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ON THE BASE SIZE OF A TRANSITIVE GROUP WITH SOLVABLE POINT1

STABILIZER1
2

E. P. Vdovin3

We prove that the base size of a transitive groupG with solvable point stabilizer is not greater thank pro-4

vided the same statement holds for every group ofG-induced automorphisms of each nonabelian composition5

factor ofG.6

Keywords: solvable subgroup, finite simple group, solvableradical.7

1 Introduction8

The term “group” always means “finite group”. We use symbolsA ⊆ G, A 6 G, andA P G if A is9

a subset ofG, A is a subgroup ofG, andA is a normal subgroup ofG, respectively. IfΩ is a (finite)10

set, then by Sym(Ω) we denote the group of all permutations ofΩ. We also denote Sym({1, . . . , n})11

by Symn. GivenH 6 G we denote byHG = ∩g∈GHg the core ofH.12

Assume thatG acts onΩ. An elementx ∈ Ω is called aG-regular pointif |xG| = |G|, i.e., if the13

G-orbit of x is regular. Define an action ofG onΩk by14

g : (i1, . . . , ik) 7→ (i1g, . . . , ikg).15

If G acts faithfully and transitively onΩ, then the minimalk such thatΩk possesses aG-regular orbit16

is called abase sizeof G and is denoted by Base(G). For every naturalm the number ofG-regular17

orbits inΩm is denoted by Reg(G,m) (this number equals 0 ifm < Base(G)). If H is a subgroup of18

G andG acts on the setΩ of right cosets ofH by right multiplications, thenG/HG acts faithfully19

and transitively onΩ. In this case we denote Base(G/HG) and Reg(G/HG,m) by BaseH(G) and20

RegH(G,m) respectively. We also say that BaseH(G) is thebase sizeof G with respectto H.21

There are a lot of papers dedicated to this subject. We mention only a few the most recent papers,22

whose subject is very close to this article. In [9] S.Dolfi proved that in everyπ-solvable groupG23

there exist elementsx, y ∈ G such that the equalityH ∩ Hx ∩ Hy
= Oπ(G) holds, whereH is aπ-Hall24

subgroup ofG (see also [10]). V.I.Zenkov in [11] constructed an example of a finite groupG with25

a solvableπ-Hall subgroupH such that the intersection of five subgroups conjugate withH in G is26

equal toOπ(G), while the intersection of every four conjugates ofH is greater thanOπ(G). In [12] it27

is proven that if for every finite almost simple groupS (possessing a solvableπ-Hall subgroup) and28

for every solvableπ-Hall subgroupH of S the inequalities BaseH(S) 6 5 and RegH(S) > 5 hold,29

then for every finite groupG (possessing a solvableπ-Hall subgroup) and for every solvableπ-Hall30

subgroup the inequality BaseH(G) 6 5 holds. In the present paper we generalize above mentioned31

result from [12]. Namely, we prove the following32

Theorem 1. Let G be a finite group and let33

{e} = G0 < G1 < G2 < . . . < Gn = G (1)34
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ADTP “Development of the Scientific Potential of Higher School” of the Russian Federal Agency for Education (Grant
2.1.1.419), Federal Target Grant ”Scientific and educational personnel of innovation Russia” for 2009-2013 (government
contract No. 02.740.11.5191 and No. 14.740.11.0346), Deligne 2004 Balzan prize in mathematics, and the Lavrent’ev
Young Scientists Competition (No 43 on 04.02.2010).
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be a composition series of G that is a refinement of a chief series. Assume that the following condition35

(Orb-solv) holds: If Gi/Gi−1 is nonabelian, then for every solvable subgroup S ofAutG(Gi ,Gi−1) we36

have37

BaseS(AutG(Gi ,Gi−1)) 6 k and RegS(AutG(Gi,Gi−1), k) > 5.38

Then, for every maximal solvable subgroup S of G, we haveBaseS(G) 6 k.39

The example constructed by V.I.Zenkov shows thatk in this theorem is at least 5. The author of40

the paper insert to the “Kourovka notebook” [13] the following problem 17.41.41

Problem.Let S be a solvable subgroup of a finite groupG with S(G) = {e}.42

(a) (L.Babai, A.J.Goodman, L.Pyber) Does there exists 7 conjugates ofS such that their intersec-43

tion is trivial?44

(b) Does there exists 5 conjugates ofS such that their intersection is trivial?45

Theorem 1 reduces both parts of the Problem to investigationof finite almost simple groups.46

2 Notation and preliminary results47

By |G| and |g| we denote the cardinality ofG and the order ofg ∈ G, respectively. ByA : B, A ·B,48

andA . B we denote a split, a nonsplit, and an arbitrary extension of agroupA by a groupB. For a49

groupG and a subgroupS of Symn by G ≀ S we always denote the permutation wreath product. We50

identify G ≀ M with the natural split extension (G1 × . . . ×Gn) : M, whereG1 ≃ . . . ≃ Gm ≃ G andM51

permutesG1, . . . ,Gn. Given groupG, we denote byΦ(G), F(G), F∗(G), E(G), andS(G) the Frattini52

subgroup ofG, the Fitting subgroup ofG, the generalized Fitting subgroup ofG, the socle ofG, and53

the maximal normal solvable subgroup ofG, respectively. We denote bye the identity element ofG.54

Let A, B,H be subgroups ofG such thatB P A. ThenNH(A/B) := NH(A)∩NH (B) is thenormalizer55

of A/B in H. If x ∈ NH(A/B), thenx induces an automorphism ofA/B by Ba 7→ Bx−1ax. Thus there56

exists a homomorphismNH(A/B)→ Aut(A/B). The image ofNH(A/B) under this homomorphism is57

denoted by AutH(A/B) and is called agroup of induced automorphismsof A/B, while the kernel of58

this homomorphism is denoted byCH(A/B) and is called thecentralizerof A/B in H. By definition,59

AutH(A) := AutH(A/{e}).60

The following statement is evident.61

Lemma 2. If S is a maximal solvable subgroup of G, then NG(S) = S .62

Lemma 3. [7, Lemma 1.2]Let H be a normal subgroup of a finite group G, S= (A/H)/(B/H) be a63

composition factor of G/H and L be a subgroup of G.64

ThenAutL(A/B) ≃ AutLH/H((A/H)/(B/H)).65

Lemma 4. Let S be a maximal solvable subgroup of G and let N be a normal subgroup of G contain-66

ing S(G). Then NN(N ∩ S) = N ∩ S .67

Proof. Assume that the claim is false andG is a counter example of minimal order. Assume that68

S(G) , {e} and consider the natural homomorphism69

: G→ G/S(G).70

ClearlyS is a maximal solvable subgroup ofG andS(G) = S(G) = {e}. Moreover,|G| < |G|. SinceG71

is a counter example of minimal order it follows thatNN(N ∩ S) = N ∩ S. Now S(G) lies in bothN72
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andS, henceNN(N ∩ S) is a complete preimage ofNN(N ∩ S) = N ∩ S, and soNN(N ∩ S) = N ∩ S.73

ThusS(G) = {e}.74

SetM = NG(N ∩ S), L = NN(N ∩ S) = N ∩ M. In view of [2, Proposition 3],N ∩ S , {e}, so75

S(M) > S ∩ M , {e} andM is a proper subgroup ofG. ClearlyS(M) 6 S 6 M andL is normal in76

M. SoLS(M) is normal inM. Since|M| < |G|, we obtain77

NLS(M)(S ∩ LS(M))) = S ∩ LS(M) = (S ∩ L)S(M) 6 S.78

Now suppose thatx ∈ L. By construction,L∩S = N∩S andL = NN(L∩S), soL∩S P L. Moreover79

L 6 M, hencex normalizesS(M), and sox normalizes (S ∩ L)S(M) = NLS(M)(S ∩ LS(M))), in80

particular,x ∈ S. ThusL = S ∩ N. A contradiction withG being counter example. �81

Let L be a nonabelian finite simple group and letG be such that there exists a normal subgroup82

T = L1 × . . . × Ln of G satisfying the following conditions:83

(1) L1 ≃ . . . ≃ Lk ≃ L;84

(2) subgroupsL1, . . . , Lk are conjugate inG;85

(3) CG(T) = {e}.86

Condition (2) implies thatNG(L1), . . . ,NG(Lk) are conjugate inG. We have thatG acts on the87

right cosets ofNG(L1) by right multiplication, letρ : G → Symn be the corresponding permutation88

representation. Since the action by right multiplication of G on the right cosets ofNG(L1) coincide89

with the action by conjugation ofG on the set{L1, . . . , Ln} we obtain thatGρ is a transitive subgroup90

of Symn. By [3, Hauptsatz 1.4, p. 413] there exists a monomorphism91

ϕ : G→ (NG(L1) × . . . × NG(Ln)) : (Gρ) = NG(L1) ≀ (Gρ) = M.92

SinceCG(Li) is a normal subgroup ofNG(Li), it follows thatCG(L1)×. . .×CG(Ln) is a normal subgroup93

of M. Consider the natural homomorphism94

ψ : M → M/(CG(L1) × . . . ×CG(Ln)).95

Denoting AutG(Li) = NG(Li)/CG(Li) by Ai we obtain a homomorphism96

ϕ ◦ ψ : G→ (A1 × . . . × An) : (Gρ) ≃ A1 ≀ (Gρ) =: G.97

The kernel of the homomorphism is equal toCG(L1, . . . , Ln) = {e}, i. e.,ϕ ◦ψ is a monomorphism and98

we identifyG with the subgroupG(ϕ ◦ ψ) of G.99

Lemma 5. Let T = L1 × . . . × Lk be a normal subgroup of G, and(1), (2), (3) are fulfilled. Assume100

also that G/T is solvable and S is a maximal solvable subgroup of G such that G = S T. We identify101

G, S , and T with their images underϕ ◦ ψ. ThenG, defined above, possesses a solvable subgroupS102

with S > S andG = S T.103

Proof. By construction,Ai = AutG(Li) = AutG(Li) ≃ AutG(L1) for all i. Since [Li , L j] = 1 for i , j104

andG = S T, we obtain that105

Ai = AutG(Li) = NG(Li)/CG(Li) = NS(Li)T/CG(Li),106

and soAi/Li ≃ NS(Li)/(NS(Li) ∩ LiCG(Li)) is solvable. ThereforeG/(L1 × . . . × Ln) ≃ (A1/L1) ≀ (Gρ)107

is solvable. DenoteS ∩ T by H, thenH is solvable and, by Lemma 4,NT(H) = H. Moreover, if108
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Hi = H ∩ Li, thenNLi (Hi) = Hi (otherwise we would obtainNT(H) , H). It follows thatAi is equal109

to NAi (Hi)Li andNAi (Hi) is solvable. Hence,110

A1 × . . . × An = (NA1(H1) × . . . × NAn(Hn))T = NA1×...×An(H)T111

and NA1×...×An(H) is solvable. SinceG = (A1 × . . . × An)S, and sinceS normalizesH, it follows112

G = NG(H)T. MoreoverNG(H) is solvable andS lies in NG(H). �113

Lemma 6. Let G be a transitive subgroup ofSymn. DenoteΩ = {1, . . . , n}. Let H be the stabilizer of114

1 in G.115

(a) (1, i2, . . . , ik) and(1, j2, . . . , jk) are in the same G-orbit if and only if(i2, . . . , ik) and( j2, . . . , jk)116

are in the same H-orbit;117

(b) every G-orbit ofΩk contains an element(1, i2, . . . , ik);118

(c) (1, i2, . . . , ik) is a G-regular point if and only if(i2, . . . , ik) is an H-regular point;119

(d) the number of G-orbits inΩk is equal to the number of H-orbits in(Ω \ {1})k−1;120

Proof. (a) Evident.121

(b) Follows from the fact thatG is transitive.122

(c) If (1, i2, . . . , ik) is aG-regular point, then (1, i2, . . . , ik)g = (1, i2, . . . , ik) impliesg = e. Assume123

that h ∈ H is chosen so that (i2, . . . , ik)h = (i2, . . . , ik). SinceH is the stabilizer of 1, it follows124

that (1, i2, . . . , ik)h = (1, i2, . . . , ik), henceh = e and (i2, . . . , ik) is anH-regular point. Conversely, if125

(i2, . . . , ik) is anH-regular point and (1, i2, . . . , ik)g = (1, i2, . . . , ik), we obtaing ∈ H, and (i2, . . . , ik)g =126

(i2, . . . , ik), henceg = eand (1, i2, . . . , ik) is aG-regular point.127

(d) Clear from (a), (b) and (c). �128

Recall thatG is called almost simple if there exists a nonabelian simple group L such thatL ≃129

Inn(L) 6 G 6 Aut(L).130

Let G be a subgroup of Symn. A partition {P1,P2, . . . ,Pm} of {1, . . . , n} is called anasymmetric131

partition for G, if only the identity element ofG fixes the partition, i. e., the equalityP j x = P j for132

all j = 1, . . . ,m implies x = e. Clearly for everyG the partitionP1 = {1},P2 = {2}, . . . ,Pn = {n} is133

always asymmetric.134

Lemma 7. [6, Theorem 1.2]Let G be a solvable group of permutations of{1, 2, . . . , n}. Then there135

exists an asymmetric partition{P1,P2, . . . ,Pm} of this set with m6 5.136

Lemma 8. Let G be a finite group and let M be a solvable subgroup ofSymn. Assume that for every137

maximal solvable subgroup S of G the inequalities138

BaseS(G) 6 k and RegS(G, k) = s> 5139

hold. Then, for every maximal solvable subgroup L of G≀ M we haveBaseL(G ≀ M) 6 k. Moreover140

RegL(G ≀ M, k) > s.141

Proof. We haveG ≀ M = (G1 × . . . ×Gn) : M. MoreoverS(G ≀ M) = S(G1) × . . . × S(Gn), since142

CM(G1 × . . .×Gn) = {e}. Assume by contradiction thatG ≀M is a counter example to the lemma with143

|G ≀ M| minimal. Then clearlyS(G ≀ M) = {e}, i.e.,S(G) = {e}, otherwise we substituteG by G/S(G)144

and proceed by induction.145
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SinceG ≀ M is a counter example to the lemma, there exists a maximal solvable subgroupS146

of G ≀ M such that for everyx1, . . . , xk ∈ G ≀ M we haveSx1 ∩ . . . ∩ Sxk , {e}. It is clear that147

(G1 × . . . × Gn)S = G ≀ M, otherwise consider the imageS of S under the natural homomorphism148

G ≀ M → G ≀ M/(G1 × . . . × Gn). We obtain that (G1 × . . . × Gn)S ≃ G ≀ S, so we substituteG ≀ M149

by G ≀ S and proceed by induction. The fact thatG ≀ M is a minimal counter example implies also150

that M is transitive, otherwise we would obtain thatG ≀ M 6 (G ≀ M1) × (G ≀ M2) and proceed by151

induction. Indeed denote the projections ofG ≀ M ontoG ≀ M1 andG ≀ M2 by π1 andπ2 respectively.152

Up to renumbering we may suppose that there existsm such thatG ≀ M1 = (G1 × . . . ×Gm) : M1 and153

G ≀ M2 = (Gm+1 × . . . × Gn) : M2. DenoteG1 × . . . × Gm by E1 andGm+1 × . . . × Gn by E2. Since154

G ≀ M = (G1 × . . . ×Gn)S, E1 6 Ker(π2) andE2 6 Ker(π1), it follows that (G ≀ M)πi = Ei(Sπi) (we155

identify Eiπi with Ei, sinceEiπi ≃ Ei). Then, by induction for eachi ∈ {1, 2} there exist elements156

x1,i , . . . , xk,i of Ei(Sπi) such that157

(Sπi)
x1,i ∩ . . . ∩ (Sπi)

xk,i = {e}. (2)158

SinceGπi = Ei(Sπi), we may assume thatx1,i , . . . , xk,i are inEi. Considerx1 = x1,1x1,2, . . . , xk =159

xk,1xk,2. Since (2) is true for everyi, for elementsx1, . . . , xk we have160

Sx1 ∩ . . . ∩ Sxk = {e},161

andG is not a counter example.162

ConsiderL = S ∩G1 × . . . ×Gn and denote byπi the natural projectionG1 × . . . ×Gn → Gi. Put163

Li = Lπi . ClearlyL 6 L1× . . .× Ln. If x ∈ S andGx
i = G j, thenLx

i = L j , sinceL is normal inS. Hence164

S normalizesL1 × . . . × Ln and soL = L1 × . . . × Ln, by the maximality ofS.165

ClearlyNG1×...×Gn(L1×. . .×Ln) = NG1(L1)×. . .×NGn(Ln). By Lemma 4 we obtain thatNG1×...×Gn(L1×166

. . .×Ln) = L1× . . .×Ln, henceNGi (Li) = Li for i = 1, . . . , n. Denote byΩi the set{Lx
i | x ∈ Gi}, thenGi167

acts onΩi by conjugation. SinceNGi (Li) = Li, it follows thatLi is the point stabilizer under this action.168

SetΩ = Ω1× . . .×Ωn. For everyx ∈ G ≀M and for everyi we haveLx
i 6 G j for somej. We show that169

Lx
i ∈ L

G j

j , i.e., there existsy ∈ G j such thatLyj = Lx
i . Since (G1 × . . . ×Gn) : M = (G1 × . . . ×Gn)S,170

it follows that there existss ∈ S with Gs
i = G j. We also haveLs

i = L j , sinceL is normal inS. Thus171

Lx
i = Ls−1x

j . Now s−1x = g1 · . . . · gn · h, wheregi ∈ Gi for i = 1, . . . , n andh ∈ M. SinceM permutes172

theGi-s, it follows that for everyi = 1, . . . , n, eitherGh
i ∩Gi = {e}, orh centralizesGi. Thus we obtain173

thatLs−1x
j = L

g j

j . SoG ≀ M acts by conjugation onΩ andS is the stabilizer of the point (L1, . . . , Ln).174

Therefore we need to show thatΩk possesses at leasts (G ≀ M)-regular orbits.175

Now there existG1-regular pointsω1, . . . , ωs ∈ Ω
k
1 lying in distinct G1-orbits. If we choose176

h1 = e, h2, . . . , hn ∈ M so thatGhi
1 = Gi, thenωhi

1 , . . . , ω
hi
s ∈ Ω

k
i areGi-regular points, and, as we177

noted above, they are in distinctGi-orbits. We setωi, j = ω
hj

i . By Lemma 7 there exists an asymmetric178

partitionP1⊔P2⊔P3⊔P4⊔P5 = {1, . . . , n} for M. If we chooseω = (ωi1,1, . . . , ωin,n) so thati i = i j if179

and only ifi, j lie in the samePl, thenω is a (G≀M)-regular point inΩk. Clearly we can choose suchω,180

simces > 5. Indeed, considerg = (g1 . . . gn)h, wheregi ∈ Gi for i = 1, . . . , n andh ∈ M, and assume181

thatωg = ω. It follows thatωh−1
= ω(g1 . . . gn). We obtain thatωi, jh−1

= ωi, jh−1 = ωm, jhi−1g jhi−1 for182

somem. Since for everyt = 1, . . . , n pointsω,ω′ ∈ Ωt are in the sameG ≀M-orbit if and only ifω,ω′183

are in the sameGt-orbit, it follows thati = m. By construction,j and jh−1 lie in the samePl, hence184

h−1 stabilizes the asymmetric partitionP1⊔P2⊔P3⊔P4⊔P5, and soh−1
= h = eandg ∈ G1× . . .×Gn.185

By construction,ω is aG1 × . . . ×Gn-regular point, i.e.,g = e. Moreover, distinct point constructed186

in this way are in distinct (G ≀M)-regular orbits. Clearly we can construct at leastspoints in this way187

(at least one ofP1,P2,P3,P4,P5 is nonempty) and the lemma follows. �188
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3 Proof of the main theorem189

Assume that the claim is false andG is a counter example of minimal order.190

Assume thatS(G) , 1. Then there exists a minimal elementary abelian normal subgroupK of G.191

Since elements from distinct minimal normal subgroups commute, we may suppose thatG1 6 K and192

there existsl such thatGl = K, i.e., composition series (1) is a refinement of a chief series starting193

with K. In this case, if194

: G→ G/K = G195

is a natural homomorphism, then196

{ē} = Gl < Gl+1 < . . . < Gn = G197

is a composition series ofG that is a refinement of a chief series ofG. Moreover, for every non-198

abelianGi/Gi−1, Lemma 3 implies AutG(Gi/Gi−1) ≃ AutG(Gi/Gi−1), and so AutG(Gi/Gi−1) satisfies199

(Orb-solv). ThusG satisfies conditions of the theorem. In view of the minimality of G, there exist200

x1, . . . , xk ∈ G such that201

S
x̄1
∩ . . . ∩ S

x̄k
= S(G).202

Now K 6 S(G), henceS(G) = S(G). ThereforeSx1 ∩ . . . ∩ Sxk = S(G) and the claim holds, i.e.,G is203

not a counter example.204

Thus we may assume thatS(G) = {e}. Consider the generalized Fitting subgroupF∗(G) of G.205

SinceS(G) = {e}, we obtain thatF∗(G) = E(G) = L1×. . .×Ln is a product of nonabelian simple groups206

and, by [1, Theorem 9.8],CG(F∗(G)) = Z(F∗(G)) = {e}. In particular,S(E(G)S) = {e}. If E(G)S � G,207

then, in view of the minimality ofG, there existx1, . . . , xk ∈ E(G)S such thatSx1 ∩ . . . ∩ Sxk =208

S(E(G)S) = {e}. Thus the claim holds in this case, i.e.,G is not a counter example. It follows that209

G = E(G)S. Moreover, sinceL1, . . . , Ln are nonabelian simple, [5, Theorem 3.3.10] implies thatG,210

acting by conjugation, interchanges the elements of{L1, . . . , Ln}.211

Set E1 := 〈LS
1 〉. SinceE(G) = L1 × . . . × Lk, we obtain thatE(G) = E1 × E2, whereE1 and212

E2 areS-invariant subgroups. By Remak theorem [4, Theorem 4.3.9] there exists a homomorphism213

G → G/CG(E1) × G/CG(E2), such that the image ofG is a subdirect product ofG/CG(E1) and214

G/CG(E2), while the kernel is equal toCG(E1) ∩ CG(E2) = CG(E(G)) = {e}. Denote the projections215

of G ontoG/CG(E1) andG/CG(E2) by π1 andπ2 respectively. SinceG = E(G)S, E1 6 Ker(π2) and216

E2 6 Ker(π1), it follows that Gπ1 = E1(Sπ1) andGπ2 = E2(Sπ2) (we identify Eiπi and Ei since217

Eiπi ≃ Ei).218

Suppose thatE1 , E(G). Then, by induction for eachi ∈ {1, 2} there exist elementsx1,i , . . . , xk,i of219

Ei(Sπi) such that220

(Sπi)
x1,i ∩ . . . ∩ (Sπi)

xk,i = {e}. (3)221

SinceGπi = Ei(Sπi), we may assume thatx1,i , . . . , xk,i are inEi. Considerx1 = x1,1x1,2, . . . , xk =222

xk,1xk,2. Since (3) is true for everyi, for elementsx1, . . . , xk we have223

Sx1 ∩ . . . ∩ Sxk = {e},224

andG is not a counter example.225

ThereforeE1 = E(G) andS acts transitively on{L1, . . . , Ln}. Since AutG(L1) satisfies(Orb-solv),226

we may assume thatm > 1. By Lemma 5, we may assume thatG = (A1 × . . . × Ak) : K = A1 ≀ K,227

whereAi = AutG(Li) andK = Gρ = Sρ 6 Symn (in particular,K is solvable). Lemma 8 implies that228

BaseS(G) 6 k for every maximal solvable subgroupS of G. This final contradiction completes the229

proof.230
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4 Final notes231

In this section we discuss the meaning of RegS(G, k) and lower bounds for RegS(G, k), whereS is a232

solvable subgroup ofG andk > BaseS(G). If we have a groupG and a solvable subgroupS of G,233

then Theorem 1 gives us an idea, how to find BaseS(G), or, at least, how to find an upper bound for234

BaseS(G). However, for computation purposes one need to find also thebase ofG with respect to235

S, i.e., elementsx1, . . . , xk such thatSx1 ∩ . . . ∩ Sxk = SG. In general there is no way to find these236

elements and we can suggest just a probabilistic approach inthis direction. Denote byΩ the set of237

right cosets ofS in G. If one knows that RegS(G, k) > s and|G : S| = |Ω| = n, then|Ωk| = nk, while238

Ω
k possesses at leasts|G/SG| regular points. So the probability thatk randomly chosen elements from239

Ω form a base ofG with respect toS is not less than240

ε =
s · |G/SG|

nk
>

s
nk−1

.241

In Theorem 1 the condition(Orb-solv) demands that242

BaseS(AutG(Gi,Gi−1)) 6 k and RegS(AutG(Gi ,Gi−1), k) > 5.243

We show that ifk > 6, then we can guarantee that RegS(AutG(Gi ,Gi−1), k) > 5. More precisely,244

the following lemma holds.245

Lemma 9. Let G be a transitive permutation group acting onΩ = {1, . . . , n} and let the stabilizer S246

of 1 be solvable. Assume that k= max{Base(G), 6}. ThenReg(G, k) > 5.247

Proof. In view of Lemma 6, we have thatS acts onΘ = Ω\ {1} and the number ofG-regular orbits on248

Ω
k is equal to the number ofS-regular orbits onΘk−1. Thus we need to prove that Reg(S, k − 1) > 5,249

whereS acts onΘ. By the conditions of the lemma there existsθ1, . . . , θk−1 ∈ Θ such that (θ1, . . . , θk−1)250

is anS-regular point inΘk−1.251

Consider∆ = {θ1, . . . , θk−1}, let T be the stabilizer of∆ in S, i.e., T = {x ∈ S | ∆x = ∆}. It is252

clear that (θ1σ, . . . , θ(k−1)σ) is anS-regular point for everyσ ∈ Symk−1. Moreover ifσ, τ ∈ Symk−1,253

then (θ1σ, . . . , θ(k−1)σ) and (θ1τ, . . . , θ(k−1)τ) are in the sameS-orbit if and only if there existsx ∈ T such254

that (θ1σ, . . . , θ(k−1)σ)x
= (θ1τ, . . . , θ(k−1)τ). Consider the restriction homomorphismϕ : T → Sym(∆).255

Since (θ1, . . . , θk−1) is anS-regular point (and so aT-regular point), it follows thatKer(ϕ) = {e}, i.e.,256

ϕ is injective.257

Assume thatk > 9 first. Consider the asymmetric partitionP1⊔P2⊔P3⊔P4⊔P5 = {θ1, θ2, . . . , θk−1}258

for Tϕ. Without loss of generality we may assume that|P1| > |P2| > |P3| > |P4| > |P5|. Sincek > 9 it259

follows that either|P1| > 3, or |P1| = |P2| = |P3| = 2.260

If |P1| > 3, then, up to renumbering, we may assume thatθ1, θ2, θ3 ∈ P1. In this case for every261

distinctσ, τ ∈ Sym3 we have that (θ1σ, θ2σ, θ3σ, θ4 . . . , θk−1) and (θ1τ, θ2τ, θ3τ, θ4, . . . , θk−1) are in distinct262

Tϕ-orbits, thus these points are in distinctT-orbits, and so in distinctS-orbits. So Reg(S, k − 1) >263

|Sym3 | = 6 in this case.264

If |P1| = |P2| = |P3| = 2, then, up to renumbering, we may assume thatθ1, θ2 ∈ P1, θ3, θ4 ∈ P2, and265

θ5, θ6 ∈ P3. In this case for every distinctσ, τ ∈ Sym({1, 2}) × Sym({3, 4}) × Sym({5, 6}) we have that266

(θ1σ, θ2σ, θ3σ, θ4σ, θ5σ, θ6σ, θ7 . . . , θk−1) and (θ1τ, θ2τ, θ3τ, θ4τ, θ5τ, θ6τ, θ7 . . . , θk−1)267

are in distinctTϕ-orbits, thus these points are in distinctT-orbits, and so in distinctS-orbits. So268

Reg(S, k− 1) > |Sym({1, 2}) × Sym({3, 4}) × Sym({5, 6})| = 8 in this case.269
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Now assume that 66 k 6 8. Denote byΞ the subset{(θ1σ, . . . , θ(k−1)σ) | σ ∈ Symk−1} of ∆k−1.270

ThenTϕ acts onΞ and every point ofΞ is Tϕ-regular. Moreover|Ξ| = |Symk−1 | = (k − 1)!. We also271

have thatTϕ is a solvable subgroup of Symk−1. It is immediate (from [8], for example), that|Tϕ| 6 12272

for k = 6, |Tϕ| 6 36 for k = 7, and|Tϕ| 6 72 for k = 8. Now the number ofTϕ-orbits onΞ is equal273

(k−1)!
|Tϕ |

and direct computations show that this number is at least 10. �274

References275

[1] I.M. Isaacs,Finite group theory. AMS Providence, RI: Amer. Math. Soc., 2008. 351 p.276

[2] R.M. Guralnick, J.S. Wilson, The probability of generating a finite soluble group, Proc.London277

Math. Soc. (3), v. 81 (2000), 405–427.278

[3] B. Huppert, Endliche Gruppen I. Berlin: Springer, 1967. 808 p.279

[4] M.I. Kargapolov, Yu.I. Merzlyakov,Foundations of the theory of groups. M.: Nauka. 1982. 288280

p (In Russian).281

[5] D.J.S. Robinson, A course in the theory of groups. (Springer, 1996).282

[6] A. Seress, The minimal base size of primitive solvable permutation groups, J. London Math.283

Soc., v. 53 (1996), 243–255.284

[7] E.P. Vdovin, Carter subgroups of finite almost simple groups, Algebra and Logic, v. 46 (2007),285

90–119.286

[8] J.H.Conway, R.T.Curtis, S.P.Norton, R.A.Parker, R.A.Wilson, Atlas of Finite Groups, Clarendon287

Press, Oxford, 1985.288

[9] S. Dolfi, Large orbits in coprime actions of solvable groups, Trans.AMS, 2008. v. 360 (2008),289

135–152.290

[10] E.P. Vdovin, Regular orbits of solvable linearp′-groups, Sib. Electr. Math. Reports, v. 4 (2007),291

345–360.292

[11] V.I. Zenkov, On the intersections of solvable Hall subgroups in finite nonsolvable groups, Tr.293

In-ta Matematiki i meckhaniki UrO RAN, v. 13 (2007), 86–89.294

[12] E.P.Vdovin, V.I.Zenkov, On the intersection of solvable Hall subgroups in finite groups, Proc.295

Stekl. Inst. Math. Suppl. 3, 2009, 234–243.296

[13] The Kourovka notebook. Unsolved problems in group theory. Edited by V. D. Mazurov and E. I.297

Khukhro. 17-th. ed., Russian Academy of Sciences Siberian Division, Institute of Mathematics,298

Novosibirsk, 2010.299

8


