true for each arc α → βi (i = 1, . . . , n). It follows that for each set Bi there is a unique
bi ∈ Bi with (α, bi) ∈ ∆ and hence, as ∆(α) ⊆ Γ ◦ Γ(α), we have ∆(α) = {b1, b2, . . . , bn}. Note that α
is unrelated to every b ∈ Bi \ {bi} for i = 1, . . . , n.
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Now consider ∆(b1). The vertex b1 is ∼-related to α, and to all of the other n− 1 vertices of B1. So
the digraph induced by ∆(b1) is isomorphic to a disjoint union of K1 and Kn−1. But ∆(b1) is a vertex
transitive graph (since ∆ is self-paired by Claim 1) so the only possibility is n = 2.

Now consider the case n = 2. Then by the last paragraph, |∆(α)| = 2, and similarly |Λ(α)| = 2,
so |M | = 9. Let N be the undirected ∆-subgraph of M (that is, the graph obtained by replacing
every arc with an independent pair). Now N is a vertex transitive graph all of whose vertices have
degree 2. Thus N is a disjoint union of isomorphic cycles. By considering Γ(α) ∪ Γ∗(α) we see that
N embeds a path with 4 vertices (namely γ1, β1, β2, γ2), hence each of the cycles of N must have at
least 5 vertices. Since N has exactly 9 vertices, there can only be one cycle, hence N is isomorphic
to a 9-cycle. Label the vertices v1, . . . , v9 so that vi ∼ vi+1 (mod 9). Now as ∆ is self-paired, Gv1 is
transitive on ∆(v1) = {v2, v9}, so (v2, v9) ∈ Λ. Let g ∈ Gv1 interchange v2 and v9. Since Γ(v1) ∼= K2,
we have Γ(v1) = {vi, vi+1} for some i ∈ {3, 4, . . . , 7}. Since g fixes v1 we have Γ(v1)

g = Γ(v1). However,
as g lies in the dihedral group of order 18, and reflects the cycle in v1, the only edge fixed by g is
Γ(v1) = {v5, v6}. Under the rotation of N mapping v1 to v5 we see that Γ(v5) = {v1, v9}. However we
also have v1 ∈ Γ∗(v5), a contradiction.

This completes the proof of the lemma. �

Lemma 5.3. If Γ(α) 6∼= Γ∗(α) and Γ(α) is isomorphic to either Km[Kn] or its complement (for some
m,n > 1), then Γ∗(α) ∼= Kr[Ks] (or its complement) for some r, s > 1.

Proof. Suppose that Γ(α) has the form Km[Kn], for m,n > 1. In this case, M again embeds no copies
of P3, so both Γ(α) and Γ∗(α) are set-homogeneous graphs, and hence are homogeneous by Enomoto’s
result. By Lemma 5.2, neither is complete nor independent. As |Γ(α)| = mn, it is composite, so
Γ∗(α) 6∼= C5. So by Theorem 1.1(i) either Γ∗(α) ∼= K3 × K3, or Γ∗(α) also has form Kr[Ks] or its
complement. Note here that K3 ×K3 is isomorphic to its (graph) complement.

We now rule out the first possibility: Γ(α) ∼= Km[Kn], Γ
∗(α) ∼= K3 × K3. Here m = n = 3. The

graph K3 is maximal subject to embedding in both Γ(α) and Γ∗(α). Fix δ ∈ Γ(α) and consider copies
of K3 in Γ(α) containing δ – namely, those transversals of the three Γ(α)-blocks which contain δ. There
are 9 of these, each one dominates a vertex β (by 3-set-homogeneity), and different copies dominate
different β, since K3 is maximal with respect to embedding in both Γ(α) and Γ∗(α). In addition, since
K3 embeds in Γ∗(α), there is β′ dominated by the copy ofK3 in Γ(α) which contains δ and it is different
from the other 9 vertices β by consideration of substructures of Γ∗(α) ∼= K3 ×K3. Thus, |Γ(δ)| ≥ 10,
which is impossible.

The case where Γ(α) ∼= Km[Kn] is handled similarly: it leads to consideration of Γ(α) ∼= K3[K3]
with Γ∗(α) ∼= K3 ×K3 – and one considers copies of K3 in Γ(α) which contain δ. �

The next lemma will be needed for some of the arguments that follow. It is straightforward, so the
proof has been omitted.

Lemma 5.4. Let M be a finite set-homogeneous s-digraph and let T ⊆ M induce a copy of D3 in M .
Moreover, suppose that Gαβ = 1 where G = Aut(M) and α→ β. Then the following are equivalent:

(i) the group induced by G on T has size 1 (respectively has size 3);
(ii) for any pair T ′ and T ′′ of copies of D3 in M exactly one (respectively every) isomorphism φ :

T ′ → T ′′ extends to an automorphism of M ;
(iii) for every arc α→ β of M , Γ(β) ∩ Γ∗(α) has size at least 2 (respectively has size 1).
(iv) for every arc α→ β of M , Γ(β) ∩ Γ∗(α) has size 3 (respectively has size 1).

Proof. The implications (i)⇔ (ii) and (iv)⇒ (iii) are immediate, and do not require the assumption
Gαβ = 1.

(i)⇒ (iv). This does require the assumption that Gαβ = 1, under either hypothesis. In practice, we
work with the conditions in (ii) corresponding to those of (i). First, suppose the group induced by G
on T has order 3, and let γ1, γ2 ∈ Γ(β) ∩ Γ∗(α). Then, by the second clause of (ii), the isomorphism
(α, β, γ1) 7→ (α, β, γ2) extends to an automorphism of M , which must be the identity as Gαβ = 1.
Hence γ1 = γ2.

On the other hand, suppose the group induced on T is trivial, and let T = {α, β, γ} with α→ β →
γ → α. We may say that the arcs α → β, β → γ and γ → α are arcs of types 1, 2, 3 respectively of
T . For any copy T ′ = {α′, β′, γ′} of T with α′ → β′ → γ′ → α′, there is a unique automorphism of M
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taking T to T ′, so T ′ has unambiguously a unique arc of each of the types 1, 2, 3. Now since Aut(M)
is transitive on arcs, there are γ1, γ2, γ3 such that α → β → γi → α and the arc α → β has type i
in the copy Ti := {α, β, γi} of D3 (for i = 1, 2, 3). Thus, |Γ(β) ∩ Γ∗(α)| ≥ 3. Also, for any δ such
that α → β → δ → α, there is i = {1, 2, 3} such that α → β has type i in the copy T ′ := {α, β, δ} of
D3. Hence, by 3-set-homogeneity, some automorphism of M induces (α, β, δ) 7→ (α, β, γi), so δ = γi as
Gαβ = 1. Thus, |Γ(β) ∩ Γ∗(α)| = 3.

(iii) ⇒ (i). Again, under either hypothesis, this requires the assumption that Gαβ = 1. If |Γ(β) ∩
Γ∗(α)| = 1 then the group induced by G on T has size 3, since otherwise it would have size 1 and the
direction (i) ⇒ (iv) would imply |Γ(β) ∩ Γ∗(α)| ≥ 2. Likewise, if |Γ(β) ∩ Γ∗(α)| ≥ 2 then the group
induced by G on T is trivial, since otherwise it would have size three and the direction (i)⇒ (iv) would
imply |Γ(β) ∩ Γ∗(α)| = 1. �

Lemma 5.5. If Γ(α) 6∼= Γ∗(α), then {Γ(α),Γ∗(α)} 6∼= {Km[Kn],Kr[Ks]} (with m,n, r, s at least 2).

Proof. The proof divides into several cases. It is sufficient to deal with the case where (Γ(α),Γ∗(α)) 6∼=
(Km[Kn],Kr[Ks])

Case 1: Γ(α) ∼= Km[Kn], Γ
∗(α) ∼= Kr[Ks], with m, s > 2, or with n, r > 2.

We suppose m, s > 2 – the other case is similar. Put p := min{m, s} ≥ 3. Let δ ∈ Γ(α), and consider
sets T with δ ∈ T ⊂ Γ(α) such that |T | = p and T meets each Γ(α)-block in at most one point. Such
a set T induces Kp, so as Kp embeds in Γ∗(α), there is β with T ⊂ Γ∗(β). Since T is maximal subject

to embedding in both Γ(α) and Γ∗(α), distinct sets T give distinct β. In addition, since K2 embeds in
Γ∗(α), there is at least one further β′ (not one of the above β) such that Γ∗(β′) contains δ and at least
one other point in the same Γ(α)-block as δ. As |Γ(δ)| = mn = rs and there are

(

m−1
p−1

)

np−1 such sets

T , we have
(

m− 1

p− 1

)

np−1 + 1 ≤ mn = rs.

In both the cases p = m and p = s, this has no solutions, with the exception of the case n = r = 2,
m = s = 3. So Γ(α) ∼= K3[K2] and Γ∗(α) ∼= K2[K3]. Here the four K3 in Γ(α) containing δ give rise to
four distinct elements of Γ(δ). Denote this set of four vertices by X . We also fix ǫ ∈ Γ∗(α).

By set-homogeneity, Gα acts transitively on the copies of K3 in Γ(α) and so X is contained in a
Gα-orbit. It follows that every vertex in X relates to α in the same way. Let x ∈ X . Clearly we do
not have α → x, since Γ(α) does not embed an arc. If x → α then |Γ(δ) ∩ Γ∗(α)| ≥ |X | = 4; this is
impossible, as Γ(δ) ∼= Γ(α), and the largest structure which embeds in both Γ(α) and Γ∗(α) has size
three. Therefore we must have either:

• X ⊆ Λ(α) or X ⊆ Λ∗(α); or
• X ⊆ ∆(α) or X ⊆ ∆∗(α).

In either case, by rigidity of the configurations (α, δ, x) (where x ∈ X) we conclude that Gαδ acts transi-
tively on X , and that X is equal to the intersection of Γ(δ) and one of the Gα-orbits Λ(α),Λ

∗(α),∆(α)
or ∆∗(α). We next prove that both Λ and ∆ are self-paired.

Let Y = Γ(δ) \X , noting that |Y | = 2. Conjugating Gαδ by an element of G mapping the arc (α, δ)
to (ǫ, α), we see that Gǫα has the same orbit structure on Γ(α) as Gαδ on Γ(δ). Let X ′ be the Gǫα-orbit
of length 4 in Γ(α) ∼= K3[K2]. Then X ′ induces a 4-element vertex transitive subgraph of Γ(α), and
this forces X ′ to be a union of two Γ(α)-blocks {µ, µ′} ∪ {ν, ν′} (where (µ, µ′) ∈ Λ, (ν, ν′) ∈ Λ), and
X ′ ∼= K2,2. There is an element of Gǫα mapping µ to µ′ and such an element must interchange µ and
µ′. It follows that Λ is self-paired.

Relabelling ǫ if necessary, we may suppose that δ 6∈ X ′, so Y ′ := Γ(α) \X ′ = {δ, δ′}. We claim that
∆ is also self-paired. Suppose to the contrary that ∆ 6= ∆∗. Then no element of Gǫα interchanges the
∼-related pair {µ, ν}, so Gǫα induces the cyclic group 〈(µ, ν, µ′, ν′)〉 on X ′, and one of (µ, ν), (µ, ν′)
lies in ∆ and the other in ∆∗. The same holds for (δ, µ), (δ, µ′), so no element of Gǫαδ maps µ to µ′.
However, Gǫαδ has index at most 2 in Gǫα and hence the group it induces on X ′ contains the involution
(µ, µ′)(ν, ν′). This contradiction proves that ∆ is self-paired.

By our comments above about X we have also that X ′ = Γ(α)∩Λ(ǫ) or X ′ = Γ(α)∩∆(ǫ). We claim
further that Gǫα is transitive on Y ′. Suppose to the contrary that this is not so, so that the Gǫα-orbits
in Γ(α) have lengths 1, 1, 4. In particular Gǫα fixes δ and, since |Γ(α)| = |Γ∗(α)| = 6, it follows that
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Gǫα = Gǫαδ = Gαδ and the groups induced by Gα on Γ(α) and Γ∗(α) are permutationally isomorphic.
Thus the Gǫα-orbits in Γ∗(α) ∼= K2[K3] have lengths 1, 1, 4, and this is impossible. Therefore Gǫα is
transitive on Y ′.

For each σ ∈ Γ∗(α) let Bσ denote the Gσα-orbit of Γ(α) with size 2 (so Bǫ = Y ′). Then for
every σ ∈ Γ∗(α), Bσ is an unrelated pair of Γ(α), and for every h ∈ Gα and σ ∈ Γ∗(α) we have
(Bσ)

h = Bσh . We claim that there exist distinct σ, σ′ ∈ Γ∗(α) with σ ∼ σ′ such that Bσ = Bσ′ .
Indeed, suppose otherwise. Then since |Γ∗(α)| = 6 and Γ(α) has only 3 unrelated pairs, there must be
σ1, σ2 ∈ Γ∗(α) with Bσ1

= Bσ2
and σ1 and σ2 in distinct copies of K3 in Γ∗(α). Let the two copies of

K3 in Γ∗(α) be {σ1, σ
′
1, σ

′′
1 } and {σ2, σ

′
2, σ

′′
2}. By set-homogeneity there is an automorphism g such that

{α, σ1, σ2, σ
′
2}

g = {α, σ1, σ
′′
2 , σ

′
2}. By inspection of the substructure induced by these sets of vertices we

see that αg = α, σg
1 = σ1 and σg

2 ∈ {σ
′′
2 , σ

′
2}. Thus we have σ2 ∼ σg

2 and Bσ2
= Bσ1

= Bσ
g
1
= (Bσ1

)g =

(Bσ2
)g = Bσ

g
2
, and this contradiction proves the claim.

Now we have shown that there exist distinct σ, σ′ ∈ Γ∗(α) with σ ∼ σ′ and Bσ = Bσ′ . By 3-set-
homogeneity (on substructures {σ, σ′, α}) it follows that

∀τ1, τ2 ∈ Γ∗(α), τ1 ∼ τ2 ⇒ Bτ1 = Bτ2 .

Since Γ∗(α) ∼= K2[K3] it follows that there are at most two distinct Bσ for σ ∈ Γ∗(α). This is a
contradiction since Gα acts transitively on the 3 unrelated pairs of Γ(α), and hence each unrelated pair
B of Γ(α) occurs as Bσ for some σ ∈ Γ∗(α).

Thus we have proved that min{m, s} = min{n, r} = 2 and mn = rs. If m = 2 then we must have
r = 2, and similarly if n = 2 then we must have s = 2. We complete the proof by considering three
cases: all of m,n, r, s are 2; m = r = 2, n = s > 2; and n = s = 2, m = r > 2.

Case 2: m = n = r = s = 2.

The following argument is a variant of 4.1 of [21].
Suppose that m = n = r = s = 2, so Γ(α) ∼= K2[K2] and Γ∗(α) ∼= K2[K2]. In this case, by

moving each vertex to another in the same Gα-block (in Γ(α) and Γ∗(α)) we see that Λ and ∆ are both
self-paired. For all a ∈ Γ(α) we have |Γ(α) ∩ ∆(a)| = 2 and |Γ(α) ∩ Λ(a)| = 1. By set-homogeneity
applied to arcs it follows that |Γ(x) ∩ ∆(α)| = 2 and |Γ(x) ∩ Λ(α)| = 1 for all x ∈ Γ∗(α). Similarly,
|Γ∗(a) ∩∆(α)| = 1 and |Γ∗(a) ∩ Λ(α)| = 2 for all a ∈ Γ(α). Since Λ is self-paired, Gα is transitive on
Λ(α), so every vertex of Λ(α) is dominated by at least one vertex of Γ∗(α). So → gives a surjective
map from Γ∗(α) to Λ(α) and it follows that |Λ(α)| ≤ |Γ∗(α)| = 4. Similarly |∆(α)| ≤ 4. We claim
that |Λ(α)| ∈ {2, 4}. Indeed, |Λ(α)| 6= 1, for as Γ∗(α) ∼= K2[K2], every element of Γ∗(α) has at least
two non-neighbours. Also, the partition of Γ∗(α) given by the fibres of the → surjection from Γ∗(α) to
Λ(α) must be preserved by all automorphisms g ∈ Gα. Since Gα is transitive on Γ∗(α) it follows that
|Λ(α)| ∈ {2, 4}.

If |Λ(α)| = 2 then it follows that for all a ∈ Γ(α) we have Γ∗(a)∩Λ(α) = Λ(α), since |Γ∗(a)∩Λ(α)| = 2.
Since Gα acts transitively on Γ(α) it follows that for any λ ∈ Λ(α) we have Γ(α) = Γ(λ) with α 6= λ
contrary to assumption (III).

Thus |Λ(α)| = 4, and similarly |∆(α)| = 4. Therefore |M | = 17 and G acts transitively but not
2-transitively on vertices. By Burnside’s Theorem (see [6, p. 36]), G is soluble and Gα is semiregular.
As Gα has orbits of size 4, Gα = Z4 and |G| = 17× 4.

Let ǫ ∈ Γ∗(α). Then Γ∗(ǫ) ∩ Λ(α) has size at most one, for if it contained distinct points λ1, λ2

there would be an automorphism inducing (λ1, ǫ, α) 7→ (λ2, ǫ, α), which is impossible as Gαǫ = 1. Also
|Γ(ǫ)∩∆(α)| = 2, so |Γ∗(ǫ)∩∆(α)| ≤ 2. Thus, as |Γ∗(ǫ)| = 4, we have Γ∗(ǫ)∩Γ(α) 6= ∅. So M embeds
D3, and as Gǫα = 1, Lemma 5.4 applies. We cannot have |Γ∗(ǫ) ∩ Γ(α)| = 3 as Γ(α) and Γ∗(α) do not
have three-vertex isomorphic substructures. Thus, by Lemma 5.4, G induces a cyclic group of order
three on each copy of D3. In particular, 3 divides |G|. This contradicts the last paragraph.

Case 3: m = r = 2 and n = s > 2.
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We have Γ(α) ∼= K2[Kn] and Γ∗(α) ∼= K2[Kn] with n > 2. Pick δ ∈ Γ(α). For each δ′ ∈ Γ(α)\{δ} there
is β with δ, δ′ → β. Furthermore, by counting arguments and consideration of the induced subdigraphs
of Γ∗(α), distinct δ′ yield distinct β, and β is uniquely determined by δ and δ′ (as otherwise |Γ(δ)| > 2n).
Thus a set X of size 2n−1 of elements β of Γ(δ) arises in this way, so as |Γ(δ)| = 2n, Gαδ has an orbit of
size 1 in Γ(δ). Hence, if ǫ ∈ Γ∗(α), Gǫα has an orbit of size 1, say {ǫ′}, in Γ(α). In particular, Gǫα fixes
each block (that is, copy of Kn) of Γ(α). Also, by (n+1)-set-homogeneity, Gαδ is (n−1)-homogeneous,
and hence is transitive, on the block of Γ(α) not containing δ. Similarly Gαδ has an orbit of size n on
the subset X of Γ(δ), and hence Gǫα has an orbit of size n on Γ(α). This must be the block of Γ(α)
not containing ǫ′.

As P3 does not embed in M , Γ(ǫ) ∩ Γ(α) = ∅. Now ǫ cannot be dominated by a block of Γ(α) (for
Γ∗(ǫ) does not embed K3, as Γ

∗(α) does not), so we may suppose that ǫ is unrelated or ∼-related to all
elements of some block T of Γ(α), say the block containing δ. Let S be the block of Γ∗(α) containing
ǫ. Then by 3-set-homogeneity, GS

α is 2-homogeneous, and hence primitive. Hence, as Gα{S}{T} is a
normal subgroup of Gα{S} of index at most 2, Gα{S}{T} is transitive on S. It follows that all elements
of S are related in the same way to all elements of T . Thus there are two cases to consider: either every
vertex in S is ∼-related to every vertex in T , or every vertex in S is unrelated to every vertex in T .

First suppose the former. Now for every ǫ′ in S there exists β with ǫ′, δ → β. At least two distinct β
must arise in this way, since S ∪ {δ} induces a copy of Kn+1 which does embed into Γ∗(β). Now since
|Γ(δ)| = 2n and |X | = 2n− 1 it follows that at least one such β belongs to X . In other words (recall
the definition of X), there exists δ′ ∈ Γ(α) \ {δ} and ǫ′ ∈ S with {δ′, δ, ǫ′} ⊆ Γ∗(β). If δ′ ∈ T then
the subdigraph induced by {δ′, δ, ǫ′} is a path of length 2 which does not embed into Γ∗(α) ∼= Γ∗(β).
Therefore δ′ 6∈ T . We cannot have ǫ′ ∼-related to δ′ for otherwise by 3-set-homogeneity there would be
an automorphism taking (ǫ′, α, δ) to (ǫ′, α, δ′) so swapping the two Γ(α)-blocks, a contradiction. Thus
again the substructure induced by {δ′, δ, ǫ′} does not embed into Γ∗(α) ∼= Γ∗(β). This is a contradiction.

Now suppose that every element of S is Λ-related to every element of T . In this case the argument
is given by interchanging the roles of ǫ and δ in the argument of the previous paragraph, and working
with in-neighbourhood sets of vertices in Γ∗(α). So for each ǫ′ ∈ Γ∗(α) \ {ǫ}, there is a vertex β with
{ǫ, ǫ′} ⊆ Γ(β), distinct ǫ′ give rise to distinct β, and since |Γ∗(ǫ)| = 2n we may argue that β is uniquely
determined by ǫ and ǫ′. Thus the set X ′ of all β arising in this way has size |X ′| = 2n − 1. Arguing
similarly to the previous paragraph, since Γ(ǫ) does not embed Kn+1 it follows that there is a vertex β
with β → ǫ, δ and β ∈ X ′. Thus there is a vertex ǫ′ ∈ Γ∗(α) with {ǫ′, ǫ, δ} ⊆ Γ(β), and regardless of
whether or not ǫ′ belongs to the same Γ∗(α)-component as ǫ this gives a 3-element substructure that
cannot embed into Γ(α) ∼= Γ(β), a contradiction.

Case 4: n = s = 2 and m = r > 2.

So Γ(α) ∼= Km[K2] and Γ∗(α) ∼= Km[K2]. Fix δ ∈ Γ(α): for δ′ ∈ Γ(α) \ {δ} there exists β with
δ, δ′ → β and distinct δ′ give distinct β. Now Λ is self-paired, for if δ, δ′ are unrelated in Γ(α) then
an automorphism mapping (α, δ) to (α, δ′) must interchange δ, δ′. Likewise (arguing in Γ∗(α)) ∆ is
self-paired. If δ, δ′ are in distinct Γ(α)-blocks (that is, in distinct copies of K2 in Γ(α)) such β is unique
(otherwise Γ(δ) is too large), but if they are in the same block there could be two such β. Again, let X
(depending on α, δ) be the set of all points β arising in this way.

Case 4.1: For every independent pair δ, δ′ ∈ Γ(α), there is a unique β with δ, δ′ → β, and for every
∼-related pair ǫ, ǫ′ ∈ Γ∗(α) there is a unique β′ with β′ → ǫ, ǫ′.

Let ǫ ∈ Γ∗(α). As in Case 3, Gαδ has an orbit of size one on Γ(δ), so Gǫα has an orbit of size one on Γ(α).
Thus Gǫα has at least three orbits in Γ(α), with at least two of them of size 1. By 3-set-homogeneity,
Gǫα is transitive on Γ(α) ∩ Λ(ǫ) and Γ(α) ∩∆(ǫ), and since Γ(α) contains no arcs, Γ(α) ∩ Γ(ǫ) = ∅.
Thus Γ(α) ∩ Γ∗(ǫ) 6= ∅ and as it cannot consist of the union of m − 1 blocks of Γ(α) (since such a
structure does not embed in Γ∗(α)), we find that Γ(α)∩Γ∗(ǫ) is a singleton orbit of Gαǫ, and the latter
has orbits of sizes 1, 1, 2m− 2 on Γ(α). This gives a Gα-invariant matching between Γ(α)-blocks and
Γ∗(α)-blocks.

If ǫ is ∼-related to 2m− 2 elements of Γ(α), choose δ in the latter set. There is β with ǫ, δ ∈ Γ∗(β).
Then β 6∈ Γ(α) as the latter set has no arcs, and likewise β 6∈ Γ∗(α). We now claim that we may suppose
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that there is δ′ ∈ (Γ∗(β)∩Γ(α))\{δ}. Indeed, since each vertex of Γ∗(α) is ∼-related to 2m−2 vertices
of Γ(α), we see that the total number of pairs (ǫ∗, δ∗) ∈ Γ∗(α)× Γ(α) with ǫ∗ ∼ δ∗ is 2m(2m− 2). On
the other hand, since Gα acts transitively on Γ(α) it follows that every vertex of Γ(α) is ∼-related to
the same number, k say, of vertices of Γ∗(α). Therefore 2mk = 2m(2m− 2) and we conclude that δ is
∼-related to 2m − 2 vertices of Γ∗(α). Now we can replace ǫ by any of the 2m − 2 points ǫ′ of Γ∗(α)
that are ∼-related to δ, in each case obtaining a β′ with Γ∗(β′) ⊇ {δ, ǫ′}. By consideration of common
substructures of Γ(α) and Γ∗(α) we conclude that at least two elements of Γ(δ) arise this way, so for at
least one such element, δ′ say, the corresponding β′ must lie in X , since |X | = |Γ(δ)| − 1. This δ′ is as
claimed, and we find that for all such δ′, {ǫ, δ, δ′} carries a structure which does not embed in Γ∗(α),
which is a contradiction.

If ǫ is unrelated to 2m−2 elements of Γ(α) then, as in Case 3, we repeat the argument of the previous
paragraph, with the roles of δ and ǫ interchanged, working with in-neighbour sets of vertices of Γ∗(α),
and a set X ′ of vertices each dominating a pair ǫ, ǫ′ from Γ∗(α). Here we make use of the assumption
that pairs in the same Γ∗(α)-block are dominated by a unique vertex.

Case 4.2: For every independent pair δ, δ′ ∈ Γ(α), there are at least two vertices β, β′ dominated by
{δ, δ′}, or for every ∼-related pair ǫ, ǫ′ ∈ Γ∗(α) there are at least two vertices β, β′ dominating {ǫ, ǫ′}.

Suppose the former. The latter possibility may be dealt with using a similar argument.
Let ǫ ∈ Γ∗(α). Let {δ, δ′} be a K2-block of Γ(α) and let {β, β′} satisfy δ, δ′ → β, β′. The remaining

2m − 2 elements of Γ(δ) arise as the set of β′′ dominated by pairs {δ, δ′′} with the δ′′ coming from
Γ(α)-blocks different from {δ, δ′}. Let Y = Γ(δ) \ {β, β′}. Recall that Λ and ∆ are both self-paired
(proved in the first paragraph of Case 4).

We claim that Y is a single Gαδ-orbit of size 2m− 2, and moreover either Y ⊆ ∆(α) or Y ⊆ Λ(α).
We show first that Y is contained in a Gα-orbit: for by 3-set-homogeneity, Gα acts (unordered) edge-
transitively on Γ(α), and for δ1, δ2 ∈ Γ(α) \ {δ, δ′}, an element g ∈ Gα mapping the ∼-related pairs
{δ, δ1} to {δ, δ2} takes β1 to β2, where {βi} = Y ∩ Γ(δ)∩ Γ(δi). It follows that every y ∈ Y relates to α
in the same way. Let y ∈ Y be arbitrary. Clearly we do not have α→ y. If y → α then Y ⊂ Γ∗(α) and
hence |Γ∗(α) ∩ Γ(δ)| ≥ 2m− 2. However, since m > 2, the digraphs induced on Γ∗(α) and Γ(δ) ∼= Γ(α)
do not contain isomorphic subdigraphs of size 2m− 2. We conclude that either y ∼ α for all y ∈ Y , or
y, α are unrelated for all y ∈ Y . But then in either of these two cases, by rigidity of the configurations
(α, δ, y) (y ∈ Y ) we conclude that Y is a single Gαδ-orbit of size 2m− 2, and hence either Y ⊆ ∆(α) or
Y ⊆ Λ(α). This completes the proof of the claim.

Now we study the pair B = {β, β′} defined in the first paragraph. Since B ⊂ Γ(δ), B is either
∼-related or unrelated. Suppose we have B ⊂ Γ∗(α). If B is unrelated then every unrelated pair from
Γ∗(α) is dominated by an unrelated pair from Γ(α), and distinct pairs are dominated by distinct pairs:
this is a contradiction as Γ(α) and Γ∗(α) have different numbers of such pairs. We conclude that B is
∼-related, but then Γ∗(β) ∩ Γ(α) 6∼= Γ∗(α) ∩ Γ(δ), contradicting 2-set-homogeneity. Thus B 6⊂ Γ∗(α).

Next suppose that β ∈ Λ(α) and β′ → α. Then the arc α → δ has the property that there is a
unique vertex β′ such that δ → β′ → α. On the other hand, for the arc β′ → α there are two distinct
vertices δ, δ′ satisfying α→ δ → β′, α→ δ′ → β′. This contradicts 2-set-homogeneity. Similarly we can
rule out the case β ∈ ∆(α) and β′ → α. Thus B ∩ Γ∗(α) = ∅.

Now suppose that β is contained in the same Gα-orbit as Y (either ∆(α) or Λ(α)). Then 3-set-
homogeneity gives an automorphism mapping (α, δ, y) to (α, δ, β), which is a contradiction since Y is
fixed setwise by Gαδ. Thus either B ⊂ ∆(α), Y ⊆ Λ(α), or Y ⊂ ∆(α), B ⊆ Λ(α).

Suppose first that B ⊂ Λ(α). Then α ∈ Λ(β) ∩ Γ∗(δ) and it follows that Λ(δ) ∩ Γ∗(α) 6= ∅. Thus
we may suppose ǫ ∈ Γ∗(α) satisfies (ǫ, δ) ∈ Λ. By set-homogeneity, {β, β′} is a Gαδ-orbit, and recall
that in this case we have Y ⊂ ∆(α). By arc-transitivity mapping (α, δ) to (ǫ, α) we conclude that
∆(ǫ) ∩ Γ(α) is a Gǫα-orbit of size 2m− 2 (and ǫ is unrelated to the other two vertices of Γ(α)). Since
m ≥ 3 and |∆(ǫ) ∩ Γ(α)| = 2m− 2 there must be at least one Γ(α)-block {µ, µ′} satisfying (ǫ, µ) ∈ ∆
and (ǫ, µ′) ∈ ∆. By 2-set-homogeneity there exists ν such that µ, ǫ→ ν.

Note that δ ∈ Γ(α) has the following property: for all κ ∈ Γ(δ), |Γ∗(κ) ∩ Γ(α)| ≥ 2.
SinceGα acts transitively on Γ(α) it follows that µ also has this property, and hence |Γ∗(ν)∩Γ(α)| ≥ 2.

In other words, there exists some µ′′ ∈ Γ(α) such that {µ′′, µ, ǫ} ⊆ Γ∗(ν). There are two possibilities:
either µ′′ = µ′ or µ′′ 6= µ′, but in either case, regardless of the relationship between µ′′ and ǫ, the
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substructure induced by {µ′′, µ, ǫ} contains at least two ∆-edges and so does not embed in Γ∗(α) ∼=
Γ∗(ν), which is a contradiction. We conclude that this subcase cannot happen.

Finally, suppose that B ⊂ ∆(α), Y ⊆ Λ(α). This is dealt with in much that same way as the case
considered in the previous paragraphs. We find ǫ ∈ Γ∗(α) such that (ǫ, δ) ∈ ∆. Easy arguments using
3-set-homogeneity show that Gǫα has an orbit of size two on Γ(α), namely Γ(α) ∩∆(ǫ). We may thus
suppose that ǫ is ∼-related to δ ∈ Γ(α). Arguing as above we conclude ∆(ǫ) ∩ Γ(α) = {δ, δ′} where
{δ, δ′} is a Γ(α)-block of Γ(α). There is µ with ǫ, δ ∈ Γ∗(µ), and again arguing as in the previous
paragraph, there is δ′′ ∈ Γ(α) \ {δ} with δ′′ → µ. It can then be checked that, wherever δ′′ lies in Γ(α),
{ǫ, δ, δ′′} is not isomorphic to a subdigraph of Γ∗(α), which is a contradiction.

�

Lemma 5.6. If M ∈ S and Γ(α) 6∼= Γ∗(α) then we cannot have Γ(α) ∼= Km[Kn] (m,n > 1) and
Γ∗(α) ∼= Kr[Ks] (r, s > 1).

Proof. Suppose that Γ(α) = Km[Kn] and Γ∗(α) = Kr[Ks]. In this case, as Γ(α) 6∼= Γ∗(α), m 6= r and
n 6= s. By reversing arcs if necessary, we may suppose m < r and n > s.

Fix δ ∈ Γ(α), and consider subsets T of Γ(α) which contain δ and exactly s vertices of each block
in Γ(α). As such sets have isomorphic copies in Γ∗(α), each such T ⊂ Γ∗(µ) for some µ, and T 6= T ′

implies µ 6= µ′ (for Γ∗(µ) does not contain a copy of Ks+1). The number of such sets T is
(

n
s

)m−1(n−1
s−1

)

and as the corresponding µ lie in Γ(δ), we have
(

n

s

)m−1(
n− 1

s− 1

)

≤ mn = rs.

The only solution of this is m = 2, n = 3, s = 2, r = 3, so we consider this case. So Γ(α) ∼= K2[K3]
and Γ∗(α) ∼= K3[K2]. In this case the number of subdigraphs T ∼= K2,2 of Γ(α) is 32 = 9, and since Gα

is transitive on the set of (unordered) ∆-edges in Γ(α), the set X consisting of those vertices µ with
Γ∗(µ) ∩ Γ(α) ∼= K2,2 is a Gα-orbit of size 32 = 9, and contains Γ(δ). In particular X 6= Γ(α),Γ∗(α) (as
it has size 9).

Now, Λ is clearly self-paired, for if ǫ, ǫ′ are unrelated in Γ∗(α) then an automorphism (α, ǫ) 7→ (α, ǫ′)
must swap them. Also, ∆ is self-paired. For if δ ∈ Γ(α) and B,C are distinct 2-sets in the copy of K3

in Γ(α) which does not contain δ then there is g ∈ Gαδ with Bg = C, so Gαδ is transitive on K3. Now
if C = {γ, γ′} and δ′ is in the same K3 as δ, there is g ∈ Gα with {γ, δ, δ′}g = {δ, γ, γ′}. Combining the
last two observations, there is h ∈ Gα with (γ, δ)h = (δ, γ), and h flips a ∆-edge.

Thus the set X is either ∆(α) or Λ(α). Let δ ∈ Γ(α), ǫ ∈ Γ∗(α). Since Γ(δ) ⊆ ∆(α) or Γ(δ) ⊆ Λ(α),
we see by 3-set-homogeneity that Gαδ is transitive on Γ(δ), so Gǫα is transitive on Γ(α). If X = ∆(α)
then (by considering an automorphism taking (α, δ) to (ǫ, α)) we see that ∆(ǫ) ∩ Γ(α) has size 6, so
equals Γ(α); that is, since Gα is transitive on Γ∗(α) and fixes Γ(α), every vertex of Γ(α) is ∼-related to
each vertex in Γ∗(α). Now ∆(δ), which has size 9 and is vertex transitive (as it is a Gδ-orbit), contains
three vertices from Γ(α) and six from Γ∗(α). The three have valency 6 in ∆(δ) and the six have valency
7, contradicting vertex transitivity of ∆(δ).

Thus X = Λ(α). As in the last paragraph, using an automorphism inducing(α, δ) 7→ (ǫ, α), we see
that Λ(ǫ) ∩ Γ(α) contains six vertices, so equals Γ(α). Hence, Γ(α) ⊆ Λ(ǫ′) for any ǫ′ ∈ Γ∗(α). Since Λ
is self-paired, it follows that Γ∗(α) ⊆ Λ(δ). Thus, the digraph Λ(δ), which is vertex transitive of valency
9, contains two vertices δ′, δ′′ from Γ(α) (those in the same copy of K3) and six vertices from Γ∗(α),
including ǫ. Now δ′ is independent from δ′′ and from all vertices in Γ∗(α), so has ∆-valency at most
1 in Λ(δ), but, from the structure of Γ∗(α), ǫ has ∆-valency at least 4 in Λ(δ). This again contradicts
vertex transitivity of Λ(δ). �

Lemma 5.7. If M ∈ S and Γ(α) 6∼= Γ∗(α) then Γ(α) embeds an arc.

Proof. Otherwise, from the lemmas above, and by Theorem 1.1(i) the only possibilities for Γ(α) and
Γ∗(α) are C5 or K3 ×K3, and they have different sizes, a contradiction. �

Now we know that Γ(α) embeds an arc, and the problem splits into consideration of the cases
|Γ(α)+| = 1 and |Γ(α)+| > 1 (as defined before Lemma 5.1).

Lemma 5.8. Suppose that |Γ(α)+| = 1.

(a) For each γ ∈ Γ∗(α) there is unique δ ∈ Γ(α) with γ → δ.
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(b) The permutation group Gα has isomorphic set-homogeneous actions on Γ(α) and on Γ∗(α).
(c) One of the following holds.

(i) Γ(α) ∼= E6 (or its complement) and Γ∗(α) ∼= F6 (or its complement), or vice versa.
(ii) One of the pair Γ(α),Γ∗(α) embeds D3, and the other is isomorphic to Kn[Km[D3]] or its

complement, with n,m > 1.
(iii) Up to complementation, Γ(α) is isomorphic to one of the following with n > 1:

Kn[D3], Kn[D4], Kn[D5], D4, D5, E6, E7, F6,

and Γ∗(α) ∼= Γ(α).

Proof. (a) We have |Γ(α)+| = 1. Now if α → β, |Γ(α) ∩ Γ(β)| = 1, so if γ ∈ Γ∗(α), there is a unique
vertex δ ∈ Γ(α) such that γ → δ.

(b) By (a), → gives a Gα-invariant bijection from Γ∗(α) to Γ(α), so the permutation group G
Γ∗(α)
α

acts isomorphically on Γ(α).
(c) By induction and inspection of the list in Theorem 1.1(iii), since |Γ(α)+| = 1 the graph Γ(α), or

its complement, must be one of the following, where n,m > 1: Kn[D3], Kn[D4], Kn[D5], Kn[Km[D3]],
C5[D3], D3, D4, D5, (K3 ×K3)[D3], E6, E7 or F6.

Suppose first that one of Γ(α) or Γ∗(α), say Γ(α), is isomorphic to Kn[Km[D3]] or its complement,
with n,m > 1. Using (b), by inspection of the above list, we can check that Γ∗(α) then embeds D3, so
that (c)(ii) holds. Thus, we may rule out Kn[Km[D3]].

It can now be checked that, apart from E6, F6 (which give case (c)(i)), for no two distinct digraphs
in this list is there a group which acts isomorphically and set-homogeneously on both. (Note here that
Aut(E6) ∼= Aut(F6) ∼= Z2 ×Z3.) Thus, apart from cases (c)(i) and (c)(ii) , Γ(α) and Γ∗(α) must be, up
to complementation, a graph and its complement from the list in (c)(iii) or from D3, (K3 ×K3)[D3],
C5[D3].

Finally, the digraphs D3, (K3 ×K3)[D3], C5[D3] are all isomorphic to their complements. Thus, if
one of them occurred as Γ(α), we would have Γ(α) ∼= Γ∗(α), contrary to assumption (III). �

Next we have to consider cases where one of Γ(α), Γ∗(α) is from the list in Lemma 5.8(c). Over the
next four lemmas we eliminate each possibility.

Lemma 5.9. If M ∈ S and Γ(α) 6∼= Γ∗(α) then Γ(α) 6∼= Kn[Dr] (or its complement) for r ∈ {3, 4, 5}
and n ≥ 1.

Proof. Suppose that Γ(α) is isomorphic to Kn[Dr], where r ∈ {3, 4, 5}. Then by Lemma 5.8, Γ∗(α)

is isomorphic to Γ(α). Fix some ǫ ∈ Γ∗(α). Then by Lemma 5.8(a), there is a unique δ ∈ Γ(α) with
ǫ→ δ. Also, all elements of the copy T of Dr in Γ(α) containing δ lie in singleton orbits of Gǫα. When
n = 1, as Γ is connected, it follows that Gǫα = 1.

Suppose first that r = 3. Since Γ(α) 6∼= Γ∗(α), we have n > 1 in this case. By applying 4-
set-homogeneity to configurations consisting of α, one point from one copy of D3 in Γ(α), and two
Γ-connected points in another copy, we see that Gα induces a 2-transitive group on the set of copies of
D3 in Γ(α), and that ∆ is self-paired. Likewise, considering α and similar configurations in Γ∗(α), Λ is
self-paired.

Now, since n > 1, considering the structure of Γ(α) we observe that ∆(δ) contains an arc, and hence
so does ∆(α). A similar argument given by considering Λ(ǫ) in Γ∗(α) shows that Λ(α) contains an arc.
We claim that each copy of D3 in Γ(α) dominates exactly one vertex of M : it dominates at most one
vertex, since otherwise, if β lies in the copy, then the subdigraph Γ(β) has Γ-outvalency at least 2, a
contradiction; and it dominates at least one vertex, since copies of D3 in Γ∗(α) dominate α. In view
of the structure of Γ∗(α) we see that distinct copies of D3 in Γ(α) dominate distinct vertices of M .
Thus, there is a set Σ of size n consisting of the vertices which are dominated by copies of D3 in Γ(α).
Clearly Σ is a Gα-orbit, and equals Λ(α) or ∆(α) since Γ(α) and Γ∗(α) have size 3n. It follows, as Λ(α)
and ∆(α) contain arcs, that the group induced by Gα on the copies of D3 in Γ(α) is not 2-transitive,
contradicting the previous paragraph. This deals with the case r = 3.

Next, suppose that n > 1 and r ∈ {4, 5}. Then Gǫα has at least 5 orbits on Γ(α), as the copy T of Dr

containing δ is fixed pointwise by Gǫα. If β, β
′ ∈ Γ(α) and ǫ ∼ β and ǫ ∼ β′, then by 3-set-homogeneity

and rigidity of {ǫ, α, β}, the elements β, β′ are in the same Gǫα-orbit; similarly if β, β′ are unrelated
to ǫ. Consider Γ∗(ǫ) ∩ Γ(α). We claim that |Γ∗(ǫ) ∩ T | ≤ 1. Indeed, suppose not. Then there exist
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β, β′ ∈ T with β, β′ → ǫ and, fixing an arbitrary γ ∈ Γ(α) \ T , regardless of the relationship between
γ and ǫ, by set-homogeneity there is an automorphism g ∈ G with {ǫ, α, β, γ}g = {ǫ, α, β′, γ}, and by
considering the substructure induced by {ǫ, α, β, γ} we conclude that ǫg = ǫ and αg = α. But Gǫα

fixes δ and β and thus β = β′ or β = γ, in either case a contradiction. We conclude as claimed that
|Γ∗(ǫ) ∩ T | ≤ 1. Thus, we have that each of Γ(ǫ) ∩ T , Γ∗(ǫ) ∩ T , Λ(ǫ) ∩ T , ∆(ǫ) ∩ T have size at most
one, which in particular forces r = 4. Thus, (ǫ, µ) ∈ Λ and (ǫ, µ′) ∈ ∆ for some µ, µ′ ∈ T , and by the
observations above about the Gǫα-orbits of Γ(α), β → ǫ for every β ∈ Γ(α) \ T . In particular, since
n > 1, there is a copy T ′ of D4 in Γ(α) disjoint from T with T ′ ⊆ Γ∗(ǫ). But this is a contradiction
since Γ∗(ǫ) ∼= Γ∗(α) does not embed D4.

Thus, we have n = 1, and r ∈ {4, 5}. Recall that since n = 1 we have Gǫα = 1.
Suppose first r = 5, so Γ(α) ∼= D5 and Γ∗(α) ∼= D5. The triple (u, v, w) where u → v → w and

u ∼ w embeds in Γ∗(α), so there is γ ∈ Γ(α) with ǫ ∼ γ. Similarly (considering a 2-arc in Γ∗(α)), there
is γ′ ∈ Γ(α) with ǫ independent from γ′. Since Gǫα fixes Γ(α) pointwise, by 3-set-homogeneity γ and
γ′ are unique. Now let Γ(α) \ {δ, γ, γ′} = {β, β′}. Then we must have β → ǫ and β′ → ǫ.

Since Gǫα fixes β and (ǫ, α, β) ∼= (ǫ, α, β′), it follows that the isomorphism (ǫ, α, β 7→ ǫ, α, β′) between
copies of D3 does not extend to an automorphism, and so by Lemma 5.4, the group induced by G on
copies of D3 is trivial. Thus, again by Lemma 5.4, it follows that |Γ∗(ǫ)∩ Γ(α)| = 3, a contradiction as
Γ∗(ǫ) ∩ Γ(α) = {β, β′}.

It remains only to consider the case Γ(α) ∼= D4, and Γ∗(α) ∼= D4. The argument is in part similar
to [21, 6.2]. There is ǫ′ ∈ Γ∗(α) with ǫ → ǫ′. Now Γ(ǫ) ∼= Γ(α) ∼= D4, so as ǫ dominates ǫ′, α, δ and
ǫ′ → α→ δ, there is µ ∈ Λ(α) with ǫ→ µ and δ → µ→ ǫ′. Since Gǫα = 1 we have |Gα| = 4 and hence
|Λ(α)| divides 4.

If |Λ(α)| = 1 then Gα acts transitively on Γ∗(α) and fixes Λ(α) = {µ}, and this is a contradiction
since ǫ→ µ while ǫ′ ← µ.

Next suppose |Λ(α)| = 2. Now Gα acts transitively on Γ(α) and fixes Λ(α) = {µ, µ′} setwise, and
it easily follows that there exist δ, δ′ ∈ Γ(α) with (δ, δ′) ∈ Λ and {δ, δ′} ⊆ Γ∗(µ). But this contradicts
Γ∗(µ) ∼= Γ∗(α) ∼= D4.

Thus, |Λ(α)| = 4, and similarly |∆(α)| = 4. Now as Λ(ǫ) has size four and contains just one point
from {α} ∪ Γ(α) ∪ Γ∗(α), it contains three points from Λ(α) ∪ ∆(α), so contains two points β1, β2 in
Λ(α), or two points β1, β2 in ∆(α). Either way, 3-set-homogeneity yields an automorphism inducing
(ǫ, α, β1) 7→ (ǫ, α, β2), contradicting the fact that Gǫα = 1.

The corresponding cases when Γ∗(α) is isomorphic to Kn[Dr] are also handled by the above (they
arise by reversing all arcs). �

Lemma 5.10. Case (c)(ii) of Lemma 5.8 cannot occur.

Proof. We shall suppose for a contradiction that Γ(α) ∼= Kn[Km[D3]] (with m,n > 1), and Γ∗(α)
embeds D3. This suffices, since the other case arise through a combination of complements and weak
complements.

Let γ ∈ Γ(α). By considering the digraph Γ(α) we see that both Λ(γ) and ∆(γ) contain arcs.
Therefore by vertex transitivity both Λ(α) and ∆(α) contains arcs. Also, each copy of D3 in Γ(α)
dominates exactly one vertex: it dominates at most one since otherwise, with β in a copy of D3 in
Γ(α), we would have a vertex in Γ(β) with out-degree at least 2, contradicting the fact that Γ(β) ∼=
Kn[Km[D3]]; and each copy of D3 in Γ(α) dominates at least one vertex since D3 embeds into Γ∗(α).

Thus there is a set Σ of size mn consisting of vertices dominated by copies of D3 in Γ(α). Clearly Σ
is a Gα-orbit and equals Λ(α) or ∆(α) since |Γ(α)| = |Γ∗(α)| = 3mn > mn. We claim that the group
induced by Gα on the copies of D3 in Γ(α) has all orbitals self-paired. Once established, this will be a
contradiction since we have already seen that both Λ(α) and ∆(α) contain arcs, and the group induced
by Gα on the copies of D3 in Γ(α) is the same as the group induced on either Λ(α) or ∆(α). To prove
the claim, let T and S be two copies of D3 in Γ(α) with t ∈ T and s ∈ S. First suppose that s and t
are ∆-related. Let t′ ∈ T with t′ → t, and s′ ∈ S with s′ → s. Then by set-homogeneity, and since
the configuration is rigid, the isomorphism (α, t′, t, s) 7→ (α, s′, s, t) extends to an automorphism which
interchanges S and T . The case that s and t are Λ-related is dealt with similarly. �

Lemma 5.11. If M ∈ S and Γ(α) 6∼= Γ∗(α) then we cannot have Γ(α) isomorphic to E6, E7, F6, or
their complements.
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Proof. Suppose that each of Γ(α), Γ∗(α) is isomorphic to one of E6, E7, F6, or their complements.
Observe first that Aut(E6), Aut(E7), and Aut(F6) are each regular on vertices, and Aut(E6) and Aut(E7)
are both cyclic. We have a bijection between Γ∗(α) and Γ(α) given by→, by Lemma 5.8. In particular,
by connectedness of Γ, if β ∈ Γ∗(α) then Gβα = 1.

Pick β ∈ Γ∗(α) and β′ ∈ Γ(α) with β → β′. By Lemma 5.8(a), for the 5 (or 6) elements γ ∈
Γ(α) \ {β′}, there are three possible relations to β: γ → β, γ ∼ β, or γ, β independent. Since Gβα = 1,
by 3-set-homogeneity only one element γ of Γ(α) can be ∼-related to β, and only one can be independent
from β, for the corresponding structures on {α, β, γ} are rigid. The group induced by G on each copy
of D3 in M either has size 1 or 3, and hence by Lemma 5.4, Γ∗(β)∩Γ(α) has size 1 or 3, so by counting,
has size 3. This ensures |Γ(α)| = 6, so eliminates E7 and its complement. It also eliminates F6 and its
complement, since a set-homogeneity argument shows that any group acting set-homogeneously on F6

(or on its complement) induces a transitive group on each D3, contradicting Lemma 5.4.
Thus, we may assume that one of Γ(α),Γ∗(α) is E6, and the other is its complement. One case is

obtained from the other by reversing all arrows, so we may suppose that Γ(α) ∼= E6. Note that, by the
previous paragraph, each vertex of Γ∗(α) is dominated by exactly three vertices of Γ(α).

Consider configurations β1, β2, β3 ∈ Γ(α) with β1 → β2, β2 ∼ β3, and β1||β3. Call U1 the isomorphism
type of such structures, and U2 the corresponding isomorphism type when instead β2 → β1. Both U1

and U2 embed in both Γ(α) and Γ∗(α), with six copies of each, permuted transitively by Gα. Thus,
each copy of U1 in Γ(α) dominates a vertex u1, and no two copies of U1, U

′
1 in Γ(α) dominates the same

vertex, as Γ(α),Γ∗(α) do not share a 4-vertex isomorphism type. Thus, the vertex u1 lies in a Gα-orbit
of size 6; likewise for any vertex u2 dominated by a copy of U2 in Γ(α).

Clearly we cannot have u1, u2 ∈ Γ(α). If both u1, u2 ∈ Γ∗(α) then a vertex in Γ∗(α) is dominated
by at least four vertices of Γ(α), a contradiction. Thus ui, say, is not in Γ(α) ∪ Γ∗(α), and hence lies
in either Λ(α) or ∆(α), say the former, so |Λ(α)| = 6 (the argument in the other case is similar). By
Γ-connectedness |Gα| = 6. Pick β ∈ Γ(α) and recall that Gαβ = 1. If there are γ1, γ2 ∈ Λ(α) both
dominated by β, or both independent from β, or both ∼-related to β, then by 3-set-homogeneity and
rigidity of {α, β, γi} there is g ∈ Gαβ with γg

1 = γ2, a contradiction. Thus, there are at least three
vertices γ1, γ2, γ3 ∈ Λ(α) all dominating β. As the structure on α, β, γ1 admits just two automorphisms,
there are distinct γi, γj in the same Gαβ -orbit. This contradicts again that Gαβ = 1. �

By Lemma 5.8, the last three lemmas have treated all cases in which |Γ(α)+| = 1. The remaining
lemma eliminates the case |Γ(α)+| > 1, which includes the case that Γ(α) ∼= H3.

Lemma 5.12. If M ∈ S and Γ(α) 6∼= Γ∗(α) then we must have |Γ(α)+| ≤ 1.

Proof. Suppose for a contradiction that |Γ(α)+| > 1. We consider the remaining cases of pairs Σ1, Σ2 of
graphs from the list in Theorem 1.1(iii) which are possibilities for Γ(α), Γ∗(α). We require the following
(see Lemma 5.1): Σ1,Σ2 are non-isomorphic, have the same number of vertices, Σ−

1
∼= Σ+

2 and has size
greater than one. In each case, there is no harm in supposing Γ(α) = Σ1 and Γ∗(α) = Σ2, and we do
this; for we may replace M by its weak complement if necessary, since this also will be set-homogeneous
and satisfy the same assumptions. Also, we may assume that Σ1, rather than its complement, comes
from the list.

Case 1: Σ1 = Kn[H0] with n ≥ 1.

Then Σ2 = Kn[H0]. Now the tournaments T = {β, γ0, γ1, γ2} (where β → γi and γi → γi+1(mod3) for

i = 0, 1, 2), and T , are both configurations which are maximal subject to embedding in both Γ(α) and
Γ∗(α). Thus, given a copy of T in Γ(α) labelled as above, there is δ with T ⊂ Γ∗(δ). Clearly δ 6∈ Γ(α).
If δ 6∈ Γ∗(α), then with β ∈ T the digraph induced on {α, β, δ} is rigid, so by 3-set-homogeneity there
is g ∈ G with (α, β, δ)g = (α, γ1, δ). However, because g fixes α and δ it induces an automorphism of
T , and no automorphism of T moves β to γ1.

If δ ∈ Γ∗(α), then the above argument applies provided we know that G induces Z3 on copies of D3.
To see that the latter holds, note that {α, β, γi} is rigid, so there is g ∈ Gαβ with γg

0 = γ1. Such an
element g fixes Γ(α) ∩ Γ(β) = {γ0, γ1, γ2} and generates a copy of Z3 on this set.
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Case 2: Σ1 is a member of

{D3[Kn], D4[Kn], D5[Kn], H0[Kn], D3[C5], D3[K3 ×K3],
D3[Km[Kn]], H1, H2, H3, Jn, Kn[D3[Km]]}

for n,m > 1.

In these cases there are no possibilities for Σ2 with the required properties.
All cases are easily eliminated except for the case Σ1

∼= H3, so we consider this case. When Σ1
∼= H3,

by Lemma 5.1(ii) we know that Σ−
1
∼= Σ+

2 , and since Σ1
∼= H3 we have Σ−

1
∼= H0. Hence Σ+

2
∼= H0

and this means that Σ2 cannot be isomorphic to any of : D3[K3 × K3], D3[K9], D3[K3[K3]], J9, or
K3[D3[K3]]. But then the only remaining possibility is that Σ2

∼= H3.
In this case choose δ ∈ Γ(α). Observe that (by inspection of H3) the pairwise unrelated sets in H3

have size at most nine, and pairwise unrelated sets in Γ∗(α) have size at most 3. Consider a pairwise
unrelated set X in Γ(α) of size 9. For every 3-subset A of X containing δ, there is β with A ⊂ Γ∗(β),
and distinct 3-sets give distinct β. Since there are

(

8
2

)

= 28 possibilities for A, we find |Γ(δ)| ≥ 28, a
contradiction as |Γ(α)| = |H3| = 27.

�

Combining the results of the last two sections, we now obtain a proof of our main result.

Proof of Theorem 1.1(iii). Let M be a finite symmetric set-homogeneous digraph. By Lemma 3.2(ii)
we may suppose that M is Γ-connected. We now argue by induction on |M |. By Lemma 3.4 and the
induction hypothesis, Γ(α) and Γ∗(α) belong to the list in (iii), and as Γ and Γ∗ are paired orbitals
|Γ(α)| = |Γ∗(α)|. Also, by Lemma 3.3(ii) we may suppose that for vertices α, β, if α 6= β then
Γ(α) 6= Γ(β) and Γ∗(α) 6= Γ∗(β).

It follows from the results in Section 5 that Γ(α) ∼= Γ∗(α). Then applying the results of Section 4 we
deduce that M is isomorphic to one of the digraphs in (iii), completing the proof of the theorem. �

6. Infinite set-homogeneous digraphs

In this section we begin a study of countably infinite set-homogeneous a-digraphs. As before, there
is an orbital Γ such that α → β if and only if (α, β) ∈ Γ, and there is another orbital Λ such that if
(α, β) ∈ Λ then α, β are distinct and unrelated by →. We shall write α||β if (α, β) ∈ Λ ∪ Λ∗. The
main result is Theorem 1.4, a classification under the additional assumption that the a-digraph is not
2-homogeneous, or equivalently, that the orbital Λ consisting of an orbit on unrelated pairs is not
self-paired. As found also in [9] for graphs, the problem of classifying all set-homogeneous countable
a-digraphs appears to be hard.

Let T (4) be the a-digraph obtained by distributing countably many points densely around the unit
circle, no two making an angle of π/2 or π at the centre, such that y → x if and only if π/2 < arg(y/x) <
π.

Also, let 2 ≤ n ≤ ℵ0, and let {Qi : 0 ≤ i < n} be a partition of the rationals Q into n dense codense
sets. Define an a-digraph Rn with domain Q, putting a → b if and only if a < b and there is no i < n
such that a, b ∈ Qi.

By standard back-and-forth arguments (see [5, Section 2.5] or [1, Ch. 9] for background on arguments
of this kind), these constructions (for T (4) and the Rn) determine unique a-digraphs up to isomorphism.

Lemma 6.1.

(i) The a-digraphs Rn (for n ≥ 2) are set-homogeneous but not 2-homogeneous, and have imprimitive
automorphism groups.

(ii) The a-digraph T (4) is set-homogeneous but not 2-homogeneous, and has primitive automorphism
group.

(iii) Let T be a set-homogeneous tournament. Then the disjoint union Kn[T ] of n copies of T (where
n ∈ {ℵ0} ∪ (N \ {0})) is set-homogeneous and 2-homogeneous, and is homogeneous if and only if
T is homogeneous. Also, T [Kn] is a set-homogeneous a-digraph, and is 2-homogeneous.

Proof. (i) First, observe, by a back-and-forth argument, that there is a homogeneous expansion R′
n

of Rn to a language with an equivalence relation whose classes are the Qi (which are the maximal
independent sets in Rn), and with a binary relation symbol for the natural ordering on Q, such that



SET-HOMOGENEOUS DIGRAPHS 33

Aut(Rn) = Aut(R′
n). Note here that the induced ordering on each Qi is invariant under Aut(Rn), since

if x, y ∈ Qi are distinct we have x < y ⇔ Γ(x) ⊃ Γ(y).
Let θ : U → V be an isomorphism between finite subsets of Rn. The relation || (for unrelated pairs)

is an equivalence relation on U and V , preserved by θ. We may deform θ to a map θ′ : U → V which
induces the same map as θ on U/|| but respects the ordering on each ||-class induced from Q. Then
θ′ : U → V is an isomorphism; for if E is the equivalence relation on U = dom(θ) given by

Exy ⇔ x||y ∧ (Γ(x) ∩ U = Γ(y) ∩ U) ∧ (Γ∗(x) ∩ U = Γ∗(y) ∩ U),

then there is an automorphism φ of dom(θ) fixing each E-class setwise such that θ′ = φ ◦ θ. Now θ′

is an isomorphism of finite substructures of the expansion R′
n, so by homogeneity, θ′ extends to an

automorphism θ̃ of R′
n, and this is also an automorphism of Rn, with θ̃(U) = V . The a-digraph Rn is

not 2-homogeneous, for if x, y ∈ Q2 with x < y then {x, y} ∼= {y, x}, but there is z with x→ z → y but
no z with y → z → x.

(ii) Consider the binary structure S(4) introduced by Cameron [4] and mentioned in [9]. The domain
is, as for T (4), a countable set M of points on the unit circle, distributed densely, no two making an
angle 2kπ/4 at the centre (k ∈ Z). There are binary relations σ0, σ1, σ2, σ3 with σi(a, b) if and only if
2πi/4 < arg(a/b) < 2π(i+1)/4. The structure S(4) = (M,σ0, σ1, σ2, σ3) is homogeneous, as noted in [4,
Section 8]. (Formally, Cameron also has the circular ordering in the language, but since it is definable
without quantifiers from the σi, it is not needed.) Now T (4) is a ‘reduct’ of S(4); that is α→ β if and
only if σ1(α, β) holds. In particular, Aut(T (4)) ≥ Aut(S(4)) (in fact, we have equality here).

To show T (4) is set-homogeneous, suppose that θ : U → V is an isomorphism between finite subdi-
graphs of T (4). Define an equivalence relation ≡ on U , putting x ≡ y if and only if Γ(x)∩U = Γ(y)∩U
and Γ∗(x) ∩ U = Γ∗(y) ∩ U , and define ≡ similarly on V . Then θ respects ≡, so induces a bijection
U/ ≡ −→ V/ ≡. Each ≡-class is an independent set, so any pair of distinct ≡-related elements from U
or V satisfies σ0 or σ3 (in S(4))). Suppose θ maps the ≡-class {α1, . . . , αr} of U to {β1, . . . , βr} of V . We
may suppose that the enumerations are such that σ0(αi, αi+1) and σ0(βi, βi+1) for each i = 1, . . . , r−1.
We may deform θ to θ′ such that for all such ≡-classes, θ′(αi) = βi, that is, θ′ respects σ0 on each
≡-class. The map θ′ is also an isomorphism between substructures of T (4), since any permutation of U
which fixes each ≡-class setwise is an automorphism of U . We claim that θ′ extends to an automorphism
of T (4). To see this, by the homogeneity of S(4), it suffices to show that, on U , we can reconstruct
the σi from knowledge of → and of σ0 on each ≡-class. So suppose that α, β ∈ U are independent and
in different ≡-classes. If there is x ∈ U such that α → x and β||x, or β → x and x → α, or x||α and
x→ β, then σ0(α, β). Otherwise, σ0(β, α) holds. Similarly we may recover σ3, and σ1 and σ2 are given
(as Γ and Γ∗).

Clearly T (4) is not 2-homogeneous because there exist independent pairs that cannot be swapped
by any automorphism. Indeed, if x, y ∈ T (4) with 0 < arg(y/x) < π/2, then ∃z(z → y ∧ x → z), but
¬∃z(z → x ∧ y → z).

For the primitivity assertion, it suffices to show that Aut(S(4)) is primitive. For this, it is enough to
verify that each σi generates the universal equivalence relation on M . This is straightforward.

(iii) This is easy, and is omitted. �

The proof of Theorem 1.4 breaks into two parts, depending on whether or not M has primitive
automorphism group. The theorem will follow immediately from Propositions 6.11 (the primitive case)
and 6.13 (the imprimitive case), the subject of the rest of the section.

The primitive case.

Lemma 6.2. Let M be a set-homogeneous countably infinite a-digraph, and let G := Aut(M) be its
automorphism group.

(i) If G is primitive then each of the suborbits Γ(α), Γ∗(α), Λ(α), and Λ∗(α) is infinite.
(ii) If there exist vertices α, β, α′ and β′ such that α||β, α′||β, β′||α, and either α→ α′ and β → β′,

or α′ → α and β′ → β, then M is 2-homogeneous.

Proof. (i) This is standard – otherwise the union of the finite Gα-orbits would be a non-trivial block of
imprimitivity (see e.g. Proposition 2.3 of [24]).

(ii) If such α′, β′ exist, then by 3-set-homogeneity the isomorphism (α, α′, β) 7→ (β, β′, α) must extend
to an automorphism of M interchanging α and β, and hence M is 2-homogeneous. �
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Table 1. Configurations on 3 vertices.

For what remains of this subsection M will denote a set-homogeneous but not 2-homogeneous count-
ably infinite a-digraph, with a primitive automorphism group G := Aut(M). We shall prove several
lemmas about M which will then be used in the proof of Proposition 6.11 to show that M ∼= T (4).

Since M is not 2-homogeneous, there are two distinct paired orbitals Λ and Λ∗ on unrelated pairs.
We shall write α⇒ β to mean that β ∈ Λ(α). Also, we write α||β to mean that α, β are independent,
and α||B to mean that there is no arc between α and any member of the set B of vertices. We use the
following notation to denote certain configurations on three vertices (see Table 1).

L1: β ⇒ α, β → γ, α⇒ γ. L8: β ⇒ α, γ → β, γ||α (isomorphic to L12 or L14).
L2: β ⇒ α, α, β → γ. L9: β ⇒ α, α→ γ, γ||β (isomorphic to L13 or L14).
L3: β ⇒ α, γ → α, β. L10: β ⇒ α, α⇒ γ, γ ⇒ β.
L4: β ⇒ α, α→ γ → β. L11: α→ β → γ, α→ γ.
L5: α→ β → γ → α. L12: β ⇒ α, β → γ, γ ⇒ α.
L6: α⇒ β ⇒ γ, α⇒ γ. L13: β ⇒ α, γ → α, β ⇒ γ.
L7: β ⇒ α, β → γ → α. L14: β ⇒ α⇒ γ → β.

Lemma 6.3. If α⇒ β then:

(i) Γ(α) 6= Γ(β) and Γ∗(α) 6= Γ∗(β); and
(ii) each of Γ(α) \ Γ(β), Γ(β) \ Γ(α), Γ∗(α) \ Γ∗(β) and Γ∗(β) \ Γ∗(α) is non-empty.

Proof. (i) Define the G-congruence ≡ on M , putting u ≡ v if and only if Γ(u) = Γ(v). If α ≡ β, then,
by primitivity, u ≡ v for any u, v ∈M , and it follows that M has no arcs, so is 2-homogeneous, contrary
to assumption. The same argument applies for Γ∗.

(ii) Suppose that α ⇒ β implies that Γ(β) ⊃ Γ(α) (the other cases are similar). There is a partial
order < on M given by α < β if and only if Γ(β) ⊃ Γ(α), and we have that α ⇒ β implies α < β. In
particular, L10 does not embed. Likewise, L12 does not embed in M ; for if β ⇒ α then Γ(α) ⊃ Γ(β) so
there is no vertex γ in Γ(β) \ Γ(α).

Case 1: ⇒ is transitive.
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In this case,⇒ is a partial order < on M such that the ‘principal ideal’ {y : y ⇒ α} generated by every
element α is linearly ordered; for if y1 ⇒ α and y2 ⇒ α with y1 6= y2, we cannot have y1 → y2 for
then y2 ∈ Γ(y1) \ Γ(α), and similarly y2 → y1 is impossible, so y1 ⇒ y2 or y2 ⇒ y1. Furthermore, we
claim that any two elements of M have a common lower bound. For let ∼ be the adjacency relation
for the comparability graph of (P,<) (so x ∼ y ⇔ x < y or y < x). Since Aut(M) is primitive and
there are comparable pairs, this graph is connected. Suppose for a contradiction that x, y ∈M have no
common lower bound, and let x = x0 ∼ x1 ∼ ... ∼ xn = y be a path of minimal length between them.
If x1 > x0 then by minimality of n, x2 < x1, a contradiction as then the principal ideal below x1 is not
linearly ordered. So x1 < x0, and then by minimality of n, x2 > x1. We cannot have x2 = y, and by
minimality of n must have x3 < x2, in which case the principal ideal below x2 is not linearly ordered,
again a contradiction.

Thus, the structure (M,⇒) (so just with the relation ⇒) is a semilinear order (a partial order
in which each principal ideal is totally ordered and any two elements have a common lower bound).
Also, (M,⇒) is 2-set-homogeneous. Countable 2-set-homogeneous semilinear orders are classified in
in Droste [8], under slightly different terminology (they are called countable 2-transitive trees). We
recall that a poset is called Dedekind–MacNeille complete if each non-empty upper bounded subset has
a supremum, or equivalently, each non-empty lower bounded subset has an infimum. For any poset
M there is a unique (up to isomorphism fixing M pointwise) extension M of M which is Dedekind–
MacNeille complete, called the Dedekind–MacNeille completion ofM ; see [8] for more details. According
to Droste’s classification, the isomorphism type of M = (M,⇒) is determined by whether or not
the ‘ramification points’ (greatest lower bounds of incomparable pairs) are in M or M \M , and the
‘ramification order’, or number of ‘cones’ at each ramification point.

Choose {αi : i ∈ N} with αi ⇒ αj whenever i < j, and βi such that αi ⇒ βi and βi is incomparable
to αi+1 in the semilinear order. Then ({βi : i ∈ N},→) is a tournament. By Ramsey’s Theorem, there
are i1 < i2 < i3 < i4 ∈ N such that B := {βi1 , βi2 , βi3 , βi4} is linearly ordered by → (we colour a
2-subset {i, j} of N with i < j red if βi → βj , and green otherwise, and pick a 4-element monochromatic
subset of N). By structural properties of the semilinear order under consideration, we may choose
C := {γi : i ∈ N} and D := {δi : i ∈ N} such that C ∪ D is an antichain of (M,⇒), and for some
ramification point α in the completion M of M , any pair γi, δj has greatest lower bound α, but any
two of the γi, or of the δi, have greatest lower bound greater than α. Since any distinct γ, δ ∈ C ∪D
are related by →, it is now possible to find a 4-set E, containing 2 elements from C and 2 elements
from D, which is linearly ordered by →. To see this, observe first that, after replacing D by an infinite
subset if necessary, without loss there is c1 ∈ C such that c1 → y for all y ∈ D. If now there is c2 6= c1
dominating two elements d1, d2 of D, then {c1, c2, d1, d2} is totally ordered by→. If there is no such c2,
then there are distinct d1, d2 ∈ D dominating two distinct elements c1, c2 of C, and again {c1, c2, d1, d2}
is totally ordered by →.

Finally, by 4-set-homogeneity, there is g ∈ G with Bg = E. This is impossible, for g induces an
automorphism of M , and the closures in M of B and E (where we add infima of⇒-incomparable pairs)
are non-isomorphic.

Case 2: ⇒ is not transitive.

Now L1 does not embed in M , for in the notation of L1, γ ∈ Γ(β) \Γ(α), contradicting β ⇒ α. Hence,
since L10 does not embed, if β ⇒ α⇒ γ then β ⇒ γ or γ → β, and since ⇒ is not transitive the latter
case (L14) does occur. It follows that β → α implies α < β, for by 2-set-homogeneity there is γ so that
α ⇒ γ ⇒ β, so α < γ < β, so α < β. Thus, α ⇒ β and β → α each imply α < β. Since any two
distinct elements of M are related by ⇒ or by →, it follows that the partial order < on M is a total
order, with α < β if and only if α⇒ β or β → α.

Given α, let Cα := {β : α ⇒ β}, and Dα := Cα ∪
⋃

β∈Cα
Cβ . First observe that Cα is an initial

segment of {x ∈ M : α < x}. Indeed, suppose β ∈ Cα and α < γ < β. If γ 6∈ Cα then γ → α, so
α ∈ Γ(γ); thus, by the definition of <, α ∈ Γ(β), a contradiction. It follows that if β ∈ Cα then Cβ is
an initial segment of {x ∈M : β < x}, so Cα ∪Cβ is an initial segment of {x ∈M : α < x}, and in fact
Dα is an initial segment of {x ∈M : α < x}. Also, Cα is a proper initial segment of {x ∈M : α < x},
for there is γ ∈M with γ → α, and then α < γ with γ 6∈ Cα.



36 SET-HOMOGENEOUS DIGRAPHS

Next, Dα = {x ∈ M : α < x}. For if γ ∈ M with γ > Cα then γ → α, so as L14 embeds in M , by
2-set-homogeneity there is β ∈ Cα with β ⇒ γ, so γ ∈ Cβ ⊂ Dα. Observe also that for such α, β, γ we
have SupCα < SupCβ , so whenever we have β1 ⇒ β2 we have SupCβ1

< SupCβ2
. It follows that if

β1, β2 ∈ Cα with β1 < β2 then SupCα < SupCβ1
so β1 ⇒ β2 so SupCβ1

< SupCβ2
.

Fix β, γ as in the last paragraph, so α ⇒ β, β ⇒ γ, and γ > Cα. If α < β′ < β then SupCβ′ <
SupCβ < SupCγ , and if β < β′ ∈ Cα then SupCβ < SupCβ′ , so β′ ⇒ γ, so SupCβ′ < SupCγ .
Together, using the fact that Cα is an initial segment of {x ∈ M : α < x}, these give that x < SupCγ

for all x ∈ Cα. Hence, if δ ∈ M with δ → γ, then δ > γ > α and δ 6∈ Cγ , so δ 6∈ Dα, contradicting the
first assertion of the last paragraph. �

Lemma 6.4. If β ⇒ α then either there exists γ with β → γ and α||γ, or there exists δ with α → δ
and β ‖ δ.

Proof. Suppose not. Then by Lemma 6.3 there are γ, δ with β → γ → α and α → δ → β, and there is
an automorphism taking (β, γ, α) to (α, δ, β), swapping α and β, which is impossible. �

So from now on, we may suppose without loss of generality that if β ⇒ α then there is γ with β → γ
and α||γ. For, if the other possibility arising from Lemma 6.4 held, then we would continue with the
argument below, but with the orientation of every ⇒-arc reversed.

Lemma 6.5. Suppose β ⇒ α. Then

(i) there is δ such that α→ δ → β;
(ii) there is no directed 2-path β → η → α, that is, L7 does not embed;
(iii) there is ǫ||β with ǫ→ α;
(iv) there is no η with η → β and η||α; that is, L12 and L14 do not embed.

Proof. By our assumption there is γ with β → γ and α||γ.
(i) By Lemma 6.3(ii) there is δ ∈ Γ(α)\Γ(β), and by Lemma 6.2(ii) (applied with α′ = δ and β′ = γ)

we cannot have δ||β. Hence δ → β.
(ii) If such η exists, then by 3-set-homogeneity there is g ∈ G mapping (α, δ, β) to (β, η, α) (where δ

is as in (i)), and such g swaps α and β, a contradiction.
(iii) By Lemma 6.3(ii) there is ǫ ∈ Γ∗(α) \ Γ∗(β), and by (ii) we must have ǫ||β.
(iv) Suppose such η exists. Then there is g ∈ G inducing (ǫ, α, β) 7→ (η, β, α) (with ǫ as in (iii)) and

so swapping α and β, a contradiction. �

Lemma 6.6. Suppose β ⇒ α. Then

(i) for any γ ∈ Γ(β) \ Γ(α), α⇒ γ;
(ii) for any γ ∈ Γ∗(α) \ Γ∗(β), γ ⇒ β (so L13 does not embed);
(iii) Γ(β) \ Γ(α) is an independent set.

Proof. (i) We cannot have γ → α by Lemma 6.5(ii). By Lemma 6.5(iv), γ ⇒ α is impossible. The only
remaining possibility is α⇒ γ.

(ii) By Lemma 6.5(ii), we cannot have β → γ. If β ⇒ γ, then, by considering a map (β, γ) 7→ (β, α),
there is δ ∈ Γ(α) with δ||β, contrary to Lemma 6.2(ii) (applied with (α′ = δ). Thus, γ ⇒ β.

(iii) Suppose γ, γ′ ∈ Γ(β) \ Γ(α), and γ → γ′. By (i), α⇒ γ and α⇒ γ′. But now the configuration
{α, γ, γ′} is a copy of L13, contrary to (ii). �

Lemma 6.7.

(i) There is no Γ-3-chain α→ β → γ with α→ γ.
(ii) Γ(α) and Γ∗(α) are each independent sets.
(iii) Λ(α) and Λ∗(α) are independent sets.
(iv) L6 embeds in M , but L10 does not embed.
(v) Each of Γ(α), Γ∗(α), Λ(α) and Λ∗(α) is linearly ordered by ⇒, densely and without endpoints.

Proof. (i) Suppose such α, β, γ exist. Since α → γ, and in view of the triple (α, β, γ) of Lemma 6.6(i),
there is δ with α ⇒ δ ⇒ γ. We cannot have δ||β, since δ ⇒ β implies (δ, β, γ) carries L13, and
β ⇒ δ implies (α, β, δ) carries L12. Now β → δ is impossible since {α, β, δ} would be isomorphic to L7,
contrary to Lemma 6.5(ii), and likewise δ → β is impossible because otherwise {γ, δ, β} carries L7.

(ii) This is immediate from (i).
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(iii) It suffices to observe that the configurations L12 and L13 do not embed. For these, see Lem-
mas 6.5(iv) and 6.6(ii).

(iv) By Lemma 6.2(i), each of Γ(α), Γ∗(α), Λ(α) and Λ∗(α) is infinite. Thus, by (iii) above, L6

embeds in M , so by 3-set-homogeneity, as L6 and L10 are digraph-isomorphic, L10 does not embed.
(v) It follows from (iv) that each of Γ(α), Γ∗(α), Λ(α) and Λ∗(α) is linearly ordered by ⇒. By

3-set-homogeneity, it follows that Gα acts 2-homogeneously on each of the four sets, so in each case,
the linear order is dense and without endpoints. �

Now fix α ∈M . It follows from Lemma 6.7(v) that there is a unique linear ordering <α on M , with
α as the first point, with convex subsets Λ(α), Λ∗(α), Γ(α), Γ∗(α) on which <α extends ⇒, and with
Λ(α) < Γ(α) < Γ∗(α) < Λ∗(α). There is a corresponding circular ordering (in the sense, say, of [1,
11.3.3]) Kα on M defined from <α, with Kα(x, y, z) holding if and only if x <α y <α z or y <α z <α x
or z <α x <α y. We shall show that Kα is G-invariant (not just Gα-invariant).

Lemma 6.8. The structures L1 − L4 and L6 embed in M , but L7–L14 do not embed in M .

We shall show in the next lemma that L5 also embeds in M .

Proof. The structure L1 embeds by Lemma 6.6(i); L2 and L3 embed since Γ(α) and Γ∗(α) are infinite
(by Lemma 6.2(i)) and are independent (by Lemma 6.7(ii)); L4 embeds by Lemma 6.5(i), and L6 by
Lemma 6.7(iv).

The structure L7, L10, and L11 do not embed, by Lemmas 6.5(ii), 6.7(iv), and 6.7(i), respectively.
Also, L12, L13 and L14 do not embed, by Lemma 6.5(iv), Lemma 6.6(ii), and Lemma 6.5(iv), respec-
tively. Since L8 is ‘L12 or L14’, and L9 is ‘L13 or L14’, it follows that these do not embed too. �

Suppose now that Σ1,Σ2 are distinct members of {Λ(α),Γ(α),Γ∗(α),Λ∗(α)}, and are viewed as sets
totally ordered by <α. We say that (Σ1,Σ2) is of (Φ,Ψ)-type if Φ,Ψ are distinct elements of Γ,Γ∗,Λ,Λ∗

and

(A) for any β ∈ Σ1, the set Φ(β) ∩ Σ2(α) is a proper non-empty final segment of Σ2 with no least
element, and if β1, β2 ∈ Σ1 are distinct, then Φ(β1) ∩ Σ2 6= Φ(β2) ∩ Σ2;

(B) for any β ∈ Σ1, we have Σ2 \ Φ(β) ⊆ Ψ(β);
(C) for any γ ∈ Σ2, the set Φ∗(γ) ∩ Σ1 is a proper non-empty initial segment of Σ1 with no greatest

element, and if γ1, γ2 ∈ Σ2 are distinct then Φ∗(γ1) ∩Σ1 6= Φ∗(γ2) ∩Σ1;
(D) for any γ ∈ Σ2, we have Σ1 \ Φ∗(γ) ⊆ Ψ∗(γ).

We now determine the types for all possible pairs Σ1,Σ2.

Lemma 6.9.

(i) (Λ(α),Γ(α)) is of type (Γ,Λ).
(ii) (Λ(α),Γ∗(α)) has type (Γ∗,Γ).
(iii) (Λ(α),Λ∗(α)) has type (Λ∗,Γ∗).
(iv) (Γ(α),Λ∗(α)) has type (Γ∗,Γ).
(v) (Γ∗(α),Λ∗(α)) has type (Γ,Λ).
(vi) (Γ(α),Γ∗(α)) has type (Γ,Λ).
(vii) L5 embeds in M .

Proof. We just prove (i), as parts (ii)-(v) are dealt with using similar arguments to (i). We also comment
on the proof of (vi) and (vii). We make repeated use of Lemma 6.8 throughout.

(A) Let β ∈ Λ(α). To see that I := Γ(β)∩Γ(α) is a final segment of Γ(α), suppose that γ, γ′ ∈ Γ(α)
with γ ⇒ γ′, and β → γ. As {β, γ, γ′} cannot be L8, β||γ′ is impossible, and as {α, β, γ′} 6∼= L7 we
cannot have γ′ → β, so β → γ′. To see that I 6= ∅, observe that by 2-set-homogeneity, {α, β} lies
in a copy of L2. Also, I 6= Γ(α) as {α, β} lies in a copy of L1. If I has a least element, γ say, and
γ′ ∈ I \ {γ}, then by 3-set-homogeneity there is g ∈ G with (α, β, γ)g = (α, β, γ′), and this is clearly
impossible.

If β1, β2 ∈ Λ(α) are distinct and Γ(β1) ∩ Γ(α) = Γ(β2) ∩ Γ(α), there is a Gα-congruence on Λ(α)
given by u ≡ v if and only if Γ(u) ∩ Γ(α) = Γ(v) ∩ Γ(α). By 2-homogeneity of Gα on Λ(α), there is a
single ≡-class on Λ(α). In this case, if β ∈ Λ(α) and γ ∈ Γ(β) ∩ Γ(α), then for all β′ ∈ Λ(α) we have
β′ → γ. This contradicts that {α, γ} lies in a copy of L1.

(B) To see that if β ∈ Λ(α) then Γ(α) \ Γ(β) ⊆ Λ(β), observe that L7 and L12 do not embed in M .
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(C) Let γ ∈ Γ(α). To see that J := Γ∗(γ) ∩ Λ(α) is an initial segment of Λ(α), observe that if
β, β′ ∈ Λ(α) with β ⇒ β′ and β′ → γ, then β, γ are not independent as otherwise {β, β′, γ} ∼= L9, and
γ 6→ β as otherwise {α, β, γ} ∼= L7. Now J 6= ∅ as {α, γ} lies in some L2, and J 6= Λ(α) as {α, γ} lies
in some L1. The facts that J has no greatest element, and that distinct elements γ determine distinct
sets J , are much as in (A).

(D) Suppose β ∈ Λ(α) \ Γ∗(γ). Then γ 6→ β as {α, β, γ} 6∼= L7, and γ 6⇒ β as {α, γ, β} 6∼= L12. Thus,
β ⇒ γ.

This proves (i). We now make some comments on (vi) and (vii).
Suppose β ∈ Γ(α) and γ ∈ Γ∗(α). Then γ 6⇒ β as {α, β, γ} 6∼= L7, and γ 6→ β as {α, β, γ} 6∼= L11.

Thus, the only possibilities are that β ⇒ γ and β → γ. Clearly, for any β ∈ Γ(α) there is some
γ ∈ Γ∗(α) with β ⇒ γ, as {α, β} lies in some L4. The key point is to check that {α, β} also lies in
some L5, i.e., that L5 embeds in M (so (vii) holds); for then there is γ ∈ Γ∗(α) with β → γ, and the
remaining details of (vi) follow easily as in (i).

So suppose for a contradiction that β ⇒ γ for all β ∈ Γ(α) and γ ∈ Γ∗(α). By (iv), there are
δ1, δ2 ∈ Λ∗(α) with β → δ1 and δ2 → β. Then δ1 ⇒ δ2, as {β, δ1, δ2} 6∼= L7. Using (v), pick
γ1, γ2 ∈ Γ∗(α), with γ1 → δ1 and γ2 ⇒ δ2. By 3-set-homogeneity, there is g ∈ Gαβ with γg

1 = γ2. Then
γ2 → δg1 , so as γ2 ⇒ δ2 and δg1 , δ2 ∈ Λ∗(α), by (v) we have δ2 ⇒ δg1 . Thus, as δ2 → β, by (iv) we also
have δg1 → β, a contradiction as β → δ1 and βg = β. This yields (vii), and hence (vi). �

There is a natural notion of convex subset of a circular ordering (in the sense of [1, 11.3.3]) K on M :
here, I ⊂ M is convex if, given distinct β, γ ∈ I, either K(β, γ, α) for all α ∈ M \ I, or K(β, α, γ) for
all α ∈ M \ I. With <α defined as in the paragraph before Lemma 6.8, a subset of M will be convex
in the sense of the circular ordering on M , if and only if it is convex in the sense of the linear order, or
is the union of an initial and a final segment of (M,<α).

Lemma 6.10.

(i) The circular ordering Kα is independent of the choice of α, so can be denoted by K.
(ii) For any β, each Gβ-orbit is a convex subset of M with respect to K.
(iii) Suppose that A = {α1, . . . , αn} ⊂M is finite, and Ai is an infinite Gαi

-orbit for each i = 1, . . . , n,
and that I := A1 ∩ . . . ∩ An 6= ∅. Then I is convex.

Proof. This follows easily from Lemma 6.9.
(i) Consider any α′ 6= α; there are four cases to consider – the four Gα orbits on M \ {α}. In each

case, patch together the circular ordering Kα′ from Λ(α′), Γ(α′), Γ∗(α′), Λ∗(α′), and check that Kα′

agrees with Kα.
(ii) This follows immediately from (i), since clearly, by construction of Kα, each Gα-orbit is a convex

subset of Kα.
(iii) It suffices to observe that if I is one of Λ(α), Γ(α), Γ∗(α), Λ∗(α), and β ∈ M with β 6= α, then

there is no Gβ-orbit J which intersects I properly in the union of an initial segment and a final segment
of I. This follows by a case analysis from Lemma 6.9. The main point is that each Gβ-orbit J is convex
and, by Lemma 6.9, lies in the union of {α} and two Gα-orbits. This suffices, for if J intersected I
properly in the union of an initial and final segment of I, then M would equal I ∪ J and would be the
union of {α} and three Gα-orbits, which is impossible. �

Proposition 6.11. Let M be a set-homogeneous but not 2-homogeneous countably infinite a-digraph,
and suppose that G := Aut(M) is primitive. Then M ∼= T (4).

Proof. Since T (4) has the required properties (by Lemma 6.1), it suffices to show that if M,M ′ are
countably infinite set-homogeneous but not 2-homogeneous a-digraphs with primitive automorphism
group, then M ∼= M ′. By the above analysis, M ′ carries the same relation⇒, so that Lemmas 6.2–6.10
hold for M ′ as well as for M . We shall show by a back and forth argument that M ∼= M ′, where M ,
M ′ are viewed as structures in the expanded language with relation symbols →, ⇒. So suppose that
A ⊂ M , A′ ⊂ M ′ are finite, f : A → A′ is an isomorphism, and α ∈ M \ A. We must find β ∈ M ′ so
that f extends to a partial isomorphism (of {→,⇒}-structures) with f(α) = β.

Let I := {y ∈ M : (x, α) ∼= (x, y) for all x ∈ A}. Put A := {α1, . . . , αm}, and βi := f(αi) for each
i = 1, . . . ,m. For each i = 1, . . . ,m, let Ai := {y ∈M : (αi, y) ∼= (αi, α)}. Thus, I := A1∩ . . .∩Am. By
Lemma 6.10(iii), I is a convex subset of M under the circular ordering K. Also put Bi := {y ∈ M ′ :
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(βi, y) ∼= (αi, α)}. It suffices to show that J := B1 ∩ . . . ∩ Bm 6= ∅, for then, if β ∈ J , then f extends
to an isomorphism f ′ : A ∪ {α} → A′ ∪ {β} with f ′(α) = β.

By considering how convex sets in circular orderings intersect (bearing in mind Lemma 6.10(iii)), we
see that there are r, s ∈ {1, . . . ,m} such that I = Ar ∩ As. We suppose r 6= s, this being the harder
case. Let I ′ := Br ∩ Bs. Then Br ∩ Bs 6= ∅. For whether or not an intersection Bi ∩ Bj is empty
is determined by which configurations L1 − L14 embed in M ′, and the same members, namely L1–L6,
embed in both M and M ′.

We claim that I ′ = J . To see this, we must show that for each i ∈ {1, . . . ,m} \ {r, s}, Br ∩Bs ⊆ Bi.
For this we view αi, βi (in the structures M,M ′ respectively) as playing the role of α in Lemma 6.10
above. Thus, M \ {αi} is partitioned into convex subsets Λ(αi),Γ(αi),Γ

∗(αi),Λ
∗(αi), as is M ′ over

βi. There are orderings <αi
, <βi

on M and M ′ respectively such that αr and βr lie in corresponding
convex subsets of M and M ′ (i.e. corresponding orbits over αi and βi respectively), and αr <αi

αs

if and only if βr <βi
βs. We may suppose that I is an initial segment of Ar and a final segment of

As (with respect to <αi
). Now the isomorphism type of {αr, αi} ensures that an initial segment of

Ar lies in Ai, so an initial segment of Br lies in Bi (with respect to <βi
). Likewise, the isomorphism

type of {αs, αi} ensures that As has a final segment in Ai, so Bs has a final segment in Bi (essentially,
these assertions are because M and M ′ both satisfy Lemma 6.10). Now it is an easy consequence of
Lemmas 6.9 and 6.10 that M cannot be the union of three convex sets of the form Br, Bs, Bi. As
Br ∩Bs 6= ∅, it follows that Br ∩Bs ⊆ Bi, as required. �

The imprimitive case. We begin with a lemma used in the next proposition, and relevant to the
discussion in Section 7.

Lemma 6.12. Let M be a countably infinite connected set-homogeneous a-digraph and suppose that
G = Aut(M) preserves a nontrivial block system {Bn : n ∈ I}. Then one of the following holds, for
some set-homogeneous tournament T and n ≤ ℵ0.

(i) M ∼= Kn[T ], M is 2-homogeneous, and each Bn induces T ;
(ii) M ∼= T [Kn], M is 2-homogeneous, and each Bn

∼= Kn;
(iii) Each Bn is an independent set, and for distinct x, y ∈ Bn, Γ(x) 6= Γ(y); also, for distinct i, j ∈ I,

there are arcs in both directions between Bi and Bj.

Proof. First note that in cases (i) and (ii), 2-homogeneity of M follows from Lemma 6.1(iii).
Suppose first that some B = Bn contains an arc. Then by 2-set-homogeneity, two elements in distinct

blocks must be independent, and two elements within any block must have an arc between them. Thus,
B induces a tournament T , and T must be set-homogeneous, and (i) above holds.

Thus, we may assume that there are no arcs within any block. It follows by 2-set-homogeneity that
any two elements in distinct blocks are related by an arc, and hence that G acts 2-homogeneously on
{Bn : n ∈ I}. If there are distinct blocks Bi, Bj such that there is an arc from every vertex in Bi to
every vertex in Bj , then for any two distinct blocks, all arcs go from one to the other. There is then an
induced tournament structure on the block system, and (ii) holds.

In the remaining case, for any two distinct blocks there are arcs in both directions between them.
It follows that there are two vertices x, y in the same block such that Γ(x) 6= Γ(y). Hence, by 2-set-
homogeneity, this holds for any two vertices in the same block, and (iii) holds. �

Proposition 6.13. Let M be a countably infinite connected set-homogeneous but not 2-homogeneous
a-digraph, and suppose that G := Aut(M) is imprimitive. Then M is isomorphic to Rn for some n ≥ 2.

Proof. Let {Bn : n ∈ I} be a non-trivial block system for G. Then since M is not 2-homogeneous, case
(iii) of Lemma 6.12 holds. It follows that the G-action induced on Bi is highly homogeneous (since M
is set-homogeneous) but not 2-transitive (since M is not 2-homogeneous).

We claim that the Bi are infinite. Indeed, otherwise, by Fact 1.5, |Bi| = 3 for each i. Then by
2-set-homogeneity if i 6= j there is g ∈ G interchanging Bi and Bj , but the number of arcs between
Bi and Bj is 9, so the number of arcs from B1 to B2 is not equal to the number for B2 to B1, a
contradiction.

By the last paragraph and an unpublished result of J. P. J. MacDermott (see p.63 of Cameron [5]),
G preserves a dense linear order without endpoints <i on Bi. Let x, y ∈ Bi with x <i y. If there are
z, w 6∈ Bi such that x → z → y and y → w → x, then (by 3-set-homogeneity and rigidity of {x, y, z})
there is g ∈ G with (x, y, z)g = (y, x, w), so M is 2-homogeneous, a contradiction. Also, given such x, y,
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as Γ(x) 6= Γ(y), either there is z with x→ z → y or there is w with y → w → x. Hence, reversing some
of the <i if necessary, we may suppose that x <i y if and only if Γ(x) ⊃ Γ(y).

It follows that if Bi, Bj are distinct then every element x of Bi dominates a final segment of Bj and
is dominated by an initial segment of Bj . For the first statement note that if x ∈ Bi and u, v ∈ Bj with
u <j v, and x→ u, then x 6∈ Γ(v) as x 6∈ Γ(u) and Γ(u) ⊃ Γ(v), so x→ v; the argument is similar for
the second statement. These segments are both non-empty. For example, if x is not dominated by any
element of Bj , then there is a proper non-empty initial segment I of Bi which dominates all of Bj , and
Bi \ I is dominated by all Bj . Then there is no automorphism swapping Bi and Bj , which is impossible
as there are arcs in both directions.

We will show that < is a total order on M , where x < y if and only if x → y or x, y are unrelated
and Γ(x) ⊃ Γ(y). All points follow from the definition (and the last paragraph) except the case where
x → y and y → z with x, z in distinct blocks, in which case we need to prove that x → z. Thus it is
sufficient to prove that M does not embed a directed triangle x, y, z with x→ y → z → x.

Claim. For any 3 blocks B1, B2, B3 and for any a ∈ B2 there exist u ∈ B1 and v ∈ B3 such that
u→ a→ v and u→ v.

Proof of Claim. Let x ∈ Γ∗(a) ∩ B1 and y ∈ Γ(a) ∩ B3 be arbitrary. Such vertices exist by the fact
that the initial and final segments mentioned above are non-empty. Now if x→ y then we are done by
setting u = x and v = y.

The other possibility is that y → x, so suppose this holds. Recall that Γ(y) ∩ B1 is a final segment
of B1. Let x

′ ∈ B1 \ Γ(y) so that x′ ∈ Γ∗(y) ∩B1 and x′ < x. By definition of <i we have x′ → a since
x′ <1 x. But now if we set u = x′ and v = y then u→ a→ v and u→ v, proving the claim. �

Now, seeking a contradiction, suppose that M embeds a directed triangle b→ a→ c→ b with b ∈ B1,
a ∈ B2, and c ∈ B3. By applying the claim twice we see that there exist u, v′ ∈ B1 and v, u′ ∈ B3 such
that u → a → v, u → v, u′ → a → v′, and u′ → v′. By 3-set-homogeneity there is an automorphism
g ∈ G extending the isomorphism (u, a, v) 7→ (u′, a, v′). Now ag = a and (B1, B3)

g = (B3, B1). Thus
(Γ(a) ∩ B1)

g = Γ(a) ∩ B3, (Γ(a) ∩ B3)
g = Γ(a) ∩ B1 and the corresponding statements for Γ∗(a) also

hold. It follows that b, cg ∈ B1 with b < cg, and bg, c ∈ B3 with bg < c, while cg → bg and c → b.
Now from the definition of <i, c

g → bg and bg < c implies cg → c, while c → b and b < cg implies
c → cg. This is a contradiction. We conclude that M does not embed a directed triangle and so < is
an ordering on M .

In order to recover Rn completely, we now have to show the following, for any distinct i, j ∈ I:

(i) if x, y ∈ Bi with x <i y, then there is z ∈ Bj with x→ z → y;
(ii) if x ∈ Bi, y ∈ Bj with x → y, then there is x′ ∈ Bi with x <i x

′ → y and there is y′ ∈ Bj with
x→ y′ <j y;

(iii) if x ∈ Bi, y ∈ Bj with x→ y, and k ∈ I \ {i, j}, there is z ∈ Bk with x→ z → y.

From these properties it follows that (M,<) is dense without endpoints, the Bi are dense codense, and
hence M ∼= Rn for some n (see the comment above Lemma 6.1).

Proofs of (i)–(iii). Given distinct x, y ∈ Bi there is z ∈ Bj with x, y → z. Hence, using 3-set-
homogeneity, G{Bi},{Bj} acts 2-homogeneously and hence primitively on Bi.

Suppose that (i) does not hold. Then x, y dominate the same elements of Bj , so are equivalent under

the GBi

{Bi},{Bj}
-invariant equivalence relation ‘dominate the same vertices of Bj ’. Thus, by primitivity

of GBi

{Bi},{Bj}
, any two elements of Bi dominate the same elements of Bj . This is impossible, since case

(iii) of Lemma 6.12 holds.
Part (ii) is an easy consequence of transitivity on arcs. Likewise, part (iii) follows from the claim

and arc-transitivity. This completes the proof of the proposition. �

Proof of Theorem 1.4. This follows immediately from Propositions 6.11 and 6.13. �
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7. Concluding remarks

The problem of classifying all countably infinite set-homogeneous a-digraphs appears to be hard. As
a starting point for the investigation of this problem, suppose M is a set-homogeneous a-digraph. By
Theorem 1.4, we may suppose that M is 2-homogeneous, so the orbital Λ is self-paired.

In the particular case when M is a countably infinite set-homogeneous a-digraph with imprimitive
automorphism group, by Lemma 6.12 there is a block system {Bi : i ∈ I} such that one of the following
holds.

(i) The blocks are isomorphic set-homogeneous tournaments, and there are no arcs between the blocks.
(ii) The blocks are independent sets, and on each block the group induced by Aut(M) is highly

homogeneous, so (assuming the blocks are infinite) is either highly transitive, or, by a theorem of
Cameron [3], preserves or reverses a linear or circular order.

We shall say that M is connected if the graph obtained by forgetting the arc orientation is connected.
By the last remark, if M is disconnected, then it is a disjoint union of set-homogeneous tournaments,
in which case Proposition 7.1 below provides some information. Thus, we assume M is connected.

We shall suppose first that M is not a tournament. If α ∈M then Gα has three orbits on M \ {α},
namely Γ(α), Γ∗(α), and Λ(α) (which equals Λ∗(α), by assumption).

Suppose that (Γ ◦ Γ) ⊆ Γ. Then → is transitive, so (M,→) is a set-homogeneous countably infinite
partial order, so is homogeneous, by [8, Theorem 8.13]. These are classified in [27].

Thus, we may suppose (Γ ◦ Γ) 6⊆ Γ. In this case M embeds either D3 or D4. For if there is an arc
from Γ(α) to Γ∗(α) then M embeds D3. And if not, then there are α→ β → γ with (α, γ) ∈ Λ, and as
Λ is self-paired, there is δ with γ → δ → α, yielding a D4.

Let diam(M) be the smallest d such that for any two distinct vertices α, β there is a directed path from
α to β of length no greater than d. An easy analysis now yields the following three possible cases, under
the given assumptions (that M is a countably infinite connected 2-homogeneous and set-homogeneous
a-digraph which is not a tournament).

(i) M embeds D3, diam(M) = 3, in which case (Γ ◦ Γ) ∩ Λ = ∅ and (Γ ◦ Γ) ⊇ Γ∗.
(ii) M embeds D3, diam(M) = 2, in which case (Γ ◦ Γ) ⊇ Λ ∪ Γ∗.
(iii) M embeds D4 but not D3, diam(M) = 3, in which case (Γ ◦ Γ) ⊇ Λ and (Γ ◦ Γ) ∩ Γ∗ = ∅.

For tournaments, we have the following result.

Proposition 7.1. Let T be a set-homogeneous tournament. Then T is k-homogeneous for all k ≤ 4.

Proof. We first show that T is 3-homogeneous.
From Lemma 3.1, we may suppose that T is infinite. By Ramsey’s Theorem, T embeds a chain of

length 3. Thus, by 2-set-homogeneity, for each arc x→ y, there is z such that x→ z, and z → y.
We may suppose that T embeds a 3-cycle, since otherwise it is a dense linear order, so is 3-

homogeneous. Thus, pick a 3-cycle x1 → x2 → x3 → x1. By the previous paragraph, there are
y1, y2, y3 such that xi → yi → xi+1 (mod 3) for each i = 1, 2, 3. Observe that y1, y2, y3 are distinct.
Either at least two of the yi each dominate at least two of the xi, or at least two of the yi are each
dominated by at least two of the xi. Without loss we suppose the former, with say y1 → x3, y2 → x1.
Now there is g ∈ G with {x1, x2, x3, y1}g = {x2, x3, x1, y2}. Furthermore, the tournament induced
on {x1, x2, x3, y1} admits no automorphisms, since it contains just two copies of D3 ({x1, x2, x3} and
{x1, y1, x3}) so any automorphism must fix their intersection {x1, x3} and hence fixes the tournament
pointwise. It follows that (x1, x2, x3)

g = (x2, x3, x1), so the cyclic group Z3 is induced on each tri-
angle. This ensures 3-homogeneity. Note that this argument applies to any G ≤ Aut(T ) which acts
set-homogeneously.

Recall that the automorphism group of any finite tournament has odd order, since any involution
would have to reverse some pair of distinct vertices. To see that T is 4-homogeneous, note that any non-
trivial odd order subgroup of S4 is cyclic of order 3, so any non-rigid 4-vertex tournament has a vertex
dominating the other three, or dominated by the other three. We must show that Aut(T ) induces Z3

on such a tournament. So consider α, β1, β2, β3 where {β1, β2, β3} ⊂ Γ(α) carries a copy of D3. Clearly
Aut(T )α acts set-homogeneously on the tournament Γ(α), so, by the last paragraph, induces Z3 on
copies of D3 in Γ(α). Thus, Aut(T ) induces the full group of automorphisms on {α, β1, β2, β3}. �

Problem 1. Does there exist a countably infinite tournament that is set-homogeneous but not homo-
geneous?
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We conclude with some remarks about set-homogeneous subgroups of full automorphism groups. It
is convenient to use the language of topological groups. Recall (see [5, Section 2.4]) that if M is a
countably infinite set, then there is a topology on Sym(M), for which the basic open sets are the cosets
of pointwise stabilisers of finite sets. A subgroup G of Sym(M) is then closed in Sym(M) if and only if
G is the automorphism group of some relational first order structure with domain M . If G ≤ Sym(M)
is closed, then H ≤ G is dense in G if and only if H has the same orbits as G on Mn for all n ≥ 1.

If M is a countably infinite homogeneous structure, we say that G ≤ Aut(M) acts set-homogeneously
on M , or is a set-homogeneous subgroup of Aut(M), if, whenever U, V are isomorphic finite substructures
of M , there is g ∈ G with Ug = V .

Problem 2. Which countably infinite homogeneous structures M have the property that every set-
homogeneous subgroup of Aut(M) is dense in Aut(M)?

We remark that if M has no structure (that is, Aut(M) = Sym(M)) then G ≤ Aut(M) acts set-
homogeneously if and only if G acts highly homogeneously on M , that is, G is k-homogeneous on M for
all k ≥ 1. By the theorem of Cameron [3] mentioned above, it follows that Aut(M) has (up to conju-
gacy in Sym(M)) four proper non-trivial set-homogeneous closed subgroups, namely the automorphism
groups of a linear order, a circular order, a linear betweenness relation, or an (arity four) separation
relation.

Following [9, Section 6], we shall say that a structure M is locally rigid if for every finite substructure
U of M , there is a finite substructure V of M containing U such that every automorphism of V fixes
U pointwise.

Proposition 7.2. Let M be a locally rigid countably infinite homogeneous relational structure. Then
any set-homogeneous subgroup of Aut(M) is dense in Aut(M).

Proof. Let G ≤ Aut(M) be set-homogeneous, and let f : U1 → U2 be an isomorphism between finite
substructures of M . By local rigidity, there is a substructure V1 of M containing U1 so that any
automorphism of V1 fixes U1 pointwise. As M is homogeneous, there is h ∈ Aut(M) extending f . Put
V2 := V h

1 . Then V1
∼= V2, so as G acts set-homogeneously, there is g ∈ G with V g

1 = V2. Then by choice
of the Vi, g extends f , as required. �

Remark 7.3. By [9, Proposition 6.1], if Γ is an infinite graph, and Γ has the property that for any two
distinct vertices x and y, there are infinitely many vertices joined to x and not y, and infinitely many
joined to y but not x, then Γ is locally rigid. It follows from this and Proposition 7.2 that if Γ is the
random graph, or the universal homogeneous Kn-free graph (see [5, 4.10]), then any set-homogeneous
subgroup of Aut(Γ) is dense in Aut(Γ).
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