論文

光学理論モデルのセミパラメトリック表現に基づく 浅水域の汎用水深分布予測法

神野有生*1·鯉渕幸生*2·竹内 涉*3·磯部雅彦*4

A Generalized Satellite-based Method of Water Depth Mapping with a Semiparametric Optical Model

Ariyo KANNO*1, Yukio KOIBUCHI*2, Wataru TAKEUCHI*3 and Masahiko Isobe*4

Abstract

Shallow water depth is one of the important factors in science and coastal environmental management. However, in-situ measurement is quite costly and time-consuming. Past research efforts have provided a number of optically-based methods to estimate shallow water depth distribution from satellite image, but they cannot properly handle with the heterogeneity in bottom sediment distribution because they require image-specific assumptions or additional information on bottom reflectivity. It is therefore indispensable to develop a method that can be applied more generally to water areas with inhomogeneous bottom material.

In any application of depth prediction methods, we need depth data for some points to validate the results. A leave-one-out cross validation technique enables us to use the data for predictive model building without degrading the reliability of prediction error evaluation. From this standpoint, we present a new generalized method over the previous methodologies by utilizing depth measurement data.

In the new method, the bottom reflection term of the optical model is assumed to be a nonparametric function of the depth-independent variables (bottom indexes), which can be calculated from the brightness values of the pixels. In this way, the water depth is explained by a semiparametric regression model. The ratios of the diffuse attenuation coefficients, which are needed to calculate the bottom index, are optimized to minimize Generalized Cross-Validation (GCV).

The new method is applied to 3 coral reef areas and artificially generated situations, and the prediction accuracy is compared with those of the methods proposed by Paredes et al., Stumpf et al., and Kanno et al. As a result, the new method is found to have the highest accuracy in cases that enough depth-known pixels are available and that the optical model apply well.

Keywords : Depth Estimation, Semiparametric Regression, Nonuniform Bottom Sediment, Coral Reef

1. はじめに

浅水域の水深分布は,流動場・波浪場などの物理環境, 水生生物の分布などの生物環境と密接な関わりを有し,沿

- (2008.4.14受付, 2009.1.29改訂受理)
- *1 東京大学大学院新領域創成科学研究科社会文化環境学専攻博士後期課程
- 〒277-0882 千葉県柏市柏の葉 5-1-5 環境棟 662 号室 磯部 雅彦研究室
 *2 直古大学大学院新領域創成科学研究科社会文化環境学重攻講師
- *² 東京大学大学院新領域創成科学研究科社会文化環境学専攻講師 〒277-0882 千葉県柏市柏の葉 5-1-5 環境棟 662 号室 磯部 雅彦研究室
- *3 東京大学生産技術研究所人間・社会系部門講師 〒153-8505 東京都目黒区駒場4丁目6番1号 東京大学生産 技術研究所 Ce-504
- ** 東京大学大学院新領域創成科学研究科社会文化環境学専攻教授 〒277-0882 千葉県柏市柏の葉 5-1-5 環境棟 662 号室 磯部 雅彦研究室

岸域の管理・利用や、自然科学分野の研究にとって重要な 基礎情報である。

浅水域の水深分布を得るには、ソナーなどを搭載した船 舶による測量が一般的であるが、測量の空間範囲・密度は 労力,費用および地形による強い制約を受ける。一方,上空

- *1 2nd-year doctor's degree student at Course of Socio-Cultural and Socio-Physical Environmental Studies, Department of Frontier Sciences, The University of Tokyo
- Env. Bldg. #662, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-0882, Japan
 *² Lecturer at Course of Socio-Cultural and Socio-Physical Environmental Studies, Department of Frontier Sciences, The University of Tokyo
 - Env. Bldg. #662, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-0882, Japan
- *³ Lecturer at Institute of Industrial Science, The University of Tokyo Ce-504, 4–6–1 Komaba Meguro-ku, Tokyo 153–8505, Japan
- *⁴ Professor at Course of Socio-Cultural and Socio-Physical Environmental Studies, Department of Frontier Sciences, The University of Tokyo

Env. Bldg. #662, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-0882, Japan

から底が見える程度に浅い水域では、可視域における上向 き放射輝度が、水深・水質・底質に依存して変化する。従っ て衛星や航空機によるマルチスペクトル画像・ハイパース ペクトル画像を利用すれば、広域の水深分布を高い空間密 度で予測できる可能性があり、実際に高分解能衛星画像など を用いた水深分布予測法の研究が数多く行われている^{1)~16}。

対象水域の水質・底質を均一とみなせる水域では,水面 直上における放射輝度が主に水深のみに依存するため,画 像を用いて比較的簡単かつ正確に水深分布を予測でき る^{1)~4)}。しかしより一般的な,底質が不均一な水域では,放 射輝度に対する水深・底質の寄与を分離することが難しい 課題となる。既存の方法の多くは,底質の分布・反射特 性・種数に関する事前情報や,水域に依存する特殊な仮定 に基づく方法^{5)~12)}であり,汎用性・実用性が十分ではない。

そこで本研究では、水質は均一とみなせるが底質が不均 ーな浅水域において、底質に関する事前情報や特殊な仮定 に依存せずに、水深分布を予測する方法を開発した。以下、 第2章で既存の水深分布予測法とその問題点を、第3章で 本研究の水深分布予測法を説明する。さらに、開発した方 法を第4章で実水域の、第5章で人工の水深・画像データ に適用し、既存の方法と予測精度を比較した後、第6章で まとめと今後の課題について述べる。

2. 既存の水深分布予測法と問題点

2.1 水質・底質が均一な水域における水深分布予測法

Fig. 1 に, 浅水域における, 衛星や航空機のセンサで観 測される可視光の放射輝度成分を模式的に示す。放射輝度 は, 底面反射 (bottom reflection),水中散乱 (scattering in the water),水面反射 (surface reflection),大気散乱 (scattering in the atmosphere)の4成分からなる。水中で直達日 射のみを考慮した場合,任意のバンドの放射輝度は次式で モデル化される^{1)~8)12)~17)}。

Fig. 1 Radiance components observed by a visible sensor.

$$\mathbf{R}_{i} = \mathbf{T}_{i} \begin{bmatrix} \Gamma_{i} \exp\{-\mathbf{K}_{i}(\sec\theta + \sec\varphi)\mathbf{H}\} \\ + \Gamma_{i}^{a/w} + \Gamma_{i}^{scw} \end{bmatrix} \mathbf{L}_{i} + \mathbf{P}_{i}^{sc} \qquad (1)$$

ここに、右下の添え字はバンドに関する値であることを示 し、T_i:大気透過率、 Γ_i :底面反射率、K_i:水中消散係数、 H:水深、 $\Gamma_i^{a/w}$:水面反射率、 Γ_i^{scw} :水中散乱による見かけ の反射率、 θ :水中での入射角、 φ :太陽光の屈折角、L_i:水 面直上における太陽直達光の放射照度、 \mathbf{P}_i^{sc} :大気散乱成 分、である。

多くの研究では対象水域を十分小さいとみなして, θ , φ , T_i, L_iを対象水域内で一定と仮定している^{1)~8)12)~14)16)17)。 また,放射伝達方程式の近似解に基づけば, Γ_{i}^{sw} は指数関 数的な水深依存性をもつと仮定でき¹²⁾¹⁶⁾¹⁷⁾,K_iに加えて体 積散乱関数を一定と仮定することにより,無限水深におけ る一定値 Γ_{i}^{sw} との間に次の関係が得られる。}

 $\Gamma_{i}^{scw} = \Gamma_{i,\infty}^{scw} [1 - \exp\{-K_{i}(\sec\theta + \sec\varphi)H\}]$ (2)

水深が十分に大きい画素では,式(1)(2)の指数関数項が 無視でき,放射輝度は

$$\mathbf{R}_{i,\infty} = \mathbf{T}_{i} [\Gamma_{i}^{a/w} + \Gamma_{i,\infty}^{scw}] \mathbf{L}_{i} + \mathbf{P}_{i}^{sc}$$
(3)

と表される。さらに、 K_i が大きい近赤外バンドの放射輝度 は、水深に関わらず式(1)(2)の指数関数項が小さく、可視 バンドの $\Gamma_i^{a/w}$, P_i^{sc} と強い相関をもつ。よって、式(1)(3)の $R_i や R_{i,\infty}$ に含まれる $\Gamma_i^{a/w}$, P_i^{sc} は、近赤外バンドの放射輝度 を用いて除去することができる²⁾⁶⁾⁸⁾¹⁷⁾。

この除去処理に続いて式(1)と式(3)の差をとり,式(2) を代入した後,両辺の対数をとると,次の水深に関する線 形式を導くことができる。

$$X_{i} \equiv \log[R_{i} - R_{i,\infty}] = B_{i} - K_{i}(\sec\theta + \sec\varphi)H \qquad (4)$$

ただし,

$$\mathbf{B}_{i} \equiv \log[\mathbf{T}_{i}(\Gamma_{i} - \Gamma_{i,\infty}^{scw})\mathbf{L}_{i}]$$
(5)

対象領域の底質が砂地のみの均一な被覆状態のとき,底面反射率 Γ_i を一定と仮定でき,式(4)より,水深予測のための単回帰式が得られる¹⁾³⁾⁴⁾。また,画像上で汀線位置を判読できれば,汀線直近の画素を水深0と仮定することで式(4)右辺の第1項(一定値)を計算でき, K_i のみを未知パラメータとする水深予測式が得られる²⁾。

2.2 水質が均一・底質が不均一な水域における水深分 布予測法

2.2.1 底質に関する特殊な仮定・事前情報に基づく方法

一方で、対象領域の底質として砂地だけでなく海藻・海 草・サンゴなどの生物群集や岩礁などが分布している一般 の水域では、底面反射率は場所により異なり、式(4)の右 辺第1項が一定であるという仮定が成立しない。このよう な水域における既存の方法には、底面反射率のバンド間比 を一定とする⁵⁾¹¹⁾、底質を2種とする⁶⁾などの仮定を置くも のや、底質の反射率の分布または出現する底質全種の反射 率特性を実質的に既知とする^{7)~1012}ものが多い。しかし, 前者は仮定の特殊性によって対象とできる水域が限られ, 後者は対象水域の網羅的な底質調査を必要とするため,労 力面で実用的ではない。

2.2.2 水深既知画素を利用する方法

概要

底質に関する特殊な仮定・事前情報に依存しない水深分 布予測法として, Paredes et al.¹³⁾, Philpot¹⁴⁾, Stumpf et al.¹⁵⁾, および神野ら¹⁶⁾は、実測データから得られる水深が既知の 画素(以下,水深既知画素)を利用する方法を示している。 いかなる予測法を用いる場合にも、検証のためにいくらか の水深既知画素が必要であること、水深は底質に比べて観 測が容易であることを考慮すれば、水深既知画素の利用は 実用性を大きく損なわないであろう。以下,本稿で定義し た変数を用いて,これらの方法の概要と問題点を述べる。

Paredes et al. の方法

Paredes et al.¹³⁾ は式(1) と同様の光学理論モデルに基づき,底質の種数(画素の底面反射率がとる値の数)が可視域のバンド数 M 以下である場合に,H が X_i(i=1,…, M)の線形式で表されることを示した。水深既知画素を用いれば,回帰分析によってこの線形式を推定することができる。

Paredes et al.¹³⁾の方法の問題は,底質の種数が M を超え る場合,光学理論的根拠を失い,単なる線形回帰分析と なってしまう点である。中~高解像度のマルチスペクトル 画像の場合, M は通常2または3であり,実際の画像には 複数種の底質を含む画素も含まれるため,画素の底面反射 率を M 個の離散値で代表させることは,通常無理であろう。

Philpot の方法

式(4)を満たす画素は、 \vec{X} ={ X_i ; i=1, …, M}の要素を 基底とする空間上で、位置ベクトルが \vec{B} ={ B_i ; i=1, …, M} の点を通り、方向ベクトルが \vec{K} ={ K_i ; i=1, …, M}である 直線上にある。 \vec{B} は底質に依存するため、複数種の底質が 分布する水域の画素集合は、底質別の平行な直線群上に分 布する。従って、適切なベクトル \vec{a}_i (i=1, …, M)による 変換:

 $Y_i = \vec{a}_i \cdot \vec{X}$

(6)

によって,底質のみに依存する変量 Y_i (i=1,…, M-1)と, 底質に依存し,水深と線形関係をもつ変量 Y_M を得ること ができる¹²⁾。 \vec{a}_i (i=1,…, M-1)の解には,重複しない整数 m_{i1}, m_{i2} の組 (1 \le m_{i1}, $m_{i2} \le$ M; $m_{i1} \neq m_{i2}$; i=1,…, M-1) に対して,第 m_{i1} 要素が1,第 m_{i2} 要素が $-K_{mi1}/K_{mi2}$,他の 要素が0であるようなベクトルの組が含まれる。この解か ら得られる Y_i :

$$(BI_{m_{i1},m_{i2}} \equiv) Y_i = X_{m_{i1}} - (K_{m_{i1}}/K_{m_{i2}}) X_{m_{i2}}$$
(7)

は特に底質指標と呼ばれている¹⁸⁾。

Philpot¹⁴⁾ は \vec{a}_i (i=1,…, M)を,ある1種の底質をもつ 画素の集合に関する,固有ベクトル解析によって求めるこ とを提案した。さらに、予測対象の画素集合を Y_i (i=1,…, M-1)によって底質別に分類(以下,底質分類)した後, 各部分集合に属する水深既知画素を用いて,水深とY_Mの 線形関係式を推定できると考えた。

この方法を実際の画像に適用する場合,①ある1種の底 質をもつ画素集合をいかに抽出するか,②どのような基準 で底質分類を行うか,の2点が問題となる。①に関しては 底質分類の研究において,砂地を底質とする画素集合の目 視抽出が用いられている¹⁸⁾¹⁹⁾が,複雑な底質分布をもつ水 域の画像や,複数種の底質を含む画素の多い画像を対象と する場合,目視抽出は困難を伴う。②に関しては,画素集 合を細かく分類するほど,各部分集合に関して底面反射率 が均一化するため,線形関係式の成立性は高まる。その一 方で,部分集合あたりの水深既知画素が減少するため,線 形関係式の推定は不安定となる。従って,適切な底質分類 基準の設定は難しい問題である。しかし Philpot¹⁴⁾は、これ ら①②について言及しておらず、完結した方法を示した とは言えない。

Stumpf et al. の方法

Stumpf et al.¹⁵⁾は、Philpot¹⁴⁾のようにXを利用する方法 が、予測対象に深水域より反射率の小さい画素が含まれる 場合に利用できないことを指摘した。また、水深既知画素 が少ない場合にも適用可能な低自由度の水深予測式を指向 し、次式を提案した。

$$H = m_1 \frac{\log[n \operatorname{REF}_i]}{\log[n \operatorname{REF}_j]} - m_0$$
(8)

ここで、 m_i , m_0 は水深既知画素を用いて決められる定数, n は対数項が常に正かつ、右辺第一項が水深と線形関係を もつように選ばれる定数である。また REF_i, REF_jは、バン ド i, j の水面直上における反射率を表す。

ただしこの予測式は、反射率に対する水深・底質の寄与 に関する定性的な推察に基づく式であり、光学理論モデル から解析的に導くことはできない。すなわち Stumpf et al.¹⁵⁾ の方法は光学理論的根拠に乏しく、光学理論に基づく本研 究などの方法とは別の、経験的な立場に基づく方法である。

神野らの方法

神野ら¹⁶⁾の方法ではまず,底質を反映する $BI_i \equiv BI_{i,i+1}$ (i = 1, …, M-1)が,予測対象画素と最も類似した水深既知 画素を選択する。次に両画素に関して,あるバンドiの式 (4)を連立し, B_i を等しいと仮定して消去することによっ て水深予測式を得る。 BI_i や水深の計算に必要な未知変数 K_i (i=1, …M)は,交差確認法によって最適化される。

しかしこの方法では,各画素について1つの水深既知画 素のみを参照して予測を行うため,画像に含まれるノイズ などによって予測精度が低下しやすいものと予想される。

3. 本研究の水深分布予測法

3.1 アルゴリズムの概要

本研究の方法では,式(4)の底面反射率依存項 Biを BIm

(m=1, 2, …, M-1)の関数であると仮定し,式(4)を次のように書き換える。

$$H = \alpha_i \log[\mathbf{R}_i - \mathbf{R}_{i,\infty}] + \beta_i(\mathbf{BI}_1, \mathbf{BI}_2, \cdots \mathbf{BI}_{M-1}) \qquad (9)$$

(i=1, 2, ..., M)

ここに,

$$\alpha_{i} \equiv -\frac{1}{K_{i}(\sec\theta + \sec\varphi)} \tag{10}$$

$$\beta_{i} \equiv \frac{1}{K_{i}(\sec\theta + \sec\varphi)} B_{i}$$
(11)

式 (9) 右辺の第 1 項は log [$\mathbf{R}_i - \mathbf{R}_{i,\infty}$] に比例するが,第 2 項は \mathbf{BI}_m (m=1, 2, …, M-1) の組の未知関数である。そ こで,右辺第 2 項をノンパラメトリックな平滑化項とみな せば,式 (9) は H を目的変数, log [$\mathbf{R}_i - \mathbf{R}_{i,\infty}$] および \mathbf{BI}_m の 組を説明変数とするセミパラメトリック回帰モデルを与え る。式 (9) は i=1, 2, …, M について連立しているが,式 (7) と式 (10) を用いることにより,これらが 1 式に要約さ れることが示される。つまり,実際には任意のバンドを 1 つ選んで式 (9) の回帰分析を行えばよい。

回帰分析に入力する BI_m の組を求めるためには,式(7) における K_m/K_{m+1} の組が必要である。本研究では,最良の 予測モデルを与える K_m/K_{m+1} の組を,GCV(一般化交差 確認得点: Generalized Cross-Validation)²⁰⁾の最小化により 求める。GCV は,平均2乗予測誤差の漸近的な不偏推定量 である。

本研究の方法は、底面反射率に依存する $B_i \alpha v \cup \beta_i n$, 底質のみに依存する変量 $Y_m \alpha v \cup BI_m (m=1, 2, ..., M-1)$ に特徴づけられると考える点で、Philpot¹⁴⁾ や神野ら¹⁶⁾ の方法と共通しているが、理論的な合理性と適用性の面 で、次の長所がある。

- 関数βiは全ての水深既知画素を用いた回帰分析で推定されるため、神野ら¹⁶⁾の方法と比べ、画像などに含まれるノイズに対して頑健である。
- 関数の複雑さは、3.2で述べる実装では、回帰計算の 過程で選択される平滑化パラメータで制御され、これ は Philpot¹⁴⁾の方法における底質分類の細かさに相当 する。Philpot¹⁴⁾の方法において底質分類基準の設定が 難題であったのに対し、平滑化パラメータは、平均2 乗予測誤差の推定量 GCV を最小化するよう、客観的・ 合理的かつ自動的に選択される。
- 本研究の方法では、Philpot¹⁴の方法のā_iに相当する K_m/K_{m+1}の組を、GCVの最小化によって客観的・合 理的かつ自動的に推定する。すなわち、Philpot¹⁴⁾の方 法と異なり、ある1種の底質をもつ画素集合の抽出と いう困難な作業は必要ない。

3.2 実装

本研究では上記のアルゴリズムを、オープンソースの統計解析システム \mathbf{R}^{21} (http://www.R-project.org) で実装する。まず、セミパラメトリック回帰に関しては、mgcv ラ

イブラリ²² に含まれる gam 関数を用いる。gam 関数は,罰 則付き最尤法による一般化加法モデルの推定を行う関数で あり,平滑化項は Penalized Regression Spline²²⁾ で表現され る。Penalized Regression Spline は平滑化スプラインと同様, 残差平方和と乱雑度罰則の和を最小化することで回帰デー タへの過適合を防ぎ,予測能力の高い関数を得る方法であ るが,節点数を小さく抑えることにより計算負荷を低減し ている。本研究では4. で多数回の適用実験を行うため,計 算効率の高い基底として, M=2の場合は3次スプライン を, M>2 の場合はそのテンソル積を採用する。

 K_m/K_{m+1} の組を求めるための GCV 最小化は、大域的最 適化手法の Simulated Annealing 法(焼きなまし法)と局所 最適化手法の準ニュートン法を組み合わせ、optim 関数で 実装する。すなわち、Simulated Annealing 法の結果を準 ニュートン法の初期値とする、2 段階最適化を行う。

3.3 処理フロー

本研究の方法における処理フローを Fig. 2 に示す。以下 の説明に現れる ① などの番号は, Fig. 2 と対応している。 必要な入力データは, 2.1 で触れた大気散乱・水面反射成 分の除去処理を施した,予測対象水域の M バンド (M≥2) 可視画像,および実測水深点データである。まず両者の位 置情報に基づき,各実測点が含まれる画素を特定し(①), 水深既知画素と定める。ただし,1画素に複数の水深実測 点が含まれる場合は,それらの水深値の平均を,水深既知 画素の水深とする。一方,予測対象水域において水深実測 点が含まれない画素を,水深未知画素と呼ぶ。

次に画像上で,予測対象水域にできるだけ近く,かつ底 面反射光が無視できる程度に深い水域を選定し,その平均 放射輝度値 $\mathbf{R}_{i,\infty}$ (1=1, 2, …, M)を計算する (②)。さらに 求めた $\mathbf{R}_{i,\infty}$ を用いて,予測対象水域の各画素の log [\mathbf{R}_i - $\mathbf{R}_{i,\infty}$]を計算する (③)。ここで $\mathbf{R}_i \leq \mathbf{R}_{i,\infty}$ である画素は,水 深の大きい画素として予測対象から除去する。以降の処理 は大きく,水深予測式の作成過程(I)および水深分布予 測過程(II)に分かれる。

I では、ある K_m/K_{m+1} (m=1, 2, …, M-1)の組を仮定 し(④)、各水深既知画素について、式(7)より BI_m の組を 計算する(⑤)。得られた BI_m の組と、既知の水深値、およ び②で計算した log [$R_i - R_{i,\infty}$]を用いて、式(9)のセミパ ラメトリック回帰を行い(⑥)、得られた式の GCV を計算 する(⑦)。④~⑦の処理を上述の2段階最適化の枠組み で繰り返し、GCV の最小化により、最良の水深予測式を与 える K_m/K_{m+1} の組を選択する。

II では、各水深未知画素を対象に、まず I で選択された K_m/K_{m+1} の組を用いて BI_m の組を計算する(⑧)。これを I で得た水深予測式に代入し、各画素の水深予測値を求め れば(⑨)、対象水域の面的な水深分布が得られる。

Fig. 2 では省略しているが, I に leave-one-out 交差確認 法²⁰⁾²³⁾を適用することで,本研究の方法による平均予測誤 差を評価することができる。つまり,「水深既知画素のうち 1 画素を除いて予測式を作成し,除いた画素を予測して誤

Fig. 2 Flowchart of predicting water depth distribution.

差を評価する」操作を,全ての画素が1度ずつ予測される ように繰り返せば,誤差の平均値が,水深未知画素に対す る平均予測誤差の推定量となる。

4. 実水域への適用と検証

4.1 対象水域と使用データ

本研究で開発した水深分布予測法を実際の水域に適用 し、精度および既存の方法に対する優位性を検証した。汎 用性を確認するため、予測対象水域やセンサが異なる 8 ケースについて検証を行った。Table 1 に、各ケースの予測 対象水域、用いた可視画像、および水深点データの諸元を 示す。

予測対象水域は、いずれも沖縄県石垣市に位置し、砂礫、 岩礁、海藻、多種のサンゴなどから構成される、不均一な底 質を有する海域である。Fig. 3 に、これらの位置と ASTER 画像(Band 1)を示す。具体的には、玉取南(Tamatori Minami)、小島北(Kojima Kita)、川平湾(Kabira Bay)の 3 海域である。水面反射成分に影響する波浪は、外洋に面 した裾礁海域である玉取南と小島北で相対的に大きく、閉 鎖性内湾である川平湾で小さい。玉取南と小島北の礁嶺部 分では、これらの海域を対象とした全ケースについて、砕 波の影響で大きな輝度値を示す画素が存在した(これらは 近赤外バンドに閾値を設定して予め除去した)。一方、川平 湾では強風時を除いて砕波が生じないことを確認している。 Table 1には波浪状態の参考情報として、各ケースの画像 撮影時の伊原間アメダス(石垣市)における風速を示した。

用いた衛星画像は,QuickBird 衛星のマルチスペクトル 標準画像,ALOS/AVNIR-2のL1B2標準処理データ,お よび Terra/ASTERのL1B標準プロダクトに,2.1で触れ た大気散乱・水面反射成分の除去処理を施した画像であ る。各画像は,国土地理院発行の数値地図25000および 2500 (http://sdf.gsi.go.jp/)を用いて目視によって地上基 準点を取得し,精密幾何補正を行って1画素以内の誤差で 重ね合わせた。

水深点データは、小型船による水上観測データと航空機 観測データの2種類を使用した。玉取南および川平湾奥に 関しては、2006年7月に航走により水深を取得した。玉取 南に関しては、RD Instruments 社の Acoustic Doppler Current Profiler (Workhorse Sentinel ADCP) および Differen-

Case	Satellite/	Visible	Spacial	Observation	Scene Center Coordinate		Name of the Deptl		Known	Wind
			1					Piz Piz	kels	
No.	Sensor	Bands	Res.[m]	Date	latitude	longitude	Water Area	Number	Average	Speed
					[deg]	[deg]		Nuilloei	depth[m]	[m/s]
1	QuickBird	3	2.4	2007/7/2	24.484N	124.279E		501	1.96	5
2	ALOS/AVNIR-2	3	10	2006/7/1	24.405N	124.080E		279	1.71	5
3	Terra/ASTER VNIR	2	15	2002/2/14	24.426N	124.287E	Tamatori	191	2.02	5
4	Terra/ASTER VNIR	2	15	2002/9/10	24.442N	124.186E	Minami	176	1.97	3
5	Terra/ASTER VNIR	2	15	2004/6/27	24.432N	124.248E		151	1.99	3
6	Terra/ASTER VNIR	2	15	2005/4/4	24.689N	124.038E		191	2.03	4
7	Terra/ASTER VNIR	2	15	2005/4/4	24.689N	124.038E	Kojima Kita	429	3.98	4
8	Terra/ASTER VNIR	2	15	2005/4/4	24.689N	124.038E	Kabira Bay	104	1.11	4

Table 1 Analysis conditions for the validation cases. Wind speed data was provided by Ibaruma AMeDAS.

Tamatori Minami

Fig. 3 Geographical location of this study in Ishigaki Island (124E, 24N) partially captured by ASTER band 1.

tial GPS (DGPS) を漁船に搭載して水深を取得した。川平 湾奥に関しては、プラスゲイン社の DGPS 付魚群探知機 (EAGLE GPS) をゴムボートに搭載して水深を取得した。 DGPS の測位誤差は約1mである。一方,小島北の水深点 データには、2005年9月に海上保安庁が沖縄県で初めて 行った,航空レーザー測量の結果(20m間隔の均一格子) データ)を用いた。航空レーザー測量は光の到達時間から

水深を求める方法であり、本研究の方法と原理が異なるた め、測量結果を検証に用いることが可能であると考えられ る。以上の全ての水深点データは、 TP 基準に換算して用 いた。よって、予測される水深分布も TP 基準である。

4.2 検証方法

本研究の方法による水深分布予測精度は、利用可能な水 深既知画素の数に依存すると考えられる。そこで、様々な 水深既知画素数に対する予測精度を調べるため、検証作業 は次のモンテカルロ実験により行った。

- 1. 実測水深点データから得られる水深既知画素集合か ら,メルセンヌ・ツイスタ乱数を用いて大きさ20の 部分集合 A を単純無作為抽出する。
- 2. 水深既知画素集合と A の差集合から, 部分集合 B を, 同様に単純無作為抽出する。部分集合 B の大きさの最 大値は、水深既知画素集合の大きさが230を超える場 合には 200 とし、それ以外の場合には(差集合の大き さ-10)と定めた。
- 3. Bの各画素のみ水深が既知であると仮定してAの各画 素の水深を予測し、式(12)、(13)に示した平均絶対誤 差 (Mean Absolute Error: MAE) および平均 2 乗平方 根誤差 (Root Mean Square Error : RMSE) を評価する。

$$\mathbf{MAE} = \frac{1}{\mathbf{N}} \sum_{n=1}^{N} |\hat{\mathbf{H}}_{n} - \mathbf{H}_{n}|.$$
(12)

$$RMSE = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (\hat{H}_{n} - H_{n})^{2}}$$
(13)

- 4. 様々な B の大きさ(水深既知画素数)について,上記 の1-3を10回ずつ繰り返す。
- 5. 上記の1-4を、10回繰り返す。各水深既知画素数に対 して100回の予測誤差評価が行われることになるが、 その平均を用いて各水深既知画素数に対する予測精度 を考察する。

4.3 比較対象の既存の方法

比較対象の既存の方法は、2.2.2 に示した方法(本研究 の方法と同様に、水質が均一・底質が不均一な水域に適用 可能で、底質に関する特殊な仮定・事前情報に依存しない 方法)のうち、方法として完結している Paredes et al.¹³,

Fig. 4 Scattergrams of averaged prediction error (Mean Absolute Error) against the number of depth-known pixels for each case in Table 1.

Stumpf et al.¹⁵⁾, および神野ら¹⁶⁾の方法とした。ただし Table 1の Case 1, 2については 3 バンドを用いるため, 3 バンド に対応した Paredes et al. の方法のみと比較した。

Stumpf et al.¹⁵⁾の予測式(8) における m_i , m_0 は, 最小2 乗法に基づく単回帰分析により求めた。また, R_i , R_j を REF_i, REF_jに換算する際に, 大気透過率などの評価に起因 する誤差が混入することを防ぐため, 式(8) で, $nREF_i =$ n_iR_i , $nREF_j = n_jR_j$ とおき, 定数 n_i , n_j を最小2 乗法で最適 化した。

4.4 結果

Fig. 4 および Fig. 5 に, Table 1 の各ケースに関して, 4.

3の各方法を用いて4.2のモンテカルロ実験を行った結果 を示す。Fig.4は予測の平均絶対誤差(MAE)の,Fig.5は 予測の平均2乗平方根誤差(RMSE)の,全実験回に関する 平均を,水深既知画素数に対してプロットしたものである。

まず、本研究の方法の MAE, RMSE が、水深既知画素数 の増加に伴い減少する傾向が読み取れる。この傾向は、水 深既知画素数が小さい場合に、セミパラメトリック回帰お よび K_m/K_{m+1} の組の選択の過程で生じる過適合に起因す るものである。これらの過程では平均2乗予測誤差の推定 量である GCV の最小化を行うが、少ない回帰データに対 して GCV がもつバイアスが、過適合の一因と考えられる。

Fig. 5 Scattergrams of averaged prediction error (Root Mean Square Error) against the number of depth-known pixels for each case in Table 1.

次に、水深既知画素数が最大の場合に着目すると、Case 1、3、4、6、7 については、本研究の方法は他の3 方法と比 べて、MAE、RMSE が顕著に小さい。一方、Case 2、5、8 に ついては、本研究の方法は MAE、RMSE ともに、神野ら¹⁶⁾ の方法よりは顕著に小さいものの、Paredes et al.¹³⁾の方法 または Stumpf et al.¹⁵⁾の方法と同程度である。なお Case 8 の水深既知画素数が最大の場合に関しては、本研究の方法 の RMSE が Paredes et al.¹³⁾の方法よりも 0.0097 m 大きい が、これは水深既知画素数が 74 と、本研究の方法が過適合 を回避するために十分な大きさでないためである可能性が ある。実際に、ケース 8 における本研究と Paredes et al.¹³⁾ の方法の RMSE の差は、水深既知画素数の増加に伴い急激に減少する傾向にあり、仮により多くの水深既知画素があれば、本研究の方法が最小の RMSE を与えた可能性が高い。

以上のように,水深既知画素数が十分に大きい場合,本研究の方法は既存の他の方法と同程度以上の予測精度を与 えたが,本研究の方法が顕著に高精度であるケースと,他 の方法と大差がないケースがあった。そこで,本研究の方 法が優位となる条件を明らかにするため,5.において人工 データを用いた数値実験を行う。

予測結果の具体例として, Fig. 6 と Fig. 7 に, case 1, 水

Fig. 6 Scattergrams of predicted depth against measured depth for this study's method and Paredes et al.'s method (Example of the prediction in case 1 in Table 1 with 100 depth-known pixels. Only randomly-selected 300 points are plotted for visibility).

This study's method

Paredes et al.'s method

Fig. 7 Depth distributions predicted by this study's method and Paredes et al.'s method (Example of the prediction in case 1 with 100 depth-known pixels). This figure includes copyrighted material of DigitalGlobe, Inc., All Rights Reserved.

深既知画素数 100 の単一試行における,本研究の方法と Paredes et al.¹³⁾の方法に関する水深実測値と予測値の散布 図,および予測された水深分布を示す。Fig. 6 のように,本 研究の方法の予測値が,水深に関わらず実測値を中心に分 布する一方で,Paredes et al.¹³⁾の方法による予測値は,水 深が小さい画素で過大評価,大きい画素で過小評価する傾 向がある。その結果,Fig. 7 のように,Paredes et al.¹³⁾の方 法で予測された水深分布では、本研究の方法による結果と 比べて全体的に地形の起伏が小さく、特に汀線付近や礁原 など浅部が不明瞭である。地形の起伏の再現性は、例えば 予測結果を波浪場・流動場の数値解析に入力する場合に重 要であり、本研究の方法の優位性の1つである。

Fig. 8 Results of the numerical experiment using artificial datasets. Averaged Root Mean Square Error (RMSE) of prediction by each method is plotted against (a) Number of pixels with known depth (N_H), (b) (c) Maximum depth (H_{max}), and (d) Standard deviation of the noise component of the error associated with the optical model ($\sigma_1 = \sigma_2$). N_H is set to 100 for (b)(c)(d). H_{max} is set to 5 for (a) (d). $\sigma_1 = \sigma_2$ is set to 0.005 for (a) (c) and 0 for (b).

5. 人工データへの適用と検証

5.1 方法

様々な条件下で光学理論モデル(1)に基づいて生成した 2 バンドの人工データを用い,4.と同様の実験を行った。 ただし,Stumpf et al.¹⁵⁾の方法について4.3 で述べた本研 究独自の最適化を不要とするため,放射輝度を水面直上反 射率 REF_iで代用した(各方法の結果は不変)。2.1 で触れ た,近赤外バンドによる $\Gamma_i^{a'w}$, P_i^{e} の除去が行われた状況を 想定すると, REF_iは次式で表される。

$\mathbf{REF}_{i} = \Gamma_{i}^{\prime} \exp\{-\mathbf{K}_{i}(\sec\theta + \sec\varphi)\mathbf{H}\} + \varepsilon_{i,1} + \varepsilon_{i,2} \quad (14)$

ここに、 $\Gamma'_{i} \equiv \Gamma_{i} - \Gamma^{sw}_{i,\infty}$ であり、 $\varepsilon_{i,1}$ は、光学理論モデル(1) の誤差(画像に含まれるノイズなどに起因する)のバイア ス成分、および $\Gamma^{sw}_{i,\infty}$ 、 $\Gamma^{sw}_{i,\infty}$ に依存する定数項である。また $\varepsilon_{i,2}$ は上記の誤差の分散成分に比例し、 $\varepsilon_{i,2} \sim \mathbf{N}(\mathbf{0}, \sigma_{i}^{2})$ と仮 定する。

本実験では,底質の種数 N_Γ,水中消散係数 K₁, K₂,水深 H の最大値 H_{max},水深既知画素数 N_H, $\varepsilon_{1,1}$, $\varepsilon_{2,1}$, σ_1 , $\sigma_2 \varepsilon$ 実験変数として,式(14)を用いて水深 REF₁, REF₂に関す る大きさ10000の人工データを生成し,4.2の方法で平均 予測誤差の評価を行った。なお, Γ'_1 , Γ'_2 はそれぞれ独立に, 区間 [0, 0.5] 上の N_Γ個の一様乱数によって与えた。

5.2 結果

代表的な実験結果を Fig. 8 に示す。Fig. 8 の各グラフは, 全て、N_Γ=5、K₁=0.2、K₂=0.5、sec θ +sec φ =2、 $\varepsilon_{1,1}$ 、 $\varepsilon_{2,1}$ =0.1 の場合の結果である。まず Fig. 8 (a) は、H_{max}=5、 σ_1 = σ_2 =0.005 の場合の RMSE を N_H に対してプロットした ものである。ただし Stumpf et al.¹⁵⁾の方法の結果のうち、 RMSE が 4 m を超える点に関してはプロットしていない (以下同様)。Stumpf et al.¹⁵⁾の方法が大きな RMSE を与え る原因は、予測式 (8) の n が比較的小さい値に最適化さ れ、かつ予測対象画素に REf_iの小さい画素が含まれると き,式(8)の右辺第1項が極めて大きくなるためである。 これは,予測式に分数関数を用いた Stumpf et al.¹⁵⁾の方法 の問題点の1つであると考えられる。

本研究の方法の RMSE は、 N_H が最小値 30 の場合を除いて 4 方法中最小であり、 N_H の増加に伴って、RMSE が次に小さい Paredes et al.¹³⁾の方法との差が拡大した。この結果は、過適合の影響を受けやすい本研究の方法が、 N_H が大きい場合に有利であるという 4.4 の考察を支持している。

次に Fig. 8 (b) (c) は, N_{H} =100 の場合の RMSE を H_{max} に対してプロットしたものである。ただし (b) では $\sigma_1 = \sigma_2$ =0, (c) では $\sigma_1 = \sigma_2 = 0.005$ である。(b) は光学理論モデル (1) が厳密に成立する非現実的な場合に相当するが,本研 究と神野ら¹⁶⁾ の方法の RMSE はそれぞれ最大で 0.039 m, 0.074 m であり, Paredes et al.¹³⁾ や Stumpf et al.¹⁵⁾ の方法と 比べて非常に小さい。この結果は、本研究および神野ら¹⁶⁾ の方法が,底質の不均一性を合理的に扱っていることを裏 付けている。一方, (c) に示した RMSE に関しては、本研 究の方法が 4 方法中最小であったのに対し、神野ら¹⁶⁾ の方 法は Paredes et al.¹³⁾ の方法より大きくなった。この結果 は、神野ら¹⁶⁾ の方法が画像に含まれるノイズに対して脆弱 であるという 2. 2. 2 の予想を裏付けている。

さらに Fig. 8 (d) は、 H_{max} =5、 N_{H} =100 の RMSE を、 σ_1 = σ_2 に対してプロットしたものである。 σ_1 = σ_2 の増加に伴 い、本研究の方法と Paredes et al.¹³⁾の方法との RMSE の 差が小さくなることがわかる。これは、 σ_1 = σ_2 が大きい場 合には、本研究の方法のセミパラメトリック回帰モデル が、過適合を防ぐために線形モデルに近づくためである。 Fig. 5 において、水深既知画素数が大きい場合にも本研究 の方法の優位性が不明瞭であった Case 2、5、8 は、光学理 論モデル(1)の誤差が大きいケースであった可能性がある。

以上をまとめると,本研究の方法は,水深既知画素数が 大きく,光学理論モデル(1)の成立性が高い場合に,既存 の方法に対して高精度であると結論できる。

6. まとめと今後の課題

本研究では、浅水域の可視・近赤外画像を用いた新しい 水深分布予測法として、底質に関する事前情報や特殊な仮 定に依存せずに、底質が不均一な水域にも適用できる汎用 的方法を開発した。この方法は、底面反射率を底質指標の ノンパラメトリック関数として表現した放射輝度の光学理 論モデル(セミパラメトリックモデル)を、水深が既知の 画素を用いてチューニングするものであり、既存の方法 (Paredes et al.¹³⁾, Philpot¹⁴⁾, Stumpf et al.¹⁵⁾, 神野ら¹⁶⁾)に 比べて、理論的な合理性ないし適用性に優れている。

さらに、本研究では開発した方法を、既存の方法(Philpot¹⁴⁾ を除く)とともに、複数のサンゴ礁水域を撮影した Quick-Bird, ALOS/AVNIR-2, Terra/ASTER による画像、および 様々な条件で人工的に生成したデータに適用した。その結 果、水深既知画素が十分にあり、光学理論モデルの成立性 が比較的高い場合,本研究の方法は,既存の各方法と比べ て平均的な予測誤差が小さいことが明らかになった。ま た,既存の方法の中で比較的予測誤差が小さかった Paredes et al.¹³⁾の方法に対して,地形の起伏の再現性においても優 位であることが示された。本研究の方法は今後,沿岸域の 管理・利用や自然科学分野の研究などの目的で,低コスト で水深分布を得る必要がある場面において役立つことが期 待される。

本研究の水深分布予測法では,画素の輝度および水深 を,画素間で独立な変数として扱っている。今後,これら の空間的自己相関性を考慮することで,より信頼性の高い 予測・検証法を開発できると考えられる。

謝辞:本研究では、セミパラメトリック回帰とアルゴリズ ムの構成に関して、東京大学空間情報科学研究センターの 丸山祐造准教授に貴重な指南を賜った。Rのmgcvライブ ラリによる実装に際しては、開発者であるバース大学の Simon N. Wood 教授にアドバイスを頂いた。また、本研究 で用いた航空レーザー測量データは海上保安庁海洋情報部 から提供頂いたものである。ここに記して深く感謝の意を 表する。最後に、本研究が 2005 年度鋼構造研究・教育助成 事業の補助を受けたことを明記する。

引用文献

- 杉森康弘:海洋のリモートセンシング,共立出版,東京, 1982.
- 2) 灘岡和夫,田村英寿:沖縄赤土流出問題に関する汎用衛 星モニタリングシステム構築の試み,海岸工学論文集,40 (2), pp.1106-1110, 1993.
- 3) S. O. Darkwah, C. Deguchi, S. Sugio and M. Kunitake : A simple method of estimating water depth at the nearshore zone from satellite data, 日本リモートセンシング学会誌, 18(2), pp. 13-27, 1998.
- 石黒悦爾,川勝基,平山慎作,菊川浩行:衛星データを用いた沿岸部の水深推定,気象利用研究,13, pp. 66-70, 2000.
- F. C. Polcyn, W. L. Brown and I. J. Sattinger : The measurement of water depth by remote sensing techniques, The University of Michigan, Ann Arbor, 1970.
- 6) 灘岡和夫:衛星画像データに基づいた沖縄赤土流出モニタリングシステムの開発と汎用化, 平成5年度文部省科学研究費(試験研究B(1))研究成果報告書, 1995.
- 7)泉宮尊司,國田知基,鈴木健太郎,石橋邦彦,泉 正寿, 永松 宏:衛星リモートセンシングによる水中消散係数 の変動を考慮した沿岸域の水深の推定,海岸工学論文集, 47(2), pp. 1351-1355, 2000.
- 8) 鈴木健太郎,泉宮尊司,石橋邦彦:衛星リモートセンシン グによる砂浜海岸の高精度水深推定法とその適用性に関 する研究,海岸工学論文集,49(2),pp.1521-1525,2002.
- 9) E. C. Paringit, 灘岡和夫: 多バンド・リモートセンシング に基づくサンゴ礁マッピングへの逆解析手法の応用,海 岸工学論文集, 49(2), pp. 1191-1195, 2002.

- E. C. Paringit, 灘岡和夫,中山哲嚴: Ikonos 衛星画像への 生物物理学的分光反射モデルの適用による大型水性植物 と水深分布の同時推定,海岸工学論文集,51(2), pp. 1401-1404, 2004.
- 二宮順一,森 信人,矢持 進:高解像度画像を用いた光 学理論による藻場分布推定法の開発,海岸工学論文集,53
 (2), pp. 1426-1430, 2006.
- 12) D. R. Lyzenga : Passive remote sensing techniques for mapping water depth and bottom features, Appied Optics, 17 (3), pp. 379-383, 1978.
- 13) J. M. Paredes and R. E. Spero : Water depth mapping from passive remote sensing data under a generalized ratio assumption, Applied Optics, 22 (8), pp. 1134–1135, 1983.
- 14) W. D. Philpot : Bathymetric mapping with passive multispectral imagery, Appied Optics, 28 (8), pp. 1569–1578, 1989.
- 15) R. P. Stumpf, K. Holderied, and M. Sinclair : Determination of water depth with high-resolution satellite imagery over variable bottom types, Limnology and Oceanography, 48 (1), pp. 547-556, 2003.
- 16) 神野有生, 鯉渕幸生, 寺田一美, 竹内 渉, 磯部雅彦: 底 質の不均一性を考慮した衛星画像による汎用水深分布予 測法, 水工学論文集, 52, pp. 895-900, 2008.

〔著者紹介〕

●神野 有生 (カンノ アリヨ)

1982年生。2005年東京大学工学部システム創成学科卒業。2007年同大学院新領域 創成科学研究科社会文化環境学専攻修士 課程修了。修士(環境学)。同年より同大 学院同研究科博士後期課程に在籍。研究 対象は,沿岸域の物理・栄養塩環境およ び,水深・底質分布に関するリモートセ

ンシング手法。所属学会は日本リモートセンシング学会,土木 学会,電子情報通信学会,日本サンゴ礁学会。2007年に東京大 学大学院新領域創成科学研究科より研究科長賞,同大学院同 研究科社会文化環境学専攻より優秀論文賞,2009年に土木学 会より水工学論文奨励賞を受賞。

E-mail: kanno@westech.k.u-tokyo.ac.jp

●鯉渕 幸生 (コイブチ ユキオ)

2001 年東京大学大学院工学系研究科社会 基盤工学専攻博士課程修了。博士(工学)。 東京電機大学理工学部建設環境工学科助 手を経て,2003 年より東京大学大学院新 領域創成科学研究科社会文化環境学専攻 専任講師。東京湾,有明海,チェサピーク 湾などの沿岸域,沖縄のマングローブ河

川やサンゴ礁などを対象に,物質循環機構の解明,環境評価手法,環境改善・創造技術の開発に関する研究を行っている。所 属学会は土木学会,水環境学会,日本海洋学会,サンゴ礁学 会,AGU。2006年,2007年に土木学会地球環境委員会より地 球環境技術賞を受賞。

E-mail : koi@k.u-tokyo.ac.jp

- 17)神野有生,鯉渕幸生,磯部雅彦:浅水域衛星モニタリング 高精度化のためのテクスチャ特徴量の利用可能性,海岸 工学論文集,55(2),pp.1461-1465,2008.
- 18) 松永恒雄,梅干野晁,水上陽誠:消散係数比の空間・時間 変化と底質指標によるサンゴ礁内経時変化の検出,日本 リモートセンシング学会第28回学術講演会論文集,pp. 281-282,2000.
- 19) D. R. Lyzenga : Remote sensing of bottom reflectance and water attenuation parameters in shallow waters using aircraft and Landsat data, Inter. Jour. of Remote Sensing, 2 (1), pp. 71-82, 1981.
- 小西貞則, 北川源四郎:情報量規準, 朝倉書店, 東京, 2004.
- R. Ihaka, R. Gentleman : R : A language for data analysis and graphics, J. Comp. Graph. Stat., 5(3), pp. 299-314, 1996.
- 22) S. N. Wood : Generalized additive models : an introduction with R, Chapman&Hall/CRC, Boca Raton, 2006.
- 23) D. M. Allen : The relationship between variable selection and data augmentation and a method for prediction, Technometrics, 16(1), pp. 125–127, 1974.

●竹内 渉 (タケウチ ワタル)

1975年生。1999年東京大学工学部土木工 学科卒業。2004年東京大学大学院博士課 程修了(社会基盤工学専攻,博士(工 学))。同年東京大学生産技術研究所入所, 特任研究員,特任助手を経て2007年より 講師として環境・災害衛星リモートセン シングの研究に従事。2001年計測自動制

御学会より論文奨励賞を,2001年,2002年日本写真測量学会 より学術講演会論文賞を,2005年日本写真測量学会より学会 奨励賞を,2008年日本リモートセンシング学会より学会奨励 賞を受賞。日本リモートセンシング学会,日本写真測量学会, 米国物理学連合の各会員。

E-mail : wataru@iis.u-tokyo.ac.jp

●磯部 雅彦 (イソベ マサヒコ)

1975年東京大学工学部土木工学科卒業。 横浜国立大学工学部土木工学科助教授, 東京大学工学部土木工学科教授などを経 て,1999年より東京大学大学院新領域創 成科学研究科社会文化環境学専攻教授 (工学博士)。著書は海岸環境工学(東大出 版,共著),海岸波動(土木学会,共著),

海岸の環境創造(朝倉書店,編著)など。日本沿岸域学会理事, 土木学会理事,科学技術学術審議会海洋開発分科会委員,高 潮・津波ハザードマップ研究会委員,ゼロメートル地帯の高 潮対策検討会委員長,総合海洋政策本部参与などを歴任。1986 年に土木学会論文奨励賞,1992年に港湾協会論文賞,1997年 に土木学会論文賞,2005年に土木学会海岸工学委員会 CEJ Award を受賞。

E-mail : isobe@k.u-tokyo.ac.jp