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Abstract: This paper focuses on the asymptotic behaviors of the length of the largest 1-cluster
in a finite iid Bernoulli sequence. We first reveal a critical phenomenon on the length and then

study its limit distribution.

1 Introduction and statement of the results

Percolation is a canonical model on quenched spatial disorder [12], it offers challenging problems in
probability theory of relevance to statistical physics [8 [I1]. In subecritical percolation, it is widely
believed by physicists that the mean size of the largest cluster in a finite system of size IV scales
like s¢ In N. Where s¢ is called the crossover size ( since large clusters of size much smaller than
s¢ behave critically, while much larger clusters behave subcritically [12]). A heuristic theory of the
finite size scaling of the largest cluster size in subcritical percolation is presented and supported
by numerical simulations in [3]. Note that, besides the prediction on mean size growth, [3] also
suggests that as N — oo the distribution function of the size of the largest cluster converges to

the Fisher-Tippett distribution e=¢ [7.
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Mathematically rigorous results on the size of the largest cluster in subcritical percolation can
be found in [4]. Actually, from certain scaling axioms verified for d = 2 and believed to hold for
d < d. = 6, Borgs et al. have proved in [4] that the mean largest cluster size grows like s; In(N/s})
as N/s; — oo. Where s; is a corresponding crossover size based on {'(p), a correlation length
defined in terms of sponge-crossing probabilities.

In this paper, we will study the asymptotic behaviors of the size of the largest cluster in
one dimension. Usually, people pay little attention to an 1-dimensional percolation problem,
because percolation problems in one dimension are always trivial. But for problems on largest
cluster, it seems that the situation is quite different. A relatively deeper analysis will reveal that
the problem is far from easy or trivial. On the contrary, one will see later that it really offers
interesting problems in probability theory.

Now, for N > 1, write Zy as the sublattice {1,2,---, N}. For given p € (0, 1), let us consider
the general site percolation in Zy. For any ¢ € Zy, independently, ¢ is declared open with
probability p and is declared closed otherwise. Write Cy (i) as the open cluster containing ¢ and
|Cn(7)] as the cardinality of Cn (7). Note that in case of i is closed, Cn (i) = ¢ and |Cn(7)| = 0.
Let Sy be the size of the largest open cluster, i.e.

Sy = max [On ()] (1.1)

The goal of this paper is to determine the asymptotics of Sy as N — oco. Without use of the
terms in percolation theory, Sy can be stated directly as the longest sequence of only ‘heads’ in
N flips of a coin. S bears some resemblance to the longest increasing subsequence of a random
permutation of 1,2,--- | N [ 2], although it seems much simpler than the latter.

The original motivation for this work came from the percolation problem of arbitrary words
in one dimension studied by Grimmett, Liggett and Richthammer [10]. Let W = (w1, ws,...)
be an infinite word with w; = 0 or 1, Y = (¥1,Y2,...,) be an iid Bernoulli sequence such that
P(Y; = 1) = P(Y; = 0) = 3. For any integer M > 2, W is called M-seen in Y if there exists a
sequence {m; : i >} of integers such that Y;,, = w; and 1 < m; —m;—1 < M for each i > 1. (By
default, we take mg = 0.) For any given W, it is believed that the probability that W is M-seen
in Y equals zero for any M > 2, and a positive answer is given for M = 2 in [I0]. An easier
problem should be the corresponding embedding problem of a random word X = (X3, Xs,...,),
an iid Bernoulli sequence (independent to Y) with P(X; = 1) = 1 —P(X; = 0) = p. Let
Xn = (X1, X2,...,Xn) and [ be the length of the largest O-cluster in X . Then it follows from
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part a) of Theorem 3 in [I0] that, if for some ¢ < 75

P(iy <clnN) =1 as N — oo, (1.2)
then
P(X is M —seen in Y) = 0.

Whereupon, a problem arises: Does [y really scale as required in (L2))?
Now, we state the first result of the paper as the following, which exhibits a critical phe-

nomenon on Sy.

Theorem 1.1 Let & = &.(p) =1/In(=). Then

1
P
1. if € > &, then
lim P(Sy > &InN) =0; (1.3)
N—o0

2. if € < &, then
lim P(Sy > {InN) = 1; (1.4)
N—o0

3. if £ =&, then

1—e ™ =liminf P(Sy > £InN) <limsupP(Sy > £ N) =1 - e~ P, (1.5)
— 00

N—o00

where ¢ =1 — p.

Remark 1.1 For the embedding problem of random word X discussed above, it follows from (L.2)
and Theorem [l that
P(X is M —seeninY) =0

for all2 < M < —In(1 —p)/In2.

For the convergence speed in items 1, 2 of Theorem [[LT] we have the following large deviation

results.

Corollary 1.2 For any x > 0, we have

-1
J\}I_I)I(l)o - InP(Sy —&InN >2zInN)=2aln(1/p) (1.6)
and
1
] _ — — < — =
z\}inéom In{—InP(Sy —&InN < —zlnN)} =2In(1/p). (1.7)



Now we turn to discuss the possible convergence on Sy. For any A € [0, 1], define y be the

integer-valued Fisher-Tippett random variable with distribution function

Fy(z) :=P(x» < 2) = exp{—gp' *pl*)}, z€R, (1.8)

where |-] denote the the integer part of number . Note that the distribution function emae™"”,

where a,b > 0 are constants, was first discovered by Fisher and Tippett [7]. It is also called
the Gumbel distribution in honor of Gumbel’s pioneering work on application [9]. Clearly, F)(x)
(resp., 1 — F)\(x)) goes to zero fast enough as © — —oo (resp., * — 00), this implies that Ey

and Vary, exist. Furthermore, we have

- My := inf E Ex, =: M. 1.9

oo <M= inf XA<021>1\]E§>1 XA 2 < 00, (1.9)
and

0< X := oglr,%fgl Vary, < Oilifg)lVarx,\ =: Y5 < 00. (1.10)

For any N > 1, let yy = Sy — [&.InN| and Yy = Sy — & In N, denote by Fy, Fy the
distribution function of xn, Xn respectively.

Our second result concerns the convergence of Sy in distribution after appropriate centering.

Theorem 1.3 For any A € [0,1], let {Nx ;};>1 be the subsequence such that lim A; = X, where

Aj =& InNy; — [&InNy;|. Then as j — oo, o
XAj = XN», — Xx in distribution. (1.11)
Or equivalently, as j — oo,
XA = XNa, — Xa — A in distribution. (1.12)

In order to show that ESy scales as &.In N, we have to consider the following convergence on

moments.

Theorem 1.4 Suppose A € [0,1] and {N ;} is a subsequence such that as j — 00, xx,; converges

to xx in distribution. Then, for any m =1,2,...

lim E(x3’;) = E(xX')- (1.13)
Jj—o0
As a consequence, we have
ESn
N~ e (1.14)



and

¥ < I%nianarSN < limsup VarSy = X, (1.15)
—00

N—o00

where &, is given in the statement of Theorem [l and 31,35 are given in (ILI0).

Remark 1.2 Fquation (I.14) indicates that the crossover size in I1-dimensional percolation is
&(p) = 1/1n%. Obviously, &.(p) ~ ﬁ — 00 as p — 1, the critical probability of percolation in

one dimension.

The paper is arranged as follows. In section 2, we transform the problem on Sy to the
corresponding problem on a hitting time of a skip-free Markov chain, then we give estimates to
the decay rate of the hitting time distribution. In section 3, by using the estimates given in

section 2, we prove Theorems [[. 1l and [[[3l Finally, we prove Theorem [[.4] in section 4.

2 A skip-free Markov chain and its hitting time

Let us consider X = {X,, : n > 0}, a discrete time skip-free Markov chain on the nonnegative

integers with Xy = 0 and transition probability
D, if j=i+1
pij =P(Xnp1 =7 | X =14) = : (2.1)
g=1—p, if 7=0
For any integer k£ > 1, define the hitting time of state k as
Ty = inf{n: X,, = k}. (2.2)
Then, it is straightforward to check that Sy and Ty have the following dual relation

P(Sy > k) = P(T}, < N), for any k> 1. (2.3)

Thus, we have transformed our problem from Sy to Tx. Note that the distribution of T} is
well studied in [5,[6]: let X' = {X : n > 0} be obtained from X by making k an absorbing state,

and let P denote the transition matrix for X', then T} has probability generating function

u Hjli {q:%giu] , (2.4)

where 6g,01,...,0;_1 are the k£ non-unit eigenvalues of P.



The generating function (24)) is of course a perfect answer to problems on Ty, but it seems
hard to be used directly in our problem. Actually, on the distribution of T, we need a concrete
estimation (especially in k) rather than a complete theoretic expression.

Given k > 1,1et P, =P(T, = k+n), for n =0,1,2,.... Then we have
Lemma 2.1 {P, : n > 0} forms the following generalized Fibonacci series

Jo n=0

Pyo=19 a1P,_1+asPy_o+ -+ a,Po; 1<n<k (2.5)
a1 Po1+asPy o+ +apPogk; n>k+1

where a; = qp*~', i =1,2,...,k. In particular P, = Py_1 =--- =Py, =P, = qpk.

Proof. First of all, T, = 0 if and only if X; =1, Xy =2,..., X, = k, this implies Py = p*.

Let TJ :=inf{n > 1: X,, = 0} be the first returning time of state 0. Then for n > 1,

P, =P <n,Tpy=k+n) =Pty <nAkTp=k+n)

nAk nAk
i=1 i=1
nAk

= E a;Pn_;,
i=1

where nAk = min{n, k}. Thus (23] follows immediately. Noticing that a; = pa;—1,1=2,3,...,k,
we have

P, =a1Py_1+plarPo—o+ -+ ar—1P) = ¢Pu—1 + pPi—1 2.6)
2.6
=Po1=Peo=--=P =qP=q".

d

Lemma 2.2 Let ay, = (1 — qpk_l)]l{pgq} +(1 —pk)H{p>q} and By =1 —qp* =1 — Py. Then

P,
ap < TH < PBr, foral n>k. (2.7)

Where I;.y be the usual indicator function of set {-}.

Proof. For any n > k we have

k

Puy1=qPy+pY a;iPy i —parPpi = Py — PiPy . (2.8)
=1



Together with ([26), (Z8) implies that P, decreases in n and then

Pn+1 Pnfk
— =1-P
P, P,

<1—-P =0, forn>k.

For the lower bound stated in (7)), let us consider the following two cases: 1), k < n < 2k;
and 2), n > 2k.
Case 1). In case of n = k, (2.8) implies

P P Py &
- P =1 —2Py =1 —p* > .
P p. 1o p 1o pY > ag

In case of k < n < 2k, using (Z8)) iteratively, we have
P, =Py 1 —PiPyjp1=Pyro2— PP p2— PP
= =P, -P[R+P+ -+ P x1]

=Pl -p"—(n—k-1)gp"]

then
P, PP, i
ln s S L R a» . (2.9)
P, P, 1—pk—(n—k—1)gpF
For p < q, we have
1 k—1 1 k
Pob=1 4y (n—k—1)pk < <§> +(k—1) <§> <1, Vk>1 (2.10)
q

and for ¢ < p, noticing that h(k,q) := [1 + (k — 1)g]p*~! decreases in ¢ and h(k,0) = 1, we have
PP (n—k—Dgp"t <pM 4 (k= Dgp" T = [T+ (k- Dglp* Tt <1, VE>1 (211)
It follows from (Z.I0) and 2II]) that

PP+ (n—k—1)gp* <pva, (2.12)

P .
where p V ¢ = max{p, q}. Together with (Z3)), (ZI2) implies PH > ay. Thus we finished the

n

proof of Case 1).
Case 2). Using (2.8) iteratively again, we have

Pn —In—k — Pl [Pnfkfl + Pn7k72 + -+ Pn72k+1 + Pn72k]7 (213)

then

P Pk { [ Po_p—1+ -+ Phoog ] }1
=1—-P =1—-P{1— P .
Pn ! Pn ! ! alpn—k—l+"'+akpn—2k



Using the fact that

AP P14+ Pook] < a1Pu_p—1+ -+ arPo_or,

P, .
we obtain P+1 > ay, and then finish the proof of Case 2). O
1
Lemma 2.3 Let v, =1 — f(k,p)P1, where f(k,p) = ———— and
k=1 k—1 - -1
gk, p) = lp’“ > ﬂi] X [Z p’“_l_ztﬁc] : (2.14)
i=0 i=0
where ay, B are given in the statement of LemmalZ.2. Then
Pn+1
2 >y, for all n > 3k. (2.15)
Proof. By (ZI3),
—1
Pok _ {1 _ PP (Po—g—1+ -+ Pu_ok) }
Pn Pn—k—l +an—k—2+"' +pk_1pn—2k
(2.16)
f Py k Pl
_ 1— k n—k—1i i—14n—k—i
b ; Pn72k ;p Pn72k
for n > 3k. By Lemma [2.2] we know that
1 Pn— —1 —i .
aZ*Zgikgﬁ,’j oforalll <i<k.
n—2k
Then
P, 1
= = f kup
and
Povi _y_ p Pk 5y
P—— — 11 —f(kap)Pl—”Yk
for all n > 3k. O

3 Proofs of Theorems [1.1] and 1.3

In this section, we give proofs to Theorem [Tl Corollary[l.2land Theorem[L.3] We first prove items
1, 2 of Theorem [[.T] and Corollary .2l Note that item 3 of Theorem [[.1]is a direct consequence
of Theorem [I.3]



Proofs of Theorem [ 1l and Corollary[L2. a) Let £ =&+, x >0and k =k(N) = |£InN]|.
Then, by the monotonicity of P, and Lemma [2.2] we have

N—k k—1 N—k
P(Sy>k) =PI <N)=> P,=Y P.+ Y P,
n=0 n=0 n=k
N—k N—k
P,
<kp0+2pk <kp +P Y gt (3.1)
n=~k
=1+ kpk _ (1 _ qpk)NkaJrl.
Clearly, there exists constant C; > 0 such that
L [N=2K(N)+1]gp* ™)
(1—gp)N 721 = [(1 — qpFM)) aF® > exp{—CyN~" Gy (3.2)

for large enough N. This, together with the fact that J\}im E(N)p*™N) = 0, implies item 1.
— 00

b)Let £ =& —x, x > 0 and k = k(N) = |£InN|. Then, by the monotonicity of P, and
Lemma 23] we have

3k—1
P(Sy > k) =P(T <N)= ZP = ZP + ZP
n=3k
N—k P N—k
> 3kPy+ ngp— > 3kPs + Por Y Ap (3.3)
n=3k 3k n=3k
Pk N—4k+1
=3kPgyp + ——— [1— .
Using Lemma [2.2] again, we have
Jim 3kPyy, < lim. 3kP.BEF =0 (3.4)
and
Psy, . Beogt
TS TN e (8:5)
Finally,

T =L (R p)ap] VTR

[N—4k+1]f(k,p)ap

= [(1 - f(k,p)qpk)m} (3.6)

< exp{—C3N” ln(%)}
for some C3 > 0 and large enough N. Note that, in order to obtain (3.3 and (B.6]), we have used
the fact that

lim f(k,p)=1.
k—o0



Item 2 follows immediately from B3]), ), (33) and B1).

¢) Note that the arguments in a), b) also work for = < 0, then Corollary [[.2] follows immedi-
ately. (Il

Proof of Theorem[[.3 For any k > 1, by (81 and (B.3]), we have

P
3kP3k + 3k N74k‘+1) (SN > k) < 1+kp /BN 2k+1 (37)

ICSITA
For any given integer [, let k = k(j,1) = [§.In N ;] + [, then
P(X)\,j 2 l) = ]P)(SN/\,J' > k(]ul))

So, by 34), B.A) and ([B1), we have

1— lim ”y,ivk’j74k+1 <liminfP(xx; > 1)
Naj=2k+1 (8.
<limsupP(x»; > 1) <1- hm By, ™
j‘)OO
By the property of Ny ;, we have
lim B0 < exp {— lim [Ny ; — 2k(5,1) + 1]ka(j’”}
j—o0 j—o00
= exp {— lim [Ny ; — 2k(5,0) + 1]ptée lnN*vafH)}
j—roo
— e
and, similarly,
Na,j—4k(D+1 _ _gp=>p!
Jim Gy = :
Thus (38) implies
lim P(xa; >0)=1— e_qpikpl,
j—oo
ie.
lim P(xx; <I)=e —ar' Tt P(xa <1).
]—)
We finish the proof of Theorem |

4 Proof of Theorem 1.4

In this section, will prove Theorem[I.4l We first prove the corresponding convergence on moments,

i.e. (LI3), then we prove (LI4)) and (TI5).

10



Proof of (I13). For any A € [0,1], denote by Fj ;(z) the distribution function of xx ;.
Intergrating by parts,

oo 0 00
Engj:/ xmdFA,j(x):—/ m:z:mlFM(x)dx—l—/O mz™ (1 — Fyj(z))ds.  (4.1)

By convergence in distribution, we have pointwise convergence of F) ; to Fy, where F) is given
in (IL8). In order to show the moments of x» ; converge to the corresponding moments of x» we
need uniform control of F) ; for large j. Actually, we expect that Fy j(z) (resp., 1 — F) ;(x)) go
to zero uniformly rapidly as * — —oo (resp.,  — 00).

First we try to look for such an uniform control of Fi for large N. Recall that Fy is the
distribution function of Yy = Sy — & In N.

In the case when = > 0, let k(x) := |{.In N + z|. If = is large enough such that k(z) > N,
then

1—FEn(z) =P(Sy > & InN +2) <P(Sy > k(z)) = 0. (4.2)

If > 0 such that N/2 < k(xz) < N, then by B,

1= Fiv(e) < P(Sy 2 (o)) < (kla) + 1)) < S50 < 2 (4.3)

If # > 0 such that k(z) < N/2, then by @),

_ ok 1 Core
1— Fy(2) < k(x)pk(z) +1-— ﬁé\zw)%( )+1 <1+ 2_ppz . ﬁé\zw)%( )+1'

Clearly, in the present case, there exists some constant C’ > 0, which does not depend on N and

x, such that
1

’

|:1 _ qpk(m)} qpk(w) > 670 ]
Then

B PRI > oxp {—C'[N — 2k(x) + 1]gp*®)} > exp {—C’q—N — 2k(z) + 1p1}

pN
o4 c’
> exp{—qp pm} >1- qp p*.

Thus,
qC' .
— ’ P > =C"p". (4.4)

_ 1
1-F <14+ —p"—|(1
v <1+ oo -

By (£2), (£3) and ([, there exists C; > 0 such that

1—Fn(z) <Cip*, V2 >0 (4.5)

11



for N > 1.
Now we consider the case when © < 0. Let fi(z) := |{.In N + 2 + 1|. Then

Fy(z) =1—-P(Sy > & InN +2) <1—-P(Sy > h(z)). (4.6)

If « is small enough such that h(x) < 0, then

Fn() < 1—P(Sy > h(z)) =0. (4.7)
For 1 <k < Ah(0) = |&In N + 1], let « be such that i(z) =k, i.e.,
E—¢éInN—-1<z<k—§&InN, (4.8)

then

Fy(@)<1-P(Sy>k)=1-PT, <N)=P(T; >N+1)= > P.
n=N—k+1

Choose Ny = Ny(p) large enough such that N — 2k(0) + 1 > 1 for all N > Ny. Then, for any
N > Ng,n > N —k+ 1 implies n > k. Thus we can use the upper bound given in Lemma 2.2]

and obtain

oo o0 P B B
Fy(z) < E Py < Pn_g1 E Bp < L _pN-2tl _ gN-2ktl (4.9)
n=N—k+1 n=0 1 =B

Choose C’ > 0 such that
(1- (Jpn)‘“‘% < efc,, for allm > 1.
Then
ﬁ;]gVi%Jrl < exp{—C'(N — 2k + 1)qpk},
By @), k <& InN+2+ 1, then

Fr(s) < exp {_C’[N - 2]71\7(0) + 1]gp

pz} < exp{—C'gpp*} = e " (4.10)
for all N > Ny. Combining (7)) and (@I0), we obtain

Fy(z) <eCP" va<0 (4.11)

For all N > Ny. Thus, as in (&3] and (@II), we obtain an uniform control of Fyy for N > Np.
By (@3), (@I1) and the fact that Yy < xn < Xn + 1, we obtain the following uniform control
for Fi, the distribution function of yy = Sy — [ In N |:

I—FN(I)Sl—FN(I—l)Sﬁpz, Vae>1 (4.12)
p

12



and

Fyn(z) < Fy(z) <e P, V<0 (4.13)

for all N > Ny. Then ([II3)) follows from (£ and the dominated convergence theorem. As a

consequence
lim VarSy, ; = lim Vary,; = Varxa. (4.14)
Jj—o0 ’ j—oo
.. ESN
Proofs of (I.13) and (I.13). To prove (L.I4)), suppose that 1}\1[11 inf N - Dy > —oc0. Then,
—oo In

) . ESn,
there exists subsequence {N,} such that lim 2 =D;y. Let Aj =& InN; — |£.InN,|. Ap-

J—oo In 1
parently, the sequence {A;} is bounded and for some A € [0,1], there exists a subsubsequence

{Nx;} of subsequence {N;} such that lim Ay, = A. Let A\; = Ay, ;. Now, by Theorem [L.3] we
Jj—0o0 ' ’

know that as j — 00, xx; = SN, — [§cIn Ny ;| converges to x» in distribution. By (LI) and

([T13), we have

E ESy. In Ny |+ Exs s
Dy = liminf 22N — i 20N oy [SeIn Ny ;] + Exj

N—oo In Jj—o0 111N>\7j Jj—o0 111N>\7j

=¢,.

Repeating the above argument, we obtain

lim su %75
N N %

and then ([LI4)) follows.

Finally, (LIH) follows from (LI0), (£I4) and an argument similar to the proof of (LI14).
Thus we finish the proof of Theorem [.4] O
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