The distribution functions of $\sigma(n) / n$ and $n / \varphi(n)$, II

Andreas Weingartner

1. Introduction

Let

$$
A(t):=\lim _{N \rightarrow \infty} \frac{1}{N}|\{n \leq N: \sigma(n) / n \geq t\}|
$$

where $\sigma(n)$ is the sum of the positive divisors of n, and

$$
B(t):=\lim _{N \rightarrow \infty} \frac{1}{N}|\{n \leq N: n / \varphi(n) \geq t\}|
$$

where φ denotes Euler's totient function. Both of these limits exist and are continuous functions of t [1, 3].

We are interested in the size of $A(t)$ and $B(t)$ as t tends to infinity. From the work of Erdős [2] it follows that

$$
B(t)=\exp \left\{-e^{t e^{-\gamma}}(1+o(1))\right\} \quad(t \rightarrow \infty)
$$

which was sharpened and extended to $A(t)$ by the author [6] with the result

$$
\begin{equation*}
A(t), B(t)=\exp \left\{-e^{t e^{-\gamma}}\left(1+O\left(t^{-2}\right)\right)\right\} \quad(t \rightarrow \infty) \tag{1}
\end{equation*}
$$

where $\gamma=0.5772 \ldots$ is Euler's constant.
The purpose of this note is to make further improvements to the error term.
Theorem 1. We have

$$
A(t), B(t)=\exp \left\{-e^{t e^{-\gamma}}\left(1+\sum_{j=2}^{m} \frac{a_{j}}{t^{j}}+O_{m}\left(\frac{1}{t^{m+1}}\right)\right)\right\}
$$

where

$$
a_{2}=-\frac{\pi^{2}}{6} e^{2 \gamma}, \quad a_{3}=\frac{\pi^{2}}{6} e^{3 \gamma}, \quad a_{4}=-\left(\frac{\pi^{2}}{6}+\frac{37 \pi^{4}}{360}\right) e^{4 \gamma} .
$$

Additional coefficients a_{i} can be determined without major difficulties by following the proofs of Lemma [5 Lemma 6 and Section [5, starting with the coefficients b_{i} from Lemma 5 ,

Throughout we will use the notation

$$
\begin{gather*}
y=y(t):=e^{t e^{-\gamma}} . \tag{2}\\
1
\end{gather*}
$$

We can further decrease the size of the error term in Theorem 1 in exchange for a more complex main term. Let

$$
\begin{equation*}
I(y, s):=\int_{e}^{y} \log \left(1+x e^{-s / x}\right) \frac{d x}{\log x}+\int_{y}^{y \log y} \log \left(1+x^{-1} e^{s / x}\right) \frac{d x}{\log x} \tag{3}
\end{equation*}
$$

and

$$
L(y):=\exp \left\{\frac{(\log y)^{3 / 5}}{(\log \log y)^{1 / 5}}\right\}
$$

Theorem 2. There exists a positive constant c such that

$$
A(t), B(t)=\exp \left\{-y+\min _{s \in J} I(y, s)+R(y)\right\}
$$

where $J=[y \log y-y, y \log y+y]$ and

$$
R(y)=O\left(\frac{y}{L(y)^{c}}\right) .
$$

Assuming the Riemann hypothesis we have

$$
R(y)=O\left(\sqrt{y}(\log y)^{2}\right) .
$$

The behavior of $B(t)$ near $t=1$ is described by Tenenbaum and Toulmonde [4, Thm. 1.2], who show that

$$
\begin{equation*}
1-B(1+1 /(\sigma-1))=\sum_{j=1}^{m} \frac{g_{j}}{(\log \sigma)^{j}}+O\left(\frac{\left|g_{m+1}\right|}{(\log \sigma)^{m+1}}+\frac{1}{L(\sigma)^{c}}\right) \tag{4}
\end{equation*}
$$

for some $c>0$, where

$$
g_{1}=e^{-\gamma}, \quad g_{2}=0, \quad g_{3}=-\frac{1}{12} \pi^{2} e^{-\gamma}
$$

and

$$
g_{j}=\left\{1+O\left(j^{-1}\right)\right\} e^{-\gamma}(-1)^{j+1}(j-3)!\quad(j \geq 3) .
$$

A classic result (see e.g. [3]) states that for all $s \in \mathbb{C}$ we have

$$
\begin{equation*}
W(s):=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N}\left(\frac{n}{\varphi(n)}\right)^{s}=\prod_{p}\left(1+\frac{\left(1-p^{-1}\right)^{-s}-1}{p}\right) \tag{5}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\int_{0}^{\infty} B(x) x^{s-1} d x=0-\frac{1}{s} \int_{0}^{\infty} x^{s} d B(x)=\frac{W(s)}{s}, \quad(\Re(s)>0) . \tag{6}
\end{equation*}
$$

Hence $\frac{W(s)}{s}$ is the Mellin transform of $B(t)$. The method used in (4) to establish (4) is essentially that of inversion of the Mellin transform with the abscissa of integration moved to $-\sigma$. For large t on the other hand, we find that $W(s) t^{-s}$ is small when $\Re(s)$ is close to $y \log y$. It turns out that the minimum of $W(s) t^{-s}$ with respect to s along the positive real axis is already an excellent estimate for $B(t)$ (see Lemma (2), and it appears that inversion is not a natural choice in this case because of the slower convergence of the product in (5) when $\Re(s)>0$. Therefore we will restrict our investigation to $s \in[0, \infty)$.

The following result shows that $A(t)$ and $B(t)$ are close enough so that it suffices to show that Theorems 1 and 2 hold for $B(t)$, which is the simpler object since $\varphi(n)$ does not depend on the multiplicities of the prime factors of n.

Theorem 3. For $t \geq t_{0}$ we have

$$
A(t) \leq B(t)<e^{3 \sqrt{y}} A\left(t-\frac{5 e^{\gamma}}{\sqrt{y}}\right)
$$

Another arithmetic function closely related to φ and σ is Dedekind's ψ function, defined by

$$
\psi(n)=n \prod_{p \mid n}\left(1+p^{-1}\right)
$$

With

$$
D(t):=\lim _{N \rightarrow \infty} \frac{1}{N}|\{n \leq N: \psi(n) / n \geq t\}|
$$

one can show that $D(t / \zeta(2))$ also satisfies Theorems 1 and2. It is easy to see that $D(t / \zeta(2)) \geq$ $B(t)$ using the definition of ψ and φ. For the upper bound of $D(t / \zeta(2))$ one can consider the analog of Lemma 2 (i) below.

2. Proof of Theorem 3

The inequality $A(t) \leq B(t)$, valid for all t, follows from

$$
\frac{\sigma(n)}{n}=\prod_{p^{\nu} \| n} \frac{1+p+\ldots+p^{\nu}}{p^{\nu}}=\prod_{p^{\nu}| | n} \frac{1-p^{-\nu-1}}{1-p^{-1}}<\prod_{p \mid n} \frac{1}{1-p^{-1}}=\frac{n}{\varphi(n)}
$$

To establish the second inequality of Theorem 3 we let

$$
m=m(t)=\prod_{p \leq \sqrt{y}} p^{h_{p}}, \quad \text { where } h_{p}=\left\lfloor\frac{\log y}{\log p}\right\rfloor .
$$

For every n that satisfies

$$
\frac{n}{\varphi(n)}=\prod_{p \mid n} \frac{1}{1-p^{-1}} \geq t
$$

$n m$ will satisfy

$$
\frac{\sigma(n m)}{n m}=\prod_{p^{k} \| n m} \frac{1-p^{-k-1}}{1-p^{-1}}=\prod_{p \| n m} \frac{1}{1-p^{-1}} \prod_{p^{k} \| n m}\left(1-p^{-k-1}\right) \geq t P
$$

where

$$
P=\prod_{p^{k} \| n m}\left(1-p^{-k-1}\right) \geq \prod_{p \leq \sqrt{y}}\left(1-\frac{1}{y}\right) \prod_{p>\sqrt{y}}\left(1-\frac{1}{p^{2}}\right) \geq 1-\frac{5}{\sqrt{y} \log y},
$$

for $t \geq t_{0}$, by a standard application of the prime number theorem. Thus

$$
\frac{\sigma(n m)}{n m} \geq t\left(1-\frac{5}{\sqrt{y} \log y}\right)=t-\frac{5 e^{\gamma}}{\sqrt{y}}
$$

which implies

$$
A\left(t-\frac{5 e^{\gamma}}{\sqrt{y}}\right) \geq \frac{1}{m} B(t) .
$$

The result now follows since, for $t \geq t_{0}$,

$$
\log m=\sum_{p \leq \sqrt{y}} h_{p} \log p \leq \sum_{p \leq \sqrt{y}} \log y<3 \sqrt{y} .
$$

3. The relation between $B(t)$ and $W(s)$.

Lemma 1. Let $s \geq 1$. If

$$
B(t) t^{s-1}=\max _{x \geq 0} B(x) x^{s-1}
$$

then

$$
s=y \log y+O(y) .
$$

Proof. Assume $B(t) t^{s-1} \geq B(t+h)(t+h)^{s-1}$ for $|h| \leq 1$. After taking logarithms we use (1) to obtain

$$
y\left(e^{h e^{-\gamma}}-1\right)+O\left(y t^{-2}\right) \geq(s-1) \log \left(1+h t^{-1}\right)
$$

and hence

$$
y h e^{-\gamma} \geq(s-1) h t^{-1}+O\left(s h^{2} t^{-2}+y h^{2}+y t^{-2}\right)
$$

The result now follows if we first let $h=t^{-1}$, and then $h=-t^{-1}$, and multiply the last inequality by $h^{-1} t$ in each case.
Lemma 2. (i) For all $s \geq 0, t>0$ we have

$$
B(t) \leq \frac{W(s)}{t^{s}}
$$

(ii) Let $s \geq 1$ and $t \geq t_{0}$. If $B(t) t^{s-1}=\max _{x \geq 0} B(x) x^{s-1}$, then

$$
\frac{W(s)}{3 s t^{s}} \leq B(t)
$$

and

$$
\log B(t)=O(t)+\min _{u \geq 0} \log \frac{W(u)}{t^{u}}
$$

Proof. (i) For all $s \geq 0$,

$$
B(t)=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{\substack{n \leq N \\ n \geq t \varphi(n)}} 1 \leq \lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N}\left(\frac{n}{t \varphi(n)}\right)^{s}=\frac{W(s)}{t^{s}} .
$$

(ii) From (6) we have

$$
\frac{W(s)}{s}=\int_{0}^{t} B(x) x^{s-1} d x+\int_{t}^{2 t} B(x) x^{s-1} d x+\int_{2 t}^{\infty} B(x) x^{s-1} d x=: I_{1}+I_{2}+I_{3}
$$

Since $\max _{x \geq 0}\left(B(x) x^{s-1}\right)=B(t) t^{s-1}$, we have $I_{1}, I_{2} \leq t B(t) t^{s-1}=B(t) t^{s}$. If c is the implied constant in the error term of (11), then for $x \geq t$

$$
\begin{aligned}
B(2 x) & \leq \exp \left\{-e^{2 x e^{-\gamma}}\left(1-c x^{-2}\right)\right\} \leq \exp \left\{-e^{x e^{-\gamma}}(y / 2)\left(1+c x^{-2}\right)\right\} \\
& \leq B(x)^{y / 2} \leq B(x)^{1+\log y} \leq B(x) B(t)^{\log y} \\
& \leq B(x) \exp \{-y \log y+O(y / \log y)\}=B(x) \exp \{-s+O(y)\} \\
& \leq \frac{B(x)}{2^{s+1}},
\end{aligned}
$$

since $s=y \log y+O(y)$ by Lemma 1. We conclude that for $k \geq 1$

$$
\int_{t 2^{k}}^{t 2^{k+1}} B(x) x^{s-1} d x=2^{s} \int_{t 2^{k-1}}^{t 2^{k}} B(2 x) x^{s-1} d x \leq \frac{1}{2} \int_{t 2^{k-1}}^{t 2^{k}} B(x) x^{s-1} d x
$$

and thus $I_{3} \leq I_{2} \leq B(t) t^{s}$.
The second assertion in (ii) follows from the first and (i), since $s=y \log y+O(y)$.

4. The study of the product $W(s)$.

Let

$$
t_{u}:=\prod_{p \leq u} \frac{1}{1-p^{-1}}, \quad P_{u}:=\prod_{p \leq u} p .
$$

Lemma 3. Let $2 \leq u \leq v$. For $s \ll v$ we have

$$
\frac{W(s)}{t_{u}^{s}}=\frac{t_{u}}{t_{v} P_{u}}\left(1+O\left(\frac{s}{v \log v}\right)\right) \prod_{p \leq u}\left(1+p\left(1-p^{-1}\right)^{s+1}\right) \prod_{u<p \leq v}\left(1+p^{-1}\left(1-p^{-1}\right)^{-s-1}\right)
$$

Proof. The contribution from primes $p>v$ to the product (5) is

$$
\begin{aligned}
\prod_{p>v}\left(1+\frac{\left(1-p^{-1}\right)^{-s}-1}{p}\right) & =\prod_{p>v}\left(1+\frac{1}{p}\left(e^{O\left(\frac{s}{p}\right)}-1\right)\right) \\
& =\prod_{p>v}\left(1+O\left(\frac{s}{p^{2}}\right)\right)=1+O\left(\frac{s}{v \log v}\right) .
\end{aligned}
$$

For primes p in the range $u<p \leq v$ we write

$$
\prod_{u<p \leq v}\left(1+\frac{\left(1-p^{-1}\right)^{-s}-1}{p}\right)=\prod_{u<p \leq v}\left(1-p^{-1}\right) \prod_{u<p \leq v}\left(1+p^{-1}\left(1-p^{-1}\right)^{-s-1}\right) .
$$

Finally, the product over small primes is

$$
\prod_{p \leq u} \frac{\left(1-p^{-1}\right)^{-s}}{p} \prod_{p \leq u}\left(1+p\left(1-p^{-1}\right)^{s+1}\right)=\frac{t_{u}^{s}}{P_{u}} \prod_{p \leq u}\left(1+p\left(1-p^{-1}\right)^{s+1}\right) .
$$

Lemma 4. Let $2 \leq u \leq v$. For $v \gg s=u \log u+O(u)$ we have

$$
\frac{W(s)}{t_{u}^{s}}=\frac{t_{u}}{t_{v} P_{u}}\left(1+O\left(\frac{1}{\log u}\right)\right) \prod_{p \leq u}\left(1+p e^{-s / p}\right) \prod_{u<p \leq v}\left(1+p^{-1} e^{s / p}\right) .
$$

Proof. We write

$$
\begin{aligned}
\prod_{u<p \leq v}\left(1+p^{-1}\left(1-p^{-1}\right)^{-s-1}\right) & =\prod_{u<p \leq v}\left(1+p^{-1} \exp \left(\frac{s}{p}+O\left(\frac{s}{p^{2}}\right)\right)\right) \\
& =\prod_{u<p \leq v}\left(1+p^{-1} e^{s / p}\right)\left(1+O\left(\frac{s}{p^{3}} e^{s / p}\right)\right) .
\end{aligned}
$$

After taking the logarithm of the last expression, the contribution from the error term is

$$
\begin{align*}
\ll \sum_{p>u} \frac{s}{p^{3}} e^{s / p} & \asymp \int_{u}^{\infty} \frac{s}{x^{3}} e^{s / x} \frac{d x}{\log x} \\
& \asymp \frac{1}{u \log u} \int_{u}^{\infty} \frac{s}{x^{2}} e^{s / x} d x \tag{7}\\
& =\frac{1}{u \log u} e^{s / u} \asymp \frac{1}{\log u} .
\end{align*}
$$

Thus

$$
\prod_{u<p \leq v}\left(1+p^{-1}\left(1-p^{-1}\right)^{-s-1}\right)=\left(1+O\left(\frac{1}{\log u}\right)\right) \prod_{u<p \leq v}\left(1+p^{-1} e^{s / p}\right)
$$

Similarily,

$$
\begin{array}{r}
\prod_{p \leq u}\left(1+p\left(1-p^{-1}\right)^{s+1}\right)=\prod_{p \leq u}\left(1+p \exp \left(-\frac{s}{p}+O\left(\frac{s}{p^{2}}\right)\right)\right) \\
=\prod_{p \leq u}\left(1+p e^{-s / p}\right)\left(1+O\left(\frac{s}{p} e^{-s / p}\right)\right) .
\end{array}
$$

The contribution from the error term to the logarithm of the last expression is

$$
\begin{align*}
\asymp \sum_{p \leq u} \frac{s}{p} e^{-s / p} & \asymp \int_{2}^{u} \frac{s}{x} e^{-s / x} \frac{d x}{\log x} \\
& \asymp \frac{u}{\log u} \int_{2}^{u} \frac{s}{x^{2}} e^{-s / x} d x \tag{8}\\
& \asymp \frac{u}{\log u} e^{-s / u} \asymp \frac{1}{\log u} .
\end{align*}
$$

Thus

$$
\prod_{p \leq u}\left(1+p\left(1-p^{-1}\right)^{s+1}\right)=\left(1+O\left(\frac{1}{\log u}\right)\right) \prod_{p \leq u}\left(1+p e^{-s / p}\right) .
$$

The result now follows from Lemma 3.
Lemma 5. Let $s \geq e$ and define z by $s=z \log z$. For $m \geq 2$ we have

$$
W(s)=\exp \left(z \log z \log \left(e^{\gamma} \log z\right)-z+z \sum_{j=2}^{m} \frac{b_{j}}{(\log z)^{j}}+O_{m}\left(\frac{z}{(\log z)^{m+1}}\right)\right),
$$

where

$$
b_{2}=\frac{\pi^{2}}{6}, \quad b_{3}=-\frac{\pi^{2}}{6}, \quad b_{4}=\frac{\pi^{2}}{6}+\frac{7 \pi^{4}}{60} .
$$

Proof. We apply Lemma 4 with $u=z$ and $v=s$ to obtain

$$
\begin{align*}
\log W(s)= & -s \sum_{p \leq z} \log \left(1-p^{-1}\right)-\sum_{p \leq z} \log p+O\left(\frac{\log _{2} z}{\log z}\right) \\
& +\sum_{p \leq z} \log \left(1+p e^{-s / p}\right)+\sum_{z<p \leq s} \log \left(1+p^{-1} e^{s / p}\right) \tag{9}\\
= & z \log z \log \left(e^{\gamma} \log z\right)-z+O\left(\frac{z}{\exp (\sqrt{\log z})}\right) \\
& +\int_{e}^{z} \log \left(1+x e^{-s / x}\right) \frac{d x}{\log x}+\int_{z}^{s} \log \left(1+x^{-1} e^{s / x}\right) \frac{d x}{\log x},
\end{align*}
$$

by a strong form of Mertens' Theorem [5] and a standard application of the prime number theorem. We need to estimate the two integrals in (9). The first integral is

$$
\begin{equation*}
\sum_{k \geq 1} \frac{(-1)^{k+1}}{k} \int_{e}^{z} x^{k} e^{-s k / x} \frac{d x}{\log x}=\sum_{k \geq 1} \frac{(-1)^{k+1}}{k} I_{k}(k, 1), \tag{10}
\end{equation*}
$$

where

$$
\begin{align*}
I_{k}(a, b) & :=\int_{e}^{z} x^{a} e^{-s k / x} \frac{d x}{(\log x)^{b}}=\frac{1}{s k} \int_{e}^{z}\left(\frac{s k}{x^{2}} e^{-s k / x}\right) \frac{x^{a+2}}{(\log x)^{b}} d x \tag{11}\\
& \leq \frac{z^{a+2}}{s k(\log z)^{b}} \int_{e}^{z} \frac{s k}{x^{2}} e^{-s k / x} d x \leq \frac{z^{1+a-k}}{k(\log z)^{b+1}}
\end{align*}
$$

for $a \geq b$, since $x / \log x$ is increasing for $x \geq e$. Integration by parts applied to the second integral in (11) shows that

$$
\begin{equation*}
I_{k}(a, b)=\frac{z^{1+a-k}}{k(\log z)^{b+1}}-\frac{a+2}{s k} I_{k}(a+1, b)+\frac{b}{s k} I_{k}(a+1, b+1)+O_{m}(1 /(s k)) \tag{12}
\end{equation*}
$$

for $a \leq k+m$. After $m-1$ iterations of (12), starting with $I_{k}(k, 1)$, we find that

$$
\begin{equation*}
I_{k}(k, 1)=\sum_{j=2}^{m} \frac{z}{(\log z)^{j}} q_{j}(k)+O_{m}\left(\frac{z}{k(\log z)^{m+1}}\right) \tag{13}
\end{equation*}
$$

where $q_{j}(k)$ is a rational function of k with $q_{j}(k)=O(1 / k)$. In particular,

$$
q_{2}(k)=\frac{1}{k}, \quad q_{3}(k)=-\frac{k+2}{k^{2}}, \quad q_{4}(k)=\frac{1}{k^{2}}+\frac{(k+2)(k+3)}{k^{3}}
$$

Inserting (13) into (10) gives

$$
\begin{equation*}
\int_{e}^{z} \log \left(1+x e^{-s / x}\right) \frac{d x}{\log x}=z \sum_{j=2}^{m} \frac{\theta_{j}}{(\log z)^{j}}+O_{m}\left(\frac{z}{(\log z)^{m+1}}\right) \tag{14}
\end{equation*}
$$

where

$$
\theta_{j}=\sum_{k \geq 1}(-1)^{k+1} \frac{q_{j}(k)}{k}
$$

Similarily, the second integral in (9) is

$$
\begin{equation*}
\sum_{k \geq 1} \frac{(-1)^{k+1}}{k} \int_{z}^{s} x^{-k} e^{s k / x} \frac{d x}{\log x}=\sum_{k \geq 1} \frac{(-1)^{k+1}}{k} J_{k}(k, 1) \tag{15}
\end{equation*}
$$

where

$$
\begin{align*}
J_{k}(a, b) & :=\int_{z}^{s} x^{-a} e^{s k / x} \frac{d x}{(\log x)^{b}}=\frac{1}{s k} \int_{z}^{s}\left(\frac{s k}{x^{2}} e^{s k / x}\right) \frac{x^{-a+2}}{(\log x)^{b}} d x \\
& \asymp \frac{1}{s k(\log z)^{b}} \int_{k}^{k \log z} e^{w}\left(\frac{s k}{w}\right)^{2-a} d w=O_{m}\left(\frac{z^{1+k-a}}{k(\log z)^{b+1}}\right) \tag{16}
\end{align*}
$$

for $a \geq-m$. Integration by parts applied to the second integral in (16) shows that

$$
\begin{equation*}
J_{k}(a, b)=\frac{z^{1+k-a}}{k(\log z)^{b+1}}+\frac{2-a}{s k} J_{k}(a-1, b)-\frac{b}{s k} J_{k}(a-1, b+1)+O_{m}\left(k^{-1}(e / s)^{a-1}\right) \tag{17}
\end{equation*}
$$

for $k-a \leq m$. After $m-1$ iterations of (17), starting with $J_{k}(k, 1)$, we find that

$$
\begin{equation*}
J_{k}(k, 1)=\sum_{j=2}^{m} \frac{z}{(\log z)^{j}} r_{j}(k)+O_{m}\left(\frac{z}{k(\log z)^{m+1}}\right) \tag{18}
\end{equation*}
$$

where $r_{j}(k)$ is a rational function of k with $r_{j}(k)=O(1 / k)$. In particular,

$$
r_{2}(k)=\frac{1}{k}, \quad r_{3}(k)=\frac{2-k}{k^{2}}, \quad r_{4}(k)=\frac{(2-k)(3-k)}{k^{3}}-\frac{1}{k^{2}} .
$$

Inserting (18) into (15) gives

$$
\begin{equation*}
\int_{z}^{s} \log \left(1+x^{-1} e^{s / x}\right) \frac{d x}{\log x}=z \sum_{j=2}^{m} \frac{\rho_{j}}{(\log z)^{j}}+O_{m}\left(\frac{z}{(\log z)^{m+1}}\right) \tag{19}
\end{equation*}
$$

where

$$
\rho_{j}=\sum_{k \geq 1}(-1)^{k+1} \frac{r_{j}(k)}{k} .
$$

Let $b_{j}=\theta_{j}+\rho_{j}$, then

$$
\begin{gathered}
b_{2}=\sum_{k \geq 1} \frac{(-1)^{k+1}}{k}\left(q_{2}(k)+r_{2}(k)\right)=2 \sum_{k \geq 1} \frac{(-1)^{k+1}}{k^{2}}=2 \sum_{k \geq 1} \frac{1}{k^{2}}-4 \sum_{k \geq 1} \frac{1}{(2 k)^{2}}=\frac{\pi^{2}}{6}, \\
b_{3}=\sum_{k \geq 1} \frac{(-1)^{k+1}}{k}\left(q_{3}(k)+r_{3}(k)\right)=-2 \sum_{k \geq 1} \frac{(-1)^{k+1}}{k^{2}}=-\frac{\pi^{2}}{6},
\end{gathered}
$$

and

$$
b_{4}=\sum_{k \geq 1} \frac{(-1)^{k+1}}{k}\left(q_{4}(k)+r_{4}(k)\right)=\sum_{k \geq 1} \frac{(-1)^{k+1}}{k}\left(\frac{2}{k}+\frac{12}{k^{3}}\right)=\frac{\pi^{2}}{6}+\frac{7 \pi^{4}}{60} .
$$

The result now follows from combining (9), (14) and (19).
Lemma 6. For $t \geq 1$ and $y=e^{t e^{-\gamma}}$ we have

$$
\min _{s \geq e} \frac{W(s)}{t^{s}}=\exp \left(-y+y \sum_{k=2}^{m} \frac{c_{k}}{(\log y)^{k}}+O_{m}\left(\frac{y}{(\log y)^{m+1}}\right)\right)
$$

where

$$
c_{2}=\frac{\pi^{2}}{6}, \quad c_{3}=-\frac{\pi^{2}}{6}, \quad c_{4}=\frac{\pi^{2}}{6}+\frac{37 \pi^{4}}{360} .
$$

Proof. Let $t \geq 1$ be given. From Lemma 5 we have

$$
\begin{equation*}
\log \frac{W(s)}{t^{s}}=z\left(\log z \log (\log z / \log y)-1+\sum_{k=2}^{m} \frac{b_{k}}{(\log z)^{k}}+O_{m}\left(\frac{1}{(\log z)^{m+1}}\right)\right)=: h(z), \tag{20}
\end{equation*}
$$

where $s=z \log z$. We see that $h(y) \sim-y$ and $h(z)>0$ for $z \geq e y$, so that the minimum of $h(z)$ occurs at some $z \in[e, e y]$, where the error term of (20) is uniformly $O_{m}\left(y /(\log y)^{m+1}\right)$.
Therefore we only need to minimize

$$
\begin{equation*}
f(z):=z\left(\log z \log (\log z / \log y)-1+\sum_{k=2}^{m} \frac{b_{k}}{(\log z)^{k}}\right) . \tag{21}
\end{equation*}
$$

To that end we set $f^{\prime}(z)=0$, which is equivalent to

$$
\begin{equation*}
\log y=\log z \exp \left(\sum_{k=2}^{m+1} \frac{\alpha_{k}}{(1+\log z) \log ^{k} z}\right), \tag{22}
\end{equation*}
$$

where $\alpha_{2}=b_{2}, \alpha_{k}=b_{k}-(k-1) b_{k-1}$ for $k=3, \ldots, m-1$, and $\alpha_{m+1}=-m b_{m}$. Thus

$$
\alpha_{2}=b_{2}=\frac{\pi^{2}}{6}, \quad \alpha_{3}=b_{3}-2 b_{2}=-\frac{\pi^{2}}{2}, \quad \alpha_{4}=b_{4}-3 b_{3}=\frac{2 \pi^{2}}{3}+\frac{7 \pi^{4}}{60} .
$$

THE DISTRIBUTION FUNCTIONS OF $\sigma(n) / n$ AND $n / \varphi(n)$, II

Since $f(e) \sim-e \log \log y, f(y) \sim-y$, and $f(e y)>0$, the unique solution to (22) is the minimizer of $f(z)$. We rewrite (22) as

$$
\begin{equation*}
\log z \log \left(\frac{\log z}{\log y}\right)=-\sum_{k=2}^{m} \frac{\beta_{k}}{(\log z)^{k}}+O\left(\frac{1}{(\log z)^{m+1}}\right) \tag{23}
\end{equation*}
$$

where $\beta_{2}=\alpha_{2}$ and $\beta_{k}=\alpha_{k}-\beta_{k-1}$ for $k=3, \ldots, m$. Thus

$$
\beta_{2}=\alpha_{2}=\frac{\pi^{2}}{6}, \quad \beta_{3}=\alpha_{3}-\beta_{2}=-\frac{2 \pi^{2}}{3}, \quad \beta_{4}=\alpha_{4}-\beta_{3}=\frac{4 \pi^{2}}{3}+\frac{7 \pi^{4}}{60} .
$$

To express z in terms of y we first write (23) as

$$
\begin{align*}
\log y & =\log z \exp \left(\sum_{k=2}^{m} \frac{\beta_{k}}{(\log z)^{k+1}}+O\left(\frac{1}{(\log z)^{m+2}}\right)\right) \\
& =\log z\left(1+\sum_{k=2}^{m} \frac{\delta_{k}}{(\log z)^{k+1}}+O\left(\frac{1}{(\log z)^{m+2}}\right)\right), \tag{24}
\end{align*}
$$

where

$$
\delta_{2}=\beta_{2}=\frac{\pi^{2}}{6}, \quad \delta_{3}=\beta_{3}=-\frac{2 \pi^{2}}{3}, \quad \delta_{4}=\beta_{4}=\frac{4 \pi^{2}}{3}+\frac{7 \pi^{4}}{60} .
$$

Using series inversion on (24) we obtain

$$
\begin{equation*}
\log z=\log y\left(1+\sum_{k=2}^{m} \frac{\eta_{k}}{(\log y)^{k+1}}+O\left(\frac{1}{(\log y)^{m+2}}\right)\right) \tag{25}
\end{equation*}
$$

where

$$
\eta_{2}=-\delta_{2}=-\frac{\pi^{2}}{6}, \quad \eta_{3}=-\delta_{3}=\frac{2 \pi^{2}}{3}, \quad \eta_{4}=-\delta_{4}=-\frac{4 \pi^{2}}{3}-\frac{7 \pi^{4}}{60} .
$$

We exponentiate (25) to get

$$
\begin{align*}
z & =y \exp \left(\sum_{k=2}^{m} \frac{\eta_{k}}{(\log y)^{k}}+O\left(\frac{1}{(\log y)^{m+1}}\right)\right) \\
& =y\left(1+\sum_{k=2}^{m} \frac{\lambda_{k}}{(\log y)^{k}}+O\left(\frac{1}{(\log y)^{m+1}}\right)\right), \tag{26}
\end{align*}
$$

where

$$
\lambda_{2}=\eta_{2}=-\frac{\pi^{2}}{6}, \quad \lambda_{3}=\eta_{3}=\frac{2 \pi^{2}}{3}, \quad \lambda_{4}=\eta_{4}+\frac{\eta_{2}^{2}}{2}=-\frac{4 \pi^{2}}{3}-\frac{37 \pi^{4}}{360} .
$$

Combining (21), (23) and (26) we see that $\min _{z} f(z)$ is

$$
\begin{aligned}
& y\left(1+\sum_{k=2}^{m} \frac{\lambda_{k}}{\log ^{k} y}+O\left(\frac{1}{\log ^{m+1} y}\right)\right)\left(-1+\sum_{k=2}^{m} \frac{b_{k}-\beta_{k}}{\log ^{k} z}+O\left(\frac{1}{\log ^{m+1} z}\right)\right) \\
& \quad=y\left(1+\sum_{k=2}^{m} \frac{\lambda_{k}}{(\log y)^{k}}+O\left(\frac{1}{(\log y)^{m+1}}\right)\right)\left(-1+\sum_{k=2}^{m} \frac{\mu_{k}}{(\log y)^{k}}+O\left(\frac{1}{(\log y)^{m+1}}\right)\right),
\end{aligned}
$$

where (24) implies

$$
\mu_{2}=b_{2}-\beta_{2}=0, \quad \mu_{3}=b_{3}-\beta_{3}=\frac{\pi^{2}}{2}, \quad \mu_{4}=b_{4}-\beta_{4}=-\frac{7 \pi^{2}}{6} .
$$

Thus

$$
\min _{z} f(z)=-y+y \sum_{k=2}^{m} \frac{c_{k}}{(\log y)^{k}}+O_{m}\left(\frac{y}{(\log y)^{m+1}}\right)
$$

where

$$
c_{2}=\mu_{2}-\lambda_{2}=\frac{\pi^{2}}{6}, \quad c_{3}=\mu_{3}-\lambda_{3}=-\frac{\pi^{2}}{6}, \quad c_{4}=\mu_{4}+\mu_{2} \lambda_{2}-\lambda_{4}=\frac{\pi^{2}}{6}+\frac{37 \pi^{4}}{360}
$$

Lemma 7. Let $g(s)=\log W(s)$. We have

$$
g^{\prime \prime}(s) \asymp \frac{1}{s \log s} \quad(s \geq 2)
$$

Proof. From (5) we find that

$$
\begin{aligned}
g^{\prime \prime}(s) & =\sum_{p} p^{-1}\left(1-p^{-1}\right) \log ^{2}\left(1-p^{-1}\right) \frac{\left(1-p^{-1}\right)^{-s}}{\left(1+p^{-1}\left(\left(1-p^{-1}\right)^{-s}-1\right)\right)^{2}} \\
& \asymp \sum_{p} p^{-3} \frac{\left(1-p^{-1}\right)^{-s}}{\left(1+p^{-1}\left(1-p^{-1}\right)^{-s}\right)^{2}}
\end{aligned}
$$

Let u be given by $u^{-1}\left(1-u^{-1}\right)^{-s}=1$, so that $s=u \log u+O(\log u)$. Then

$$
\begin{aligned}
g^{\prime \prime}(s) & \asymp \sum_{p \leq u} p^{-1}\left(1-p^{-1}\right)^{s}+\sum_{p>u} p^{-3}\left(1-p^{-1}\right)^{-s} \\
& \asymp \sum_{p \leq u} p^{-1} e^{-s / p}+\sum_{p>u} p^{-3} e^{s / p} \asymp \frac{1}{s \log s},
\end{aligned}
$$

where the last two sums are estimated just like in (7) and (8).

5. Proof of Theorems 1 and 2

Define the set of maximizers

$$
M:=\left\{t \geq 1: \exists s>1 \text { with } \max _{x \geq 0} B(x) x^{s-1}=B(t) t^{s-1}\right\}
$$

Lemma 8. There is a constant $c>0$ such that for every $t \geq 1$ there is a $t_{1} \in M$ with

$$
\left|t-t_{1}\right| \leq c \sqrt{t / y}
$$

Proof. Let $t \geq 1$ and let s be given by $\min _{u} \frac{W(u)}{t^{u}}=\frac{W(s)}{t^{s}}$. Let $t_{1} \in M$ satisfy $\max _{x \geq 1} B(x) x^{s-1}=B\left(t_{1}\right) t_{1}^{s-1}$. Finally, define s_{1} by $\min _{u} \frac{W(u)}{t_{1}^{u}}=\frac{W\left(s_{1}\right)}{t_{1}^{s_{1}}}$. From Lemma 2 we find

$$
\frac{W(s)}{3 s t_{1}^{s}} \leq B\left(t_{1}\right) \leq \frac{W\left(s_{1}\right)}{t_{1}^{s_{1}}} \leq \frac{W(s)}{t_{1}^{s}}
$$

So

$$
\log \frac{W(s)}{t_{1}^{s}}=\log \frac{W\left(s_{1}\right)}{t_{1}^{s_{1}}}+O(\log s)
$$

By Taylor's theorem there is an s_{0} between s and s_{1} with

$$
\log \frac{W(s)}{t_{1}^{s}}=\log \frac{W\left(s_{1}\right)}{t_{1}^{s_{1}}}+\frac{g^{\prime \prime}\left(s_{0}\right)}{2}\left(s-s_{1}\right)^{2}
$$

where $g(u)=\log W(u)$. Combining the last two equations with Lemma 7 we obtain

$$
\left|s-s_{1}\right|=O(\sqrt{s} \log s)
$$

Let $f(u)=\exp \left(g^{\prime}(u)\right)$. From the definition of s and s_{1} we have $t=f(s)$ and $t_{1}=f\left(s_{1}\right)$. Thus $\left|t-t_{1}\right| \leq\left|s-s_{1}\right| \max _{I} f^{\prime}(u)$, where I is the interval with endpoints s, s_{1}. Now $f^{\prime}(u)=$ $f(u) g^{\prime \prime}(u)$, so Lemma 7 yields

$$
\left|t-t_{1}\right|=O\left(\frac{t \sqrt{s} \log s}{s \log s}\right)=O(\sqrt{t / y}),
$$

by Lemma 1 .
Proof of Theorem [1, If $t \in M$ then the result follows from Lemma 2 (ii) and Lemma 6 with $a_{j}=-c_{j} e^{j \gamma}$. If $t \notin M$, the result follows from Lemma 8 and the monotonicity of $B(t)$.

Proof of Theorem 2. We apply Lemma 4 with $u=y$ and $v=y \log y$. For $s=$ $y \log y+O(y)$,

$$
\begin{aligned}
\log \frac{W(s)}{t^{s}}= & -s \log t-s \sum_{p \leq y} \log \left(1-p^{-1}\right)-\sum_{p \leq y} \log p+O\left(\frac{\log _{2} y}{\log y}\right) \\
& +\sum_{p \leq y} \log \left(1+p e^{-s / p}\right)+\sum_{y<p \leq y \log y} \log \left(1+p^{-1} e^{s / p}\right) \\
= & -y+I(y, s)+O\left(\frac{y}{L(y)^{c}}\right),
\end{aligned}
$$

by a strong form of Mertens' Theorem [5] and a standard application of the prime number theorem. Under the assumption of the Riemann hypothesis, the error term can be replaced by $O\left(\sqrt{y}(\log y)^{2}\right)$. If $t \in M$ and $\max _{x \geq 0} B(x) x^{s-1}=B(t) t^{s-1}$, then $s=y \log y+o(y)$, by an argument like in the proof of Lemma 1, but this time using Theorem 1 with $m=2$ instead of (11). Therefore Lemma 2 implies

$$
\log B(t)=O(t)+\min _{u \in J} \frac{W(u)}{t^{u}}=O(t)-y+\min _{u \in J} I(y, u)+O\left(\frac{y}{L(y)^{c}}\right),
$$

where $J=[y \log y-y, y \log y+y]$. If $t \notin M$, there is a $t_{1} \in M$ with $\left|t-t_{1}\right|=O(\sqrt{t / y})$ by Lemma 8. For $s=y \log y+O(y)$ and $y_{1}:=e^{t_{1} e^{-\gamma}}=y+O(\sqrt{t y})$ we have $I\left(y_{1}, s\right)=$ $I(y, s)+O(\sqrt{t y})$. Thus the result follows again from the monotonicity of $B(t)$.

References

[1] H. Davenport, Über numeri abundantes, Preuss. Akad. Wiss. Sitzungsber. (1933), 830-837.
[2] P. Erdős, Some remarks about additive and multiplicative functions, Bull. Amer. Math. Soc. 52 (1946), 527-537.
[3] I. J. Schoenberg, Über die asymptotische Verteilung reeller Zahlen mod 1, Math. Z. 28 (1928), 171-199.
[4] G. Tenenbaum, V. Toulmonde, Sur le comportement local de la répartition de l'indicatrice d'Euler, Funct. Approx. Comment. Math. 35 (2006), 321-338.
[5] A. I. Vinogradov, On the remainder in Mertens' formula. Dokl. Akad. Nauk SSSR 148 (1963), 262-263.
[6] A. Weingartner, The distribution functions of $\sigma(n) / n$ and $n / \varphi(n)$, Proc. Amer. Math. Soc. 135 (2007), 2677-2681.

Department of Mathematics, Southern Utah University, Cedar City, Utah 84720
E-mail address: weingartner@suu.edu

