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HOMOMORPHISMS OF QUANTUM GROUPS

RALF MEYER, SUTANU ROY, AND STANISŁAW LECH WORONOWICZ

Abstract. We introduce some equivalent notions of homomorphisms between
quantum groups that behave well with respect to duality of quantum groups.
Our equivalent definitions are based on bicharacters, coactions, and universal
quantum groups, respectively.

1. Introduction

Throughout this article, a morphism between two C∗-algebras A and B is a
non-degenerate *-homomorphism from A to the multiplier algebra M(B) or, equiv-
alently, a strictly continuous unital *-homomorphism M(A) → M(B). Thus
C∗-algebras with the above morphisms form a category. All tensor products in
the following are spatial tensor products.

Let (C,∆C) and (A,∆A) be two locally compact quantum groups. A strong

quantum group homomorphism from (C,∆C) to (A,∆A) is a morphism ϕ : C → A
that intertwines the comultiplications, that is, the following diagram commutes:

C

∆C

��

f
// A

∆A

��

C ⊗ C
f⊗f

// A⊗A.

It is easy to see that a group homomorphism f : G → H induces strong quantum
group homomorphisms from C0(H) to C0(G) and from C∗(G) to C∗(H). But the
latter does not always descend to the reduced group C∗-algebras. For instance, the
constant map from G to the trivial group {1} induces a strong quantum group
homomorphism C∗

r (G) → C∗
r ({1}) = C if and only if G is amenable.

Thus strong quantum group homomorphisms are not compatible with duality,
unless we use full duals everywhere: a strong quantum homomorphism from C to A
need not induce a strong quantum group homomorphism from Â to Ĉ.

We will introduce a less restrictive notion of homomorphism for quantum groups
for which duality is a contravariant functor.

The definition of quantum group that we adopt here is the one by Piotr Sołtan
and the third author based on modular multiplicative unitaries (see [5]). Multi-
plicative unitaries were introduced by Baaj and Skandalis in [1], and manageable
multiplicative unitaries were introduced in [8]. We follow the conventions of [5]
throughout. In particular, the reduced bicharacter of a locally compact quantum
group is a unitary multiplier of Ĉ ⊗ C, not of C ⊗ Ĉ as in [3].

We write UM(C) for the group of unitary multipliers of a C∗-algebra C, and
U(H) for the group of unitary operators on the Hilbert space H.
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The locally compact quantum groups considered in [5] are constructed from
modular multiplicative unitaries. Hence they are concrete C∗-algebras, represented
on some Hilbert space by definition. This representation is not canonical because
several non-equivalent multiplicative unitaries may give the same locally compact
quantum group, that is, isomorphic pairs (C,∆C). Therefore, we distinguish be-

tween elements of C∗-algebras such as Ĉ ⊗C and the Hilbert space operators they
generate in the given representation of Ĉ⊗C. For a unitary multiplier U of Ĉ⊗C,
we write U for U considered as an operator on the Hilbert space HC ⊗ HC , where
Ĉ, C ⊆ B(HC). In particular, the reduced bicharacter WC ∈ UM(Ĉ ⊗ C) is repre-
sented by the modular multiplicative unitary WC ∈ U(HC ⊗ HC) that gives rise to
the quantum group (C,∆C).

A strong quantum group homomorphism f : C → A yields a unitary multiplier

Vf := (idĈ ⊗ f)(WC) ∈ UM(Ĉ ⊗A).

Since the elements of the form (ω⊗idC)(WC) for linear functionals ω on Ĉ are dense

in C and f
(
(ω⊗ idC)(WC)

)
= (ω⊗ idA)(Vf ), the unitary Vf determines f uniquely.

Furthermore, if f admits a dual quantum group homomorphism f̂ : Â → Ĉ, then
these two are related by

(1.1) (f̂ ⊗ idA)(WA) = Vf = (idĈ ⊗ f)(WC).

The unitary operator V = Vf on HC ⊗ HA satisfies two pentagon equations
involving the multiplicative unitaries WC and WA of C and A:

V23W
C
12 = WC

12V13V23.(1.2)

WA
23V12 = V12V13W

A
23.(1.3)

A unitary multiplier of Ĉ ⊗ A satisfying these two conditions is called a linking

unitary between C and A. We propose these linking unitaries as the correct notion
of quantum group homomorphism. Linking unitaries are special types of adapted
unitaries introduced by the third author in [8].

Linking unitaries form a category, as expected. The composition of a linking
unitary VC→A ∈ UM(Ĉ ⊗ A) with the linking unitary Vf of a strong quantum

group homomorphism f : A → B yields (idĈ ⊗ f)(VC→A). More generally, the

composition of two linking unitaries VC→A ∈ UM(Ĉ⊗A) and VA→B ∈ UM(Â⊗B)

is the unique VC→B ∈ UM(Ĉ ⊗B) that satisfies

VA→B
23 VC→A

12 = VC→A
12 VC→B

13 VA→B
23 .

The identity linking unitary for a quantum group C is its multiplicative uni-
tary WC . The unit element of UM(Ĉ ⊗ C) is also a linking unitary, the corre-
sponding quantum group homomorphism from C to the trivial quantum group is
the counit of Ĉ.

As expected, a linking unitary V ∈ UM(Ĉ ⊗A) induces linking unitaries

V op ∈ UM(Ĉop ⊗Aop), V cop ∈ UM(Ĉcop ⊗Acop), V̂ ∈ UM(
ˆ̂
A⊗ Ĉ),

that is, taking opposite and coopposite quantum groups yields covariant functors on
our new quantum group category, and taking duals yields a contravariant functor.

With the usual identifications,
ˆ̂
A ∼= A as quantum groups, and A = Aop = Acop as

vector spaces, we have

V op = V, V cop = V, V̂ = σ(V ∗),

where σ : Ĉ ⊗A → A⊗ Ĉ is the flip automorphism.
The pentagon equations (1.2) and (1.3) involve the modular multiplicative uni-

taries that give rise to C and A. We may, however, rewrite (1.2) and (1.3) using the
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comultiplications on Ĉ and A: they mean that V is a bicharacter of Ĉ ⊗ A. Thus
we interpret bicharacters of Ĉ⊗A as quantum group homomorphisms from C to A.

We may also replace linking unitaries by certain coactions. A right quantum

group homomorphism from C to A is a morphism ∆R : C → C ⊗ A such that the
following two diagrams commute:

C
∆R

//

∆C

��

C ⊗ A

∆C⊗idA

��

C ⊗ C
idC ⊗∆R

// C ⊗ C ⊗A,

C
∆R

//

∆R

��

C ⊗A

idC⊗∆A

��

C ⊗A
∆R⊗idA

// C ⊗A⊗A.

A strong quantum group homomorphism f : C → A gives a right quantum group
homomorphism (idC ⊗ f) ◦ ∆C .

There is a bijective correspondence between right quantum group homomor-
phisms and linking unitaries. Given a linking unitary V ∈ UM(Ĉ ⊗ A), we get a
right quantum group homomorphism ∆R : C → C ⊗A by

∆R(x) := V(x⊗ 1)V∗ for all x ∈ C.

Conversely, given ∆R, the corresponding linking unitary is the unique unitary V ∈
UM(Ĉ ⊗A) with

(idĈ ⊗ ∆R)(W) = W12V13.

Left quantum group homomorphisms are defined similarly. Since left and right
quantum group homomorphisms are exchanged by taking coopposite quantum
groups, they are essentially equivalent.

Previously, it was suggested to define quantum group homomorphisms by pass-
ing to universal quantum groups [7]. The universal quantum group (Cu,∆u) of a
quantum group (C,∆) is defined by the universal property that morphisms Cu → D

correspond to unitary left corepresentations of the dual quantum group Ĉ on D,
where a unitary left corepresentation of Ĉ is a unitary U ∈ UM(Ĉ ⊗ D) that sat-
isfies (∆Ĉ ⊗ idD)(U) = U23U13. This universal property immediately implies that
linking unitaries between C and A correspond bijectively to strong quantum group
homomorphisms Cu → A.

Moreover, we show that any strong quantum group homomorphisms Cu → A
lifts uniquely to a strong quantum group homomorphisms Cu → Au. Thus our
new quantum group morphisms C → A are in bijection with strong quantum group
homomorphisms Cu → Au. We also show that the composition of quantum group
morphisms described above corresponds to the usual composition of strong quantum
group homomorphisms on the level of universal quantum groups. The duality on
the level of linking unitaries implies that duality is an anti-equivalence on the level

of universal quantum groups. The dual f̂ : Âu → Ĉu of a strong quantum group
homomorphisms f : Cu → Au is characterised by a variant of (1.1).

Finally, we mention two more technical results that are known to hold in the
presence of Haar measures and which we establish in the framework of [5], without
using Haar measures. First, if a ∈ M(HA) satisfies W(a ⊗ 1) = (1 ⊗ a)W, then
already a ∈ C · 1. This implies that a multiplier of A is constant if it is left or right
invariant. This single idea is used in almost all our arguments. Secondly, we lift the
reduced bicharacter in UM(Ĉ ⊗ C) to a universal bicharacter in UM(Ĉu ⊗ Cu).

2. Invariants are constant

Let (C,∆C) and (A,∆A) be two quantum groups in the sense of [5]. That is, they
are obtained from modular multiplicative unitaries WC ∈ U(HC ⊗ HC) and WA ∈

U(HA ⊗ HA) for certain Hilbert spaces HC and HA. Let WC ∈ UM(Ĉ ⊗ C) and
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WA ∈ UM(Â⊗A) be their reduced bicharacters. While the same quantum groups
may be obtained from different modular multiplicative unitaries, these bicharacters
are uniquely determined. Recall the following properties:

WC
23W

C
12 = WC

12W
C
13W

C
23 in U(HC ⊗ HC ⊗ HC),(2.1)

∆C(x) = WC(x⊗ 1)(WC)∗ in B(HC ⊗ HC) for all x ∈ C,(2.2)

∆Ĉ(y) = Σ(WC)∗(1 ⊗ y)WCΣ in B(HC ⊗ HC) for all y ∈ Ĉ,(2.3)

(idĈ ⊗ ∆C)(WC) = WC
12WC

13 in Ĉ ⊗ C ⊗ C,(2.4)

(∆Ĉ ⊗ idC)(WC) = WC
23WC

13 in Ĉ ⊗ Ĉ ⊗ C.(2.5)

Similar equations hold for WA, of course.

Theorem 2.6. Let H be a Hilbert space and let W ∈ B(H ⊗ H) be a modular

multiplicative unitary. If a, b ∈ B(H) satisfy W(a⊗ 1) = (1 ⊗ b)W, then a = b = λ1
for some λ ∈ C. More generally, if a, b ∈ M(K(H) ⊗ D) for some C∗-algebra D
satisfy W(a⊗ 1) = (1 ⊗ b)W, then a = b ∈ C · 1H ⊗ M(D).

Proof. Define the operators Q̂, Q, and W̃ as in [4, Definition 2.1]. First we prove
the assertion under the additional assumption b∗D(Q) ⊆ D(Q). Our assumption
W(a⊗ 1) = (1 ⊗ b)W means

(x⊗ y | W | az ⊗ u) = (x⊗ b∗y | W | z ⊗ u)

for all x, z ∈ H, y ∈ D(Q) and u ∈ D(Q−1). The modularity condition for W yields

(
az ⊗Qy

∣∣ W̃
∣∣ x⊗Q−1u

)
=

(
x⊗ y

∣∣ W
∣∣ az ⊗ u

)

=
(
x⊗ b∗y

∣∣ W
∣∣ z ⊗ u

)
=

(
z ⊗Qb∗y

∣∣ W̃
∣∣ x⊗Q−1u

)
.

In this formula, W̃(x ⊗ Q−1u) runs through a dense subset of H ⊗ H. Therefore,

we may replace W̃(x⊗Q−1u) by x⊗Q−1u and get

(az ⊗Qy | x⊗Q−1u) = (z ⊗Qb∗y | x⊗Q−1u),

that is,

(x | az) · (Qy | Q−1u) = (x | z) · (Qb∗y | Q−1u).

Since this holds for all x, z ∈ H, y ∈ D(Q) and u ∈ D(Q−1), we get a = λ · 1H for
some λ ∈ C and b = λ · 1H for the same λ.

To prove the statement in full generality, we first regularise a and b. For a ∈ B(H)
and n ∈ N, we define

R̂n(a) :=

∫ +∞

−∞

Q̂−itaQ̂itδn(t) dt and Rn(a) :=

∫ +∞

−∞

Q−itaQitδn(t) dt,

where

δn(t) :=

√
n

2π
exp

(
−
nt2

2

)

is a δ-like sequence of Gaussian functions. Since

W∗(Q̂ ⊗Q)W = Q̂⊗Q,

our condition W(a⊗ 1) = (1 ⊗ b)W implies

W(R̂n(a) ⊗ 1) = (1 ⊗Rn(b))W.

We will show below that

(2.7) Rn(b)∗D(Q) ⊆ D(Q).
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The first part of the proof now yields R̂n(a) = Rn(b) = λn1 for all n ∈ N. If n → ∞,

then R̂n(a) and Rn(b) converge weakly towards a and b, respectively. Hence we get
a = b = λ1 for some λ ∈ C in full generality.

It only remains to establish (2.7). Let x, y ∈ D(Q). Then the function

fx,y(z) := (Qi(z−i)x | b∗ | Qizy)

is well-defined, bounded, and continuous in the strip Σ := {z ∈ C : −1 ≤ Im z ≤ 0}
and holomorphic in the interior of Σ. In particular, for t ∈ R :

(2.8) fx,y(t) = (Qx | Q−itb∗Qit | y), fx,y(t− i) = (x | Q−itb∗Qit | Qy).

By Cauchy’s Theorem, the integrals of fx,y(z)δn(z) along the lines R + is for 0 ≤
1 ≤ s do not depend on s. For s = 0 and s = 1, (2.8) shows that the integrals are
(Qx | Rn(b)∗ | y) and

(
x

∣∣∣∣
∫ +∞

−∞

Q−itb∗Qitδn(t− i) dt

∣∣∣∣ Qy
)
,

respectively. Their equality shows that (Qx | Rn(b)∗y) depends continuously on x.
This yields Rn(b)∗y ∈ D(Q∗) = D(Q), that is, (2.7).

Finally, if a, b ∈ M(K(H) ⊗ D) satisfy W(a ⊗ 1) = (1 ⊗ b)W as elements of
M(K(H⊗H)⊗D), then the first part of the theorem applies to the slices (id⊗µ)(a)
and (id ⊗µ)(b) for all µ ∈ D′. Thus (id ⊗µ)(a) = (id ⊗µ)(b) = λµ · 1 for all µ ∈ D′.
This implies that a = b ∈ C · 1 ⊗ M(D). �

Corollary 2.9. Let (C,∆C) be a quantum group constructed from a manageable

(or, more generally, from a modular) multiplicative unitary W ∈ B(H ⊗ H). If

c ∈ M(C), then ∆C(c) ∈ M(C ⊗ 1) or ∆C(c) ∈ M(1 ⊗ C) if and only if c ∈ C · 1.
More generally, if D is a C∗-algebra and c ∈ M(C ⊗D), then (∆C ⊗ idD)(c) ∈

M(C ⊗ 1 ⊗D) or (∆C ⊗ idD)(c) ∈ M(1 ⊗C ⊗D) if and only if c ∈ C · 1 ⊗ M(D).

Proof. Using (2.2), we rewrite the equation ∆C(c) = 1 ⊗ c′ for c, c′ ∈ M(C⊗D) as
WC(c⊗ 1) = (1 ⊗ c′)WC . Now Theorem 2.6 yields c ∈ C · 1 ⊗ M(D). If ∆C(c) =
c′ ⊗ 1 instead, then we apply the unitary antipodes. With a := (RC ⊗ idD)(c)
and a′ := (RC ⊗ idD)(c′), we get ∆C(a) = 1 ⊗ a′. The argument above shows
a ∈ C · 1 ⊗ M(D) and hence c ∈ C · 1 ⊗ M(D). �

3. Linking unitaries

Definition 3.1. A unitary V ∈ UM(Ĉ ⊗ A) is called a linking unitary from C
to A if its image V ∈ U(HC ⊗ HA) satisfies the following two conditions:

V23W
C
12 = WC

12V13V23 in U(HC ⊗ HC ⊗ HA),(3.2)

WA
23V12 = V12V13W

A
23 in U(HC ⊗ HA ⊗ HA).(3.3)

Example 3.4. Take V to be WC ∈ UM(Ĉ ⊗ C). Then (3.2) and (3.3) are the

pentagon equation (2.1). Thus WC ∈ UM(Ĉ ⊗C) is a linking unitary. We will see
that it is the identity on C.

Lemma 3.5. A unitary V ∈ UM(Ĉ ⊗A) is a linking unitary if and only if it is a

bicharacter, that is,

(∆Ĉ ⊗ idA)V = V23V13 in UM(Ĉ ⊗ Ĉ ⊗A),(3.6)

(idĈ ⊗ ∆A)V = V12V13 in UM(Ĉ ⊗A⊗A).(3.7)
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Proof. The representation of Ĉ⊗ Ĉ ⊗A on HC ⊗ HC ⊗ HA is faithful, so that (3.6)
is equivalent to an equation of unitary operators on HC ⊗ HC ⊗ HA. Using (2.3),
we rewrite (3.6) as

Σ12(WC
12)∗V23W

C
12Σ12 = V23V13.

This is equivalent to (3.2). A similar argument shows that (3.7) is equivalent
to (3.3). �

Example 3.8. Any strong quantum group homomorphism f : C → A yields a linking
unitary as Vf := (idĈ ⊗ f)WC . This follows from Lemma 3.5 and (2.4) and (2.5).

Remark 3.9. Definition 3.1 has the merit of being formulated entirely in the lan-
guage of multiplicative unitaries and pentagon equations. But the same quantum
group may be generated by different multiplicative unitaries. Since WC only de-
pends on (C,∆C) by [5], the characterisation of linking unitaries in Lemma 3.5
shows that they only depend on (A,∆A) and (C,∆C).

The following result generalises [5, Lemma 40] and is proved by the same idea.

Proposition 3.10. Let V ∈ UM(Ĉ⊗A) be a linking unitary. Let R and τ denote

the unitary antipodes and scaling groups of quantum groups. Then

(RĈ ⊗RA)(V ) = V,(3.11)

(τ Ĉ
t ⊗ τA

t )(V ) = V for all t ∈ R.(3.12)

Proof. Let ϕ ∈ Ĉ∗ and ψ ∈ A∗ be entire analytic for (τ Ĉ
t ) and (τA

t ), respectively.

Let ϕt := ϕ ◦ τ Ĉ
t and ψt := ψ ◦ τA

t for all t ∈ R. Analytic continuation yields

ϕz+z′ = ϕz ◦ τ Ĉ
z′ , and ϕz+z′ = ψz ◦ τA

z′ for all z, z′ ∈ C.

Polar decomposition of the antipodes κĈ and κA ([8, Theorem 1.5]) shows that

ϕz ◦ κĈ = ϕz+i/2
◦RĈ , and ψz ◦ κA = ψz+i/2

◦RA.

Let κ̄A be the closure of κA with respect to the strict topology on M(A). Then
[8, Theorem 1.6(4)] yields

κ̄A(ω ⊗ id)V = (ω ⊗ id)(V ∗)

for all ω ∈ Ĉ∗. Applying ψz to both sides and using that ω is arbitrary, we get
(
id ⊗ ψz+i/2

◦RA

)
V = (id ⊗ ψz)(V ∗).

Interchanging the roles of A and Ĉ and replacing V by ΣV ∗Σ and ψ by ϕ, we get
(
ϕz+i/2

◦RĈ ⊗ id
)
(V ∗) = (ϕz ⊗ id)V.

Both formulas together yield

(3.13) (ϕz+i/2
⊗ ψz+i/2

) ◦ (RĈ ⊗RA)(V ) = (ϕz+i/2
◦RĈ ⊗ ψz+i/2

◦RA)(V )

= (ϕz+i/2
◦RĈ ⊗ ψz)(V ∗) = ψz(ϕz+i/2

◦RĈ ⊗ id)(V ∗) = (ϕz ⊗ ψz)(V ).

Inserting ϕ ◦ κĈ and ψ ◦ κA into (3.13) instead of ϕ and ψ yields

(ϕz+i ⊗ ψz+i)(V ) = (ϕz+i/2
⊗ ψz+i/2

) ◦ (RĈ ⊗RA)(V ) = (ϕz ⊗ ψz)(V ).

This shows that (ϕz ⊗ ψz)(V ) is a periodic function of period i. Being bounded as
well, Liouville’s Theorem shows that it is constant, that is,

(ϕz ⊗ ψz)(V ) = (ϕ⊗ ψ)(V )(3.14)

for all z ∈ C. Putting z = −i/2 in (3.13) and using (3.14) yields

(ϕ⊗ ψ) ◦ (RĈ ⊗RA)(V ) = (ϕ⊗ ψ)(V ).
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This proves (RĈ ⊗ RA)(V ) = V . Finally, (3.14) also yields (τ Ĉ
t ⊗ τA

t )(V ) = V for
all t ∈ R. �

We will interpret linking unitaries as arrows in a category of quantum groups.
Before we discuss the category structure, that is, the composition of arrows, we
treat some canonical functors on this category. Given any quantum group (C,∆C),

we form closely related quantum groups (Cop,∆op
C ), (Ccop,∆cop

C ), and (Ĉ,∆Ĉ) by
taking the opposite multiplication, the opposite comultiplication, and the dual,
respectively. These constructions should be functors in our new category, that is,
they should act on linking unitaries. To make this explicit, recall that

Ĉop ∼= Ĉcop, Ĉcop ∼= Ĉop, and
ˆ̂
A ∼= A

as quantum groups. As vector spaces, C = Cop = Ccop, and this extends to the
multiplier algebras.

Thus we may interpret V ∈ UM(Ĉ ⊗A) as a unitary multiplier of Ĉop ⊗Aop or

Ĉcop ⊗Acop, and σ(V ∗) for the flip map σ : Ĉ ⊗A → A⊗ Ĉ as a unitary multiplier

of
ˆ̂
A⊗ Ĉ.

Proposition 3.15. A linking unitary V ∈ UM(Ĉ ⊗A) yields linking unitaries

V op := V in UM(Ĉop ⊗Aop),(3.16)

V cop := V in UM(Ĉcop ⊗Acop),(3.17)

V̂ := σ(V ∗) in UM(
ˆ̂
A⊗ Ĉ).(3.18)

Proof. Since Ĉop ∼= Ĉcop, the first two legs on the left hand side of (3.6) are
exchanged for the opposites, and this has the same effect as changing the order of
multiplication on the right hand side of (3.6). There is no change in (3.7) when we
pass to opposite quantum groups. Hence V op in (3.16) is a linking unitary.

Recall that Aop ∼= Acop via the unitary antipode RA. The corresponding

isomorphism Cop ∼= Ccop induces isomorphism Ĉcop ∼= Ĉop and Ĉop ∼= Ĉcop.
These induced isomorphisms are given by the unitary antipode RĈ because (RĈ ⊗

idC)(WC) = (idĈ ⊗RC)(WC). When we apply these isomorphisms for Ĉ and A to
our linking unitary V op, we get a linking unitary V cop := (RĈ ⊗ RA)(V op) for the
coopposite quantum groups. Finally, Proposition 3.10 yields V cop = V .

The following computation shows that V̂ := σ(V ∗) satisfies (3.6):

(∆A ⊗ idĈ)(σ(V ∗)) = σ23σ12((idĈ ⊗ ∆A)V ∗) = σ23σ12(V ∗
13V

∗
12)

= σ23σ12(V ∗
13)σ13σ23(V ∗

12) = σ23(V ∗
23) · σ13(V ∗

13) = V̂23V̂13

if V satisfies (3.7); here σ12 denotes the automorphism exchanging the first and

second tensor factors. Similarly, V̂ satisfies (3.7) if V satisfies (3.6). Thus V̂ is a

linking unitary from Â to Ĉ. �

Remark 3.19. The opposite, coopposite, and dual quantum groups are indeed quan-
tum groups in our sense, that is, they may be obtained from a modular multiplica-
tive unitary. This is well-known for the dual quantum group, which is obtained
from the multiplicative unitary ΣW∗Σ ∈ U(H ⊗ H) if W ∈ U(H ⊗ H) gives rise
to (C,∆C) and Σ ∈ U(H ⊗ H) is the flip of the tensor factors.

The multiplicative unitary for the opposite quantum group acts on H⊗H for the
complex-conjugate Hilbert H. An operator w on H induces a transpose operator wT

on H by w(ξ) := w∗ξ for all ξ ∈ H. The operator (W∗)T⊗T is a multiplicative
unitary on H ⊗ H that gives rise to the opposite quantum group.
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Finally, the coopposite quantum group is isomorphic to the opposite quantum
group, so that it is generated by the same modular multiplicative unitary.

Proposition 3.15 shows that the linking unitaries V op and V cop constructed out
of a given linking unitary V are the same when viewed as elements of UM(Ĉ ⊗A).
However, since our identifications do not preserve the quantum group structure,
these operators become different when we realise them concretely as unitary oper-
ators on a tensor product of two Hilbert spaces.

Now we define the composition for linking unitaries. Let (B,∆B) be another
quantum group.

Definition 3.20. A unitary VC→B ∈ UM(Ĉ ⊗ B) is called a composition of two

linking unitaries VC→A ∈ UM(Ĉ⊗A) and VA→B ∈ UM(Â⊗B) if its image VC→B

in U(HC ⊗ HB) satisfies

VA→B
23 VC→A

12 = VC→A
12 VC→B

13 VA→B
23 in U(HC ⊗ HA ⊗ HB).

We also briefly write VC→B = VA→B ∗ VC→A.
Since we may rewrite the condition in Definition 3.20 as

VC→B
13 = (VC→A

12 )∗VA→B
23 VC→A

12 (VA→B
23 )∗,(3.21)

it is clear that there is at most one composition for two given linking unitaries.
Existence, however, is less clear. This is established in the following lemma:

Lemma 3.22. For any two linking unitaries VC→A and VA→B, there is a unique

composition VC→B, and it is a linking unitary from C to B.

Proof. Define Ṽ := (VC→A
12 )∗VA→B

23 VC→A
12 (VA→B

23 )∗ ∈ UM(Ĉ ⊗ K(HB) ⊗ B). We

are going to use Theorem 2.6 to show that Ṽ ∈ UM(Ĉ ⊗ 1 ⊗B).

WA
23Ṽ124(WA

23)∗

= WA
23(VC→A

12 )∗VA→B
24 VC→A

12 (VA→B
24 )∗(WA

23)∗

= (VC→A
13 )∗(VC→A

12 )∗WA
23V

A→B
24 VC→A

12 (VA→B
24 )∗(WA

23)∗

= (VC→A
13 )∗(VC→A

12 )∗VA→B
34 WA

23(VA→B
34 )∗VC→A

12 VA→B
34 (WA

23)∗(VA→B
34 )∗

= (VC→A
13 )∗(VC→A

12 )∗VA→B
34 WA

23V
C→A
12 (WA

23)∗(VA→B
34 )∗

= (VC→A
13 )∗(VC→A

12 )∗VA→B
34 VC→A

12 VC→A
13 (VA→B

34 )∗

= (VC→A
13 )∗VA→B

34 VC→A
13 (VA→B

34 )∗ = Ṽ134;

the first step uses (3.3); the second step uses (3.2) for VA→B; the third step uses
that VA→B

34 and VC→A
12 commute; the fourth step again uses (3.3); and the last

step uses again that VA→B
34 and VC→A

12 commute. Now Theorem 2.6 shows that

V ∈ UM(Ĉ ⊗ 1 ⊗B), so that (3.21) has a solution.
The following computation yields (3.2) for V :

Σ12(WC
12)∗VC→B

24 WC
12Σ12

= Σ12(WC
12)∗(VC→A

23 )∗VA→B
34 VC→A

23 (VA→B
34 )∗WC

12Σ12

= Σ12(VC→A
23 )∗(VC→A

13 )∗(WC
12)∗VA→B

34 VC→A
23 (VA→B

34 )∗WC
12Σ12

= (VC→A
13 )∗(VC→A

23 )∗VA→B
34 Σ12(WC

12)∗VC→A
23 WC

12Σ12(VA→B
34 )∗

= (VC→A
13 )∗(VC→A

23 )∗VA→B
34 VC→A

23 VC→A
13 (VA→B

34 )∗

= (VC→A
13 )∗VC→B

24 VA→B
34 VC→A

13 (VA→B
34 )∗

= VC→B
24 (VC→A

13 )∗VA→B
34 VC→A

13 (VA→B
34 )∗

= VC→B
24 VC→B

14 .
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The first step uses (3.2); the second step uses properties of Σ and that WC
12

and VA→B
34 commute; the third step again uses (3.2); the fourth step uses (3.21);

the fifth step uses that VC→A
13 and VC→A

24 commute; and the last step uses (3.21)
again.

Similarly, one shows (3.3). Hence VC→B is indeed a linking unitary. �

Proposition 3.23. The composition of linking unitaries is associative, and the

multiplicative unitary of C is an identity on C. Thus the linking unitaries with

the above composition form the arrows of a category, with locally compact quantum
groups as objects.

Proof. The defining properties of a linking unitary amount to

WA ∗ VC→A = VC→A, VC→A ∗ WC = VC→A,

that is, WC is a unit object on C for the composition of linking unitaries.
Associativity means

VB→D ∗ (VA→B ∗ VC→A) = (VB→D ∗ VA→B) ∗ VC→A.

Define

VC→B := VA→B ∗ VC→A, V C→D := VB→D ∗ VC→B,

VA→D := VB→D ∗ VA→B, and Ṽ C→D := VA→D ∗ VC→A.

Equation (3.21) yields

VC→D
14 = (VC→B

13 )∗VB→D
34 VC→B

13 (VB→D
34 )∗

= (VC→B
13 )∗(VC→A

12 )∗VB→D
34 VA→B

23 VC→A
12 (VA→B

23 )∗(VB→D
34 )∗

= VA→B
23 (VC→A

12 )∗(VA→B
23 )∗VB→D

34 VA→B
23 VC→A

12 (VA→B
23 )∗(VB→D

34 )∗.

A similar computation yields

ṼC→D
14 = (VC→A

12 )∗VA→D
24 VC→A

12 (VA→D
24 )∗

= (VC→A
12 )∗(VA→B

23 )∗VB→D
34 VA→B

23 VC→A
12 (VA→B

23 )∗(VB→D
34 )∗VA→B

23

We may rewrite these two computations as

(VA→B
23 )∗VC→D

14 = (VC→A
12 )∗(VA→B

23 )∗VB→D
34 VA→B

23 VC→A
12 (VA→B

23 )∗(VB→D
34 )∗

= ṼC→D
14 (VA→B

23 )∗.

Since ṼC→D
14 and VA→B

23 commute, we get VC→D
14 = ṼC→D

14 , that is, the composition
of linking unitaries is associative. �

It is routine to check that the passage to opposite and coopposite quantum groups
is a covariant functor, that is, the constructions in Proposition 3.15 are compatible
with composition. Similarly, taking duals is a contravariant functor. This follows
from the following computation:

̂VC→B
13 = Σ13VA→B

23 (VC→A
12 )∗(VA→B

23 )∗VC→A
12 Σ13 = ̂VA→B

12

∗
̂VC→A

23
̂VA→B

12
̂VC→A

23

∗

.

Of course, the composition of quantum group homomorphisms generates the
more obvious composition in the case of strong quantum group homomorphisms.
We can generalise this as follows.

Example 3.24. Let VC→A ∈ UM(Ĉ ⊗ A) and VA→B ∈ UM(Â ⊗ B) be linking
unitaries.

If VA→B comes from a strong quantum group homomorphism f : A → B, that
is, VA→B = (id ⊗ f)(WA), then the composition VC→B is (id ⊗ f)(VC→A).
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Dually, assume that VC→A is constructed from a strong quantum group homo-
morphism f : Â → Ĉ, that is, VC→A = (f⊗ id)(WA). Then the composition VC→B

is (f ⊗ id)(VA→B).
It is more convenient to prove these statements at the end of the next section (Ex-

amples 4.22 and 4.23), using an equivalent description of linking unitaries involving
right coactions.

4. Right and left coactions

Now we develop an alternative definition of quantum group homomorphisms
using left or right coactions instead of linking unitaries.

Definition 4.1. A right quantum group homomorphism from (C,∆C) to (A,∆A) is
a homomorphism ∆R : C → C ⊗A such that the following two diagrams commute:

C
∆R

//

∆C

��

C ⊗A

∆C⊗idA

��

C ⊗ C
idC⊗∆R

// C ⊗ C ⊗A,

(4.2)

C
∆R

//

∆R

��

C ⊗A

idC ⊗∆A

��

C ⊗A
∆R⊗idA

// C ⊗A⊗A.

(4.3)

The second condition (4.3) means that ∆R is an A-comodule structure on C.

Example 4.4. A strong quantum group homomorphism ϕ : C → M(A) yields a
right quantum group homomorphism by ∆R := (idC ⊗ ϕ)∆C . The right quantum
group homomorphism induced by the identity on C is ∆C .

Recall that W ∈ UM(Ĉ ⊗ C) denotes the reduced bicharacter. The following
proposition shows that right quantum group homomorphisms are equivalent to
linking unitaries.

Theorem 4.5. For any right quantum group homomorphism ∆R : C → C ⊗ A,

there is a unique unitary V ∈ UM(Ĉ ⊗A) with

(4.6) (idĈ ⊗ ∆R)(W) = W12V13.

This unitary is a linking unitary.
Conversely, let V be a linking unitary from C to A, and let V ∈ U(HC ⊗ HA) be

the corresponding unitary operator on Hilbert space. Then

(4.7) ∆R(x) := V(x⊗ 1)V∗ for all x ∈ C

defines a right quantum group homomorphism from C to A.

These two maps between linking unitaries and right quantum group homomor-

phisms are bijective and inverse to each other.

Proof. First we check that Ṽ := W∗
12 · (idĈ ⊗ ∆R)(W) belongs to UM(Ĉ ⊗ 1 ⊗A),

that is, Ṽ = V13 for some V ∈ UM(Ĉ⊗A). This is the unique V that verifies (4.6).
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We compute

WC
23Ṽ124(WC

23)∗ = WC
23(WC

12)∗(WC
23)∗ · WC

23(idĈ ⊗ ∆R)(W)124(WC
23)∗

= (WC
13)∗(WC

12)∗ · (idĈ ⊗ ∆C ⊗ idA)(idĈ ⊗ ∆R)(W)

= (WC
13)∗(WC

12)∗ · (idĈ ⊗ (idC ⊗ ∆R)∆C)W

= (WC
13)∗(WC

12)∗ · (idĈ ⊗ idC ⊗ ∆R)(W12W13)

= (WC
13)∗

(
(idĈ ⊗ ∆R)W

)
134

;

the first equality is the definition of Ṽ , the second one uses (2.1) and (2.2), the third
one (4.2), the fourth one uses (2.4), and the last one is trivial. Now Theorem 2.6

yields Ṽ ∈ UM(Ĉ ⊗ 1 ⊗ A). Hence there is a unique V ∈ UM(Ĉ ⊗ A) that
verifies (4.6).

Next we verify that V is a linking unitary. We check (3.6):
(
(∆Ĉ ⊗ idA)V

)
124

= (∆Ĉ ⊗ idC ⊗ idA)
(
W∗

12 · (idĈ ⊗ ∆R)(W)
)

= ((∆Ĉ ⊗ idC)W∗)123 · (idĈ ⊗ idĈ ⊗ ∆R)(∆Ĉ ⊗ idC)(W)

= (W23W13)∗(idĈ ⊗ idĈ ⊗ ∆R)(W23W13)

= W∗
13W∗

23W23V24W13V14 = V24V14.

The first two equalities use (4.6) and that ∆Ĉ is a *-homomorphism; the third
equality uses (2.5); the fourth one uses (4.6) again; and the final step uses that W13

and V24 commute.
The following computation yields (3.7):

(
(idĈ ⊗ ∆A)V

)
134

= W∗
12(idĈ ⊗ idC ⊗ ∆A)(idĈ ⊗ ∆R)W

= W∗
12(idĈ ⊗ ∆R ⊗ idA)(idĈ ⊗ ∆R)W

= W∗
12(idĈ ⊗ ∆R ⊗ idA)(W12V14) = V13V14.

The first equality follows from (4.6); the second one from (4.3); the third and fourth
equalities from (4.6). Thus we have constructed a linking unitary V from a right
quantum group homomorphism.

Conversely, let V ∈ UM(Ĉ ⊗ A) be a linking unitary. We claim that (4.7)
defines a morphism from C to C ⊗A. Recall that slices of W by linear functionals
ω ∈ B(H)∗ generate a dense subspace of C. On x := (ω ⊗ idH)(W), we compute

∆R(x) = (ω ⊗ idH ⊗ idH)(V23W12V
∗
23) = (ω ⊗ idH ⊗ idH)(W12V13),

and this belongs to M(C ⊗ A). Thus ∆R(C) ⊆ M(C ⊗ A). It is clear from the
definition that ∆R is non-degenerate.

We may also rewrite the above computation as (ω ⊗ idC⊗A) ◦ (idĈ ⊗ ∆R)(W) =
(ω ⊗ idC⊗A)(W12V13) for all ω ∈ B(H)∗. Since ω is arbitrary, (4.6) holds for ∆R

and our original linking unitary V .
Now we use (4.6) to check that ∆R is a right quantum group homomorphism.

Diagram (4.2) amounts to

(idĈ ⊗ ∆C ⊗ idA)(idĈ ⊗ ∆R)(W) = (idĈ ⊗ idC ⊗ ∆R)(idĈ ⊗ ∆C)(W)

because slices of W generate C. This follows from (4.6) and (2.4): both sides are
equal to W12W13V14. Similarly, (4.3) amounts to

(idĈ ⊗ idC ⊗ ∆A)(idĈ ⊗ ∆R)(W) = (idĈ ⊗ ∆R ⊗ idA)(idĈ ⊗ ∆R)(W),

which follows from (4.6) and (3.7) because both sides are equal to W12V13V14.
Thus we have associated a right quantum group homomorphism ∆R to a linking

unitary V . Since these are related by (4.6), we get back the original linking unitary
from this right quantum group homomorphism. It only remains to check that, if
we start with a right quantum group homomorphism ∆R, define a linking unitary
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by (4.6) and then a right quantum group homomorphism by (4.7), we get back the
original ∆R. We may rewrite (3.2) as

V23W12V
∗
23 = W12V13 = (idĈ ⊗ ∆R)(W),

using (4.6). This implies that the original ∆R satisfies (4.7) because the slices of W

by linear functionals on Ĉ span a dense subspace of C. �

Definition 4.8. A left quantum group homomorphism from (C,∆C) to (A,∆A) is
a morphism ∆L : C → A⊗ C such that the following two diagrams commute:

C
∆L

//

∆C

��

A⊗ C

idA⊗∆C

��

C ⊗ C
∆L⊗idC

// A⊗ C ⊗ C,

(4.9)

C
∆L

//

∆L

��

A⊗ C

∆A⊗idC

��

A⊗ C
idA⊗∆L

// A⊗A⊗ C.

(4.10)

Let σ : C ⊗A → A⊗C and σ : A⊗C → C ⊗A denote the flip maps. If ∆R is a
right quantum group homomorphism from C to A, then σ ◦ ∆R is a left quantum
group homomorphism from Ccop to Acop. And if ∆L is a left quantum group
homomorphism from C to A, then σ ◦∆L is a right quantum group homomorphism
from Ccop to Acop. We have seen in Proposition 3.15 that linking unitaries from C
to A and from Ccop to Acop are essentially the same thing. Since right quantum
group homomorphisms correspond bijectively to linking unitaries by Theorem 4.5,
we conclude that left quantum group homomorphisms also correspond bijectively to
linking unitaries from C to A and hence to right quantum group homomorphisms.
We now make these bijections more explicit:

Theorem 4.11. For any left quantum group homomorphism ∆L : C → C ⊗ A,

there is a unique unitary V ∈ UM(Ĉ ⊗A) with

(4.12) (idĈ ⊗ ∆L)(W) = V12W13.

This unitary is a linking unitary.
Conversely, let V be a linking unitary from C to A, and let V ∈ U(HC ⊗ HA) be

the corresponding unitary operator on Hilbert space. Then

(4.13) ∆L(x) := σ((Vcop)(x ⊗ 1)(Vcop)∗) for all x ∈ C

defines a left quantum group homomorphism from C to A.
These two maps between linking unitaries and left quantum group homomor-

phisms are bijective and inverse to each other.

Despite Proposition 3.15, V 6= Vcop because the quantum groups C and Ccop are
represented differently on HC .

Lemma 4.14. Let ∆L : C → A ⊗ C and ∆R : C → C ⊗ B be a left and a right

quantum group homomorphism. Then the following diagram commutes:

C
∆L

//

∆R

��

A⊗ C

idA⊗∆R

��

C ⊗B
∆L⊗idB

// A⊗ C ⊗B.
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Proof. Since slices of WC span a dense subspace of C, (4.14) commutes if and only
if

(4.15) (idĈ ⊗ idA ⊗ ∆R)(idĈ ⊗ ∆L)(W) = (idĈ ⊗ ∆L ⊗ idB)(idĈ ⊗ ∆R)(W).

Let V and Ṽ be the linking unitaries associated to ∆L and ∆R, respectively. Equa-
tions (4.6) and (4.12) imply that both sides of (4.15) are equal to V12W13Ṽ14. �

We may also characterise when a left and a right quantum group homomorphism
correspond to the same linking unitary:

Lemma 4.16. Let ∆L : C → A⊗C and ∆R : C → C⊗B be a left and a right quan-
tum group homomorphism. Then they are associated to the same linking unitary

V ∈ UM(Ĉ ⊗A) if and only if the following diagram commutes:

C
∆C

//

∆C

��

C ⊗ C

idC⊗∆L

��

C ⊗ C
∆R⊗idC

// C ⊗A⊗ C.

Proof. The above diagram commutes if and only if

(4.17) (idĈ ⊗ idC ⊗ ∆L)(idĈ ⊗ ∆C)(W) = (idĈ ⊗ ∆R ⊗ idC)(idĈ ⊗ ∆C)(W)

because slices of W span a dense subspace of C. Let ∆L and ∆R be associated to
the linking unitaries Ṽ ∈ UM(Ĉ ⊗A) and V ∈ UM(Ĉ ⊗A), respectively.

Using (2.4), (4.12) and (4.6), we may rewrite (4.17) as

W12Ṽ13W14 = W12V13W14.

Thus (4.17) is equivalent to V = Ṽ . �

Lemma 4.18. Right or left quantum group homomorphisms are continuous as

coactions.

Proof. It suffices to prove the assertion for right quantum group homomorphisms,
the left case follows by passing to coopposites. Let ∆R : C → M(C ⊗A) be a right

quantum group homomorphism with associated linking unitary V ∈ UM(Ĉ ⊗ A).
We must show that the linear span of ∆R(C)(1 ⊗ A) is dense in C ⊗ A. We may

replace C by the dense subspace of slices (ĉµ⊗ idC)WC for µ ∈ Ĉ and ĉ ∈ Ĉ, where

ĉµ ∈ Ĉ′ is defined by ĉµ(x) := µ(xĉ) for ĉ ∈ Ĉ, µ ∈ Ĉ′, and x ∈ Ĉ. We have

((ĉµ⊗ idC ⊗ idA)(idĈ ⊗ ∆R)WC)(1 ⊗ a) = (µ⊗ idC ⊗ idA)(WC
12V13(ĉ⊗ 1 ⊗ a)).

Here V13(ĉ⊗ 1 ⊗ a) ranges over a linearly dense subset of Ĉ ⊗ 1 ⊗A. Hence we do
not change the closed linear span if we replace this expression by ĉ ⊗ 1 ⊗ a. This
leads to

(µ⊗ idC ⊗ idA)(WC
12 · (ĉ⊗ 1 ⊗ a)) =

(
(ĉµ⊗ idC)WC

)
⊗ a,

and these elements span a dense subspace of C ⊗A as asserted. �

By passing to the corresponding linking unitaries, we also get a notion of compo-
sition for right and left quantum group homomorphisms. We only make this explicit
for right quantum group homomorphisms. Let α : C → C⊗A and β : A → A⊗B be
two right quantum group homomorphisms associated to the linking unitaries VC→A

and VA→B. Let β ∗ α be the right quantum group homomorphism associated to
the linking unitary VA→B ∗VC→A. We may describe β ∗α directly in terms of right
and left quantum group homomorphisms:
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Proposition 4.19. There is a unique right quantum group homomorphism γ : C →
C ⊗B that makes the following diagram commute:

(4.20)

C
α

//

γ

��

C ⊗A

idC⊗β

��

C ⊗B
α⊗idB

// C ⊗A⊗B.

This is exactly the composition β ∗ α.

Proof. Since slices of W by continuous linear functionals on Ĉ generate a dense
subspace of C, the diagram (4.20) commutes if and only if

(idĈ ⊗ idC ⊗ β)(idĈ ⊗ α)(WC) = (idĈ ⊗ α⊗ idB)(idĈ ⊗ γ)(WC).

Equation (4.6) implies idĈ ⊗α(WC) = WC
12VC→A

13 , and idĈ ⊗ idA ⊗ β maps this to
the element represented by the unitary operator

WC
12V

A→B
34 VC→A

13 (VA→B
34 )∗ = WC

12V
C→A
13 VC→B

14

by (4.7) and (3.21). Thus

(idĈ ⊗ idC ⊗ β)(idĈ ⊗ α)(WC) = WC
12VC→A

13 VC→B
14 ,

where VC→B := VA→B ∗ VC→A. Let Ṽ be the linking unitary associated to γ.
Equation (4.6) implies

(idĈ ⊗ α⊗ idB)(idĈ ⊗ γ)(WC) = (idĈ ⊗ α⊗ idB)(WC
12Ṽ13) = WC

12VC→A
13 Ṽ14.

Hence (4.20) commutes if and only if Ṽ = VC→B. �

Remark 4.21. The composition of linking unitaries at first sight depends on the
choice of concrete representations of the quantum groups involved, which depend
on the choice of generating modular multiplicative unitaries. Proposition 4.19 is
phrased purely in terms of comultiplications. This shows that the composition
of linking unitaries does not depend on the choice of a generating multiplicative
unitary.

Example 4.22. Let VC→A ∈ UM(Ĉ ⊗ A) and VA→B ∈ UM(Â ⊗ B) be linking
unitaries.

Assume first that VA→B comes from a strong quantum group homomorphism
f : A → B, that is, VA→B = (id ⊗ f)(WA). Let α be the right quantum group

homomorphism from C to A associated to VC→A. The right quantum group ho-
momorphism from A to B associated to VA→B is β := (idA ⊗ f)∆A. The following
computation shows that γ = (idC ⊗ f)α satisfies (4.20):

(idĈ ⊗ idC ⊗ β)(idĈ ⊗ α)WC = (idĈ ⊗ idC ⊗ idA ⊗ f)(idĈ ⊗ idC ⊗ ∆A)WC
12VC→A

13

= (idĈ ⊗ idC ⊗ idA ⊗ f)WC
12VC→A

13 VC→A
14

= (idĈ ⊗ idC ⊗ idA ⊗ f)(idĈ ⊗ α⊗ idB)WC
12VC→A

13

= (idĈ ⊗ α⊗ idB)(idĈ ⊗ (idC ⊗ f)α)WC ;

the first step uses (4.6); the second step uses (3.7); the third and the last step
use (4.6). Proposition 4.19 yields β ∗ α = (idC ⊗ f)α. Hence the composition

VA→B ∗ VC→A is (idC ⊗ f)VC→A.

Example 4.23. Now assume that VC→A is constructed from a strong quantum group
homomorphism f : Â → Ĉ, that is, VC→A = (f⊗ idA)(WA). Then the composition

VC→B is (f ⊗ id)(VA→B). This follows easily from Example 4.22 because C 7→ Ĉ
is a contravariant functor on linking unitaries.
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5. Passage to universal quantum groups

In this section we show that our quantum group homomorphisms are equivalent
to strong quantum group homomorphisms between the associated universal quan-
tum groups, which were previously suggested as a suitable notion of quantum group
homomorphism.

Let (C,∆C) be a quantum group in the sense of [5]. The associated universal
quantum group (Cu,∆Cu), also introduced in [5], is a C*-bialgebra, that is, a
C*-algebra equipped with a coassociative comultiplication. While it carries much
the same additional structure that locally compact quantum groups carry, it is
usually not a quantum group in the sense of [5], that is, it is not generated by a
modular multiplicative unitary. Thus the theory developed above does not apply
to it.

A left corepresentation of (Ĉ,∆Ĉ) on a C*-algebra D is a unitary multiplier

V ∈ UM(Ĉ ⊗D) that satisfies (∆Ĉ ⊗ idA)(V ) = V23V13. That is, V is a character
with respect to the first variable. The universal dual carries a left corepresenta-
tion V ∈ UM(Ĉ ⊗ Cu) of Ĉ that is universal in the following sense: for any left

corepresentation U ∈ UM(Ĉ ⊗ D) there is a unique morphism ϕ : Cu → D with
U = (idĈ ⊗ ϕ)(V). This universal property characterises the pair (Cu,V) uniquely
up to isomorphism.

The comultiplication on Cu is defined so that idĈ ⊗ ∆Cu maps V to the left
corepresentation V12V13. Thus V is a bicharacter and we may interpret it as a
quantum group homomorphism from C to Cu. This is, however, not literally true
because Cu is not a quantum group in our sense.

Proposition 5.1. Let (A,∆A) be a C*-bialgebra. Bicharacters in UM(Ĉ ⊗ A)
correspond bijectively to strong quantum group homomorphisms from (Cu,∆Cu)
to (A,∆A).

In particular, if (A,∆A) is also a locally compact quantum group, then strong

quantum group homomorphisms from (Cu,∆Cu) to (A,∆A) correspond to quantum

group homomorphisms from (C,∆C) to (A,∆A).

Proof. A strong quantum group homomorphism ϕ : Cu → A is also a morphism
from Cu to A and thus corresponds to a left corepresentation V ∈ UM(Ĉ ⊗ A),
which is determined by the condition (idĈ ⊗ϕ)(V) = V . The strong quantum group
homomorphisms ∆A ◦ϕ : Cu → A⊗A and (ϕ⊗ϕ) ◦ ∆Cu : Cu → A⊗A correspond
to the left corepresentations (idĈ ⊗∆A)(V ) and V12V13, that is, idĈ ⊗(∆A ◦ϕ)(V) =
(idĈ ⊗ ∆A)(V ) and (idĈ ⊗ (ϕ ⊗ ϕ) ◦ ∆Cu)(V) = V12V13 because V is a bicharacter.
Thus a morphism ϕ : Cu → A is a strong quantum group homomorphism if and
only if the corepresentation V also satisfies (idĈ ⊗ ∆A)(V ) = V12V13. That is, V is
a bicharacter. �

Corollary 5.2. Any strong quantum group homomorphism ϕ : Cu → A induces a

dual strong quantum group homomorphism ϕ̂ : Âu → Ĉ.

Proof. By Proposition 5.1, a strong quantum group homomorphism ϕ : Cu → A
corresponds to a bicharacter in UM(Ĉ ⊗A). Proposition 3.15 identifies these with

bicharacters in UM(A⊗ Ĉ), which correspond to strong quantum group homomor-

phisms ϕ : Âu → Ĉ by another application of Proposition 5.1. �

We are going to show that strong quantum group homomorphisms from (Cu,∆Cu )
to (A,∆A) lift uniquely to strong quantum group homomorphisms from (Cu,∆Cu)
to (Au,∆Au). This together with Proposition 5.1 will establish a bijection between
homomorphisms of quantum groups in our sense and strong strong quantum group
homomorphisms between the associated universal quantum groups.
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This requires the universal bicharacter U ∈ UM(Ĉu ⊗ Cu). In the setting of
quantum groups with Haar measure, it is constructed in [2, Proposition 6.4]. First
we carry this construction over to the setting of [5].

The bicharacter W of C is also a left corepresentation. Hence the universal
property yields a reducing *-homomorphism Λ: Cu → C with

(5.3) (idĈ ⊗ Λ)(V) = W.

The constructions above applied to the dual of C yield a maximal left corepresen-

tation Ṽ ∈ UM(Ĉu ⊗ C) of C and a reducing *-homomorphism Λ̂: Ĉu → Ĉ, such
that

(5.4) (Λ ⊗ idC)(Ṽ) = W.

We want to find U ∈ UM(Ĉu ⊗Cu) with (Λ̂⊗ idCu)(U) = V and (idĈu ⊗Λ)(U) = Ṽ .

Using (2.2), we may rewrite the fact that Ṽ is a character in the second variable
as a pentagon equation

(5.5) W23Ṽ12 = Ṽ12Ṽ13W23 in UM(Ĉu ⊗ K(HC) ⊗ C).

Similarly, using (2.3) and that V is a character in the first variable, we get the
pentagon equation

(5.6) V23W12 = W12V13V23 in UM(Ĉ ⊗ K(HC) ⊗ Cu).

In both cases, we should represent the second tensor factors C and Ĉ (faithfully)
on HC to make sense of the pentagon equation. We may now characterise U by a
variant of the pentagon equation as in [2, Proposition 6.4].

Proposition 5.7. There is a unique U ∈ UM(Ĉu ⊗ Cu) such that

V23Ṽ12 = Ṽ12U13V23.

Moreover, this U is a bicharacter, and it satisfies

(idĈu ⊗ Λ)U = Ṽ,(5.8)

(Λ̂ ⊗ idCu)U = V ,(5.9)

(Λ̂ ⊗ Λ)U = W.(5.10)

Proof. Let U ′ := Ṽ∗
12V23Ṽ12V∗

23. First, we will show that U ′ ∈ M(Ĉu ⊗ 1 ⊗ Cu),

that is, U ′ = U13 for some U ∈ UM(Ĉu ⊗Cu). Obviously, this unitary is the unique
solution of our problem. Then we will establish that U is a bicharacter.

The first step follows once again from Theorem 2.6. We compute

W23U ′
124W

∗
23 = W23Ṽ∗

12V24Ṽ12V∗
24W∗

23

= Ṽ∗
13Ṽ∗

12W23V24Ṽ12V∗
24W∗

23

= Ṽ∗
13Ṽ∗

12V34W23V∗
34Ṽ12V34W∗

23V∗
34

= Ṽ∗
13Ṽ∗

12V34W23Ṽ12W∗
23V∗

34

= Ṽ∗
13Ṽ∗

12V34Ṽ12Ṽ13V∗
34

= Ṽ∗
13V34Ṽ13V∗

34 = U ′
134;

the first step is the definition of U ′; the second step uses (5.5); the third step
uses (5.6) twice; the fourth step uses that V∗

34 and W12 commute; the fifth step
again uses (5.5); and the sixth step follows because V34 and Ṽ12 commute. Now

Theorem 2.6 yields U ′ ∈ UM(Ĉu ⊗ 1 ⊗ Cu), so that U exists.
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The following computation shows that U is a character in the second variable:

(idĈu ⊗ idC ⊗ ∆Cu)Ṽ∗
12V23Ṽ12V∗

23 = Ṽ∗
12V23V24Ṽ12V∗

24V∗
23

= U13V23Ṽ∗
12V24Ṽ12V∗

24V∗
23 = U13V23U14V∗

23 = U13U14.

A similar computation works in the first variable. Thus U is a bicharacter.
The following computation yields (5.8):

(idĈu ⊗ idC ⊗ Λ)U13 = (idĈu ⊗ idC ⊗ Λ)Ṽ∗
12V23Ṽ12V∗

23

= Ṽ∗
12W23Ṽ12W∗

23 = Ṽ∗
12Ṽ12Ṽ13 = Ṽ13.

A similar computation yields (5.9). Then (5.10) follows from (5.3) or from (5.4). �

Definition 5.11. The unitary multiplier U in Proposition 5.7 is called the universal

bicharacter of (C,∆C).

Lemma 5.12. Let X,Y ∈ UM(C ⊗ Au) be characters in the second variable. Let
π : Au → A be the reducing *-homomorphism. If (idC ⊗ π)X = (idC ⊗ π)Y , then

X = Y .

Proof. Copy the proof of [2, Result 6.1]. �

Proposition 5.13. Every strong quantum group homomorphism Cu → A admits
a unique lifting Cu → Au.

Proof. Let UA ∈ UM(Âu ⊗ Au) be the universal bicharacter of (A,∆A) and let

ṼcorepA ∈ UM(Âu ⊗A) and VC ∈ UM(Ĉ⊗Cu) be the maximal corepresentations

of A and Ĉ. Let α be a strong quantum group homomorphism from Cu to A. It
corresponds to a unique linking unitary

VC→A = (idĈ ⊗ α)VC in UM(Ĉ ⊗A).(5.14)

By Corollary 5.2, there is a strong quantum group homomorphism ϕ̂ : Âu → Ĉ such
that VC→A = (ϕ̂⊗ idA)(ṼA). Let

V = (ϕ̂⊗ idAu)UA in UM(Ĉ ⊗Au).

This is a bicharacter because UA is and ϕ̂ is a strong quantum group homomorphism.
Proposition 5.1 now yields a unique strong quantum group homomorphism ϕ̃ : Cu →
Au such that

V = (idĈ ⊗ ϕ̃)VC in UM(Ĉ ⊗Au).

Clearly, ϕ = ΛA ◦ ϕ̃ is a strong quantum group homomorphism from Cu to A. The
associated linking unitary is

(idĈ ⊗ ϕ)VC = (idĈ ⊗ ΛA ◦ ϕ̃)VC = (idĈ ⊗ ΛA)V = (idĈ ⊗ ΛA)(ϕ̂ ⊗ idAu)UA

= (ϕ̂⊗ idA)(idÂu ⊗ ΛA)UA = (ϕ̂⊗ idA)ṼA = VC→A.

This shows that ϕ and α are two strong quantum group morphisms associated to the
same linking unitary VC→A ∈ UM(Ĉ⊗A). The uniqueness part of Proposition 5.1
shows that ϕ̃ lifts α.

Now let ϕ̃′ : Cu → Au be another lift of α. Then the associated corepresentations
(idĈ ⊗ ϕ̃′)VC and (idĈ ⊗ ϕ̃)VC become equal after applying idĈ ⊗ ΛA. Hence

Lemma 5.12 yields (idĈ ⊗ ϕ̃′)VC = (idĈ ⊗ ϕ̃)VC . Hence the strong quantum
group homomorphisms associated to these bicharacters are equal as well, that is,
ϕ̃ = ϕ̃′. �

Recall that linking unitaries form a category and that duality is a functor on this
category. Strong quantum group homomorphisms Au → Cu also form the arrows
of a category.



18 RALF MEYER, SUTANU ROY, AND STANISŁAW LECH WORONOWICZ

Theorem 5.15. There is an isomorphism of categories between the category of
locally compact quantum groups with linking unitaries and with strong quantum

group homomorphisms Cu → Au as morphisms, respectively. If ϕ : Cu → Au

is a strong quantum group homomorphism, then the associated linking unitary is

(ΛĈ ⊗ ΛAϕ)(UC) ∈ UM(Ĉ ⊗ A). Furthermore, the duality on the level of linking

unitaries corresponds to the duality ϕ 7→ ϕ̂ on strong quantum group homomor-

phisms, where ϕ̂ : Âu → Ĉu is the unique strong quantum group homomorphism

with (ϕ̂⊗ idAu)(UA) = (idĈu ⊗ ϕ)(UC).

Proof. Propositions 5.1 and 5.13 yield that the map described above is a bijection
from strong quantum group homomorphisms Ĉ → Â to linking unitaries from C
to A. It remains to check that this bijection preserves the compositions and the
duality on both sides. We first turn to the duality because we need this to establish
the compatibility with compositions.

Let ϕ : Cu → Au be a strong quantum group homomorphism. Let V := (ΛĈ ⊗

ΛAϕ)(UC) ∈ UM(Ĉ ⊗ A) be the associated linking unitary. The duality on the

level of linking unitaries yields the linking unitary σ(V ∗) ∈ UM(A ⊗ Ĉ) from Â

to Ĉ. By transport of structure, this corresponds to a unique strong quantum

group homomorphism ϕ̂ : Âu → Ĉu with (ΛA ⊗ ΛĈ ϕ̂)(U Â) = σ(V )∗. Now we use

U Â = σ(UA)∗ to rewrite this as

(ΛĈ ⊗ ΛAϕ)(UC) = (ΛĈ ϕ̂⊗ ΛA)(UA).

Both (id ⊗ ϕ)(UC) and (ϕ̂ ⊗ id)(UA) are bicharacters. Applying Lemma 5.12 to
both tensor factors, we get first (idĈu ⊗ ΛAϕ)(UC) = (ϕ̂ ⊗ ΛA)(UA) and then

(idĈu ⊗ ϕ)(UC) = (ϕ̂⊗ idAu )(UA). This yields the asserted description of duality.
Now let ϕ : Cu → Au and ψ : Au → Bu be strong quantum group homomor-

phisms and let VC→A ∈ UM(Ĉ⊗A) and VA→B ∈ UM(Â⊗B) be the corresponding
linking unitaries. Then

VA→B = (ΛÂ ⊗ ΛBψ)UA = (idÂu ⊗ ΛBψ)VA,

VC→A = (ΛĈ ϕ̂⊗ ΛA)UA. = (ΛĈϕ̂⊗ idAu )VA.

where we use the dual quantum group homomorphism ϕ̂ : Âu → Ĉu. Now we
compute

(VA→B ∗ VC→A)13 = (VC→A
12 )∗VA→B

23 VC→A
12 (VA→B

23 )∗

= (ΛAϕ̂⊗ idB(HA) ⊗ ΛBψ)((ṼA
12)∗VA

23ṼA
12(VA

23)∗)

= (ΛAϕ̂⊗ idB(HA) ⊗ ΛBψ)(UA
13)

by Proposition 5.7. Thus

VA→B ∗ VC→A = (ΛAϕ̂⊗ ΛBψ)(UA) = (ΛA ⊗ ΛBψ) ◦ (ϕ̂⊗ idAu)(UA)

= (ΛA ⊗ ΛBψ) ◦ (idĈu ⊗ ϕ)(UC) = (ΛA ⊗ ΛB(ψ ◦ φ))(UC).

Hence VA→B ∗ VC→A is the linking unitary associated to ψ ◦φ. Thus our bijection
is compatible with compositions. �

6. Comparison with group homomorphism

To illustrate our theory, we consider the special case of groups and their duals.
Let G be a locally compact group with left Haar measure λ. We define a unitary

operator WG on L2(G, λ)⊗L2(G, λ) ∼= L2(G×G, λ×λ) by (WGξ)(x, y) := ξ(x, x−1y)
for all ξ ∈ L2(G×G, λ×λ) and x, y ∈ G. This is a multiplicative unitary that gives
rise to C∗

r (G) (see [6] for details). The corresponding reduced bicharacter WG ∈
UM(C0(G)⊗C∗

r (G)) is described by the strictly continuous function G ∋ g 7→ λg ∈
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UM(C∗
r (G)). The dual quantum group is C0(G) with its usual comultiplication.

The universal quantum group attached to C0(G) is again C0(G).
Let H be another locally compact group. It is easy to see that strong quantum

group homomorphisms from C0(H) to C0(G) are equivalent to continuous group ho-
momorphisms G → H . By Theorem 5.15, it follows that linking unitaries must also
correspond to classical group homomorphisms. And the same holds for right and
left quantum group homomorphisms. We are now going to establish this directly.

Let ϕ : G → H be a continuous group homomorphism. Then Vϕ(g) := λϕ(g)

defines a bicharacter in UM(C0(G) ⊗ C∗
r (H)), that is, a quantum group homomor-

phism from C∗
r (G) to C∗

r (H).

Lemma 6.1. Let G and H be locally compact groups. Then every linking unitary
from C∗

r (G) to C∗
r (H) is induced by a unique continuous group homomorphism

ϕ : G → H as above.

Proof. It is clear that the linking unitary Vϕ determines ϕ. Thus it remains to
observe that every bicharacter V in UM(C0(G) ⊗ C∗

r (H)) is of this form for a con-
tinuous group homomorphism ϕ : G → H . We may view V as a strictly continuous
function from G to UM(C∗

r (H)). Equation (3.7) means that its values are group-
like elements of UM(C∗

r (H)) for each g ∈ G, that is, ∆C∗

r
(H)(V (g)) = V (g) ⊗ V (g).

This implies V (g) = λϕ(g) for some ϕ(g) ∈ H . The map ϕ : G → H must be con-
tinuous in order for g 7→ λϕ(g) to be strictly continuous. Finally, (3.6) means that
the map ϕ is a group homomorphism. �

Example 6.2. Let C = C0(G) and A = C0(G0) for locally compact groups G
and G0. A right quantum group homomorphism from C to C ⊗ A corresponds
to a continuous map α : G × G0 → G, which we denote as α(g, h) := g · h. The
commutativity of (4.2) means that (g1 ·g2) ·h = g1 ·(g2 ·h) for all g1, g2 ∈ G, h ∈ G0,
so that g ·h = g ·ϕ(h) for all g ∈ G, h ∈ G0 for a continuous map ϕ : G0 → G defined
by ϕ(h) := 1·h. The commutativity of (4.3) is equivalent to ϕ(h1 ·h2) = ϕ(h1)·ϕ(h2)
for all h1, h2 ∈ G0. Thus right quantum group homomorphisms C0(G) → C0(G0)
correspond to continuous group homomorphisms G0 → G.

Example 6.3. Let C = C∗
r (G) and A = C∗

r (G0) for second countable locally compact
groups G and G0. We claim that right quantum group homomorphisms from C∗

r (G)
to C∗

r (G0) correspond bijectively to continuous group homomorphisms G → G0.
Since C ⊗ A = C∗

r (G × G0), a morphism from C to C ⊗ A must come from a
continuous representation g 7→ ug of G by unitary multipliers of C∗

r (G×G0). To be
a right quantum group homomorphism, it suffices to check that the diagrams (4.2)
and (4.3) commute on the unitary multipliers δg for g ∈ G. The commutativity
of (4.2) becomes (∆C ⊗idA)(ug) = δg⊗ug, forcing ug = δg ·u′

g for unitary multipliers
u′

g of A. The commutativity of (4.3) becomes ∆A(u′
g) = u′

g ⊗u′
g, forcing u′

g = δϕ(g)

for some ϕ(g) ∈ G0. The map g 7→ ϕ(g) is a measurable group homomorphism.
In the separable case, measurability implies continuity, so that ϕ is a continuous
group homomorphism G → G0.
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