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ON THE BASE SIZE OF A TRANSITIVE GROUP WITH SOLVABLE POINT
STABILIZERf

E.P.Vdovin

We prove that the base size of a transitive gr@upith solvable point stabilizer is not greater thiapro-
vided the same statement holds for every grou@-afiduced automorphisms of each nonabelian composition
factor of G.

Keywords: solvable subgroup, finite simple group, solvahtical.

1 Introduction

The term “group” always means “finite group”. We use symbbls G, A < G, andA < Gif Ais
a subset 065, A is a subgroup o5, andA is a normal subgroup a3, respectively. IfQ is a (finite)
set, then by Syn§g) we denote the group of all permutations@f We also denote Syr{i, ..., n})
by Sym,. GivenH < G we denote byHs = N, ,cH? the core ofH.

Assume thaG acts onQ2. An elementx € Q is called aG-regular pointif |xG| = |G|, i.e., if the
G-orbit of x is regular. Define an action & on QX by

g:(ig,...,iK) > (g, ...,ik9).

If G acts faithfully and transitively o, then the minimak such thatQ* possesses@-regular orbit
is called abase sizeof G and is denoted by Bagg). For every naturain the number of5-regular

orbits inQ™ is denoted by Re@, m) (this number equals 0 ih < Base(3)). If H is a subgroup of
G andG acts on the se® of right cosets ofH by right multiplications, therG/Hg acts faithfully

and transitively onQ2. In this case we denote Ba&/Hg) and RegG/Hg, m) by Base (G) and

Req, (G, m) respectively. We also say that Ba$@) is thebase sizef G with respecto H.

There are a lot of papers dedicated to this subject. We nreatity a few the most recent papers,
whose subject is very close to this article. [h [9] S.Dolfiyed that in everyr-solvable groups
there exist elements y € G such that the equalitti N H* N HY = O,(G) holds, whereH is an-Hall
subgroup ofG (see also[[10]). V.I.Zenkov in11] constructed an examgla inite groupG with
a solvabler-Hall subgroupH such that the intersection of five subgroups conjugate tiih G is
equal toO,(G), while the intersection of every four conjugates-bfs greater that®,(G). In [[[3] it
is proven that if for every finite almost simple gro8p(possessing a solvabkeHall subgroup) and
for every solvabler-Hall subgroupH of S the inequalities BagsgS) < 5 and Reg(S) > 5 hold,
then for every finite grous (possessing a solvabkeHall subgroup) and for every solvabteHall
subgroup the inequality Basé5) < 5 holds. In the present paper we generalize above mentioned
result from [I2]. Namely, we prove the following

Theorem 1. Let G be a finite group and let

6=Gy<G1<Gy<...<G, =G Q)
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contract No. 02.740.11.5191 and No. 14.740.11.0346)gbelR004 Balzan prize in mathematics, and the Lavrent'ev
Young Scientists Competition (No 43 on 04.02.2010).
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be a composition series of G that is a refinement of a chieéseAssume that the following condition
(Orb-solv) holds: If G/Gi_; is nonabelian, then for every solvable subgroup 2 (G;, Gi_1) we
have

Base(Autg(Gi, Gi_1)) < k and Reg;(Autg(Gi, Gi_1), k) > 5.

Then, for every maximal solvable subgroup S of G, we Bass(G) < k.

The example constructed by V.I.Zenkov shows that this theorem is at least 5. The author of
the paper insert to the “Kourovka notebook™][13] the follogiproblem 17.41.

Problem.Let S be a solvable subgroup of a finite groGpwith S(G) = {e}.

(a) (L.Babai, A.J.Goodman, L.Pyber) Does there exists Jugates ofS such that their intersec-
tion is trivial?

(b) Does there exists 5 conjugateso$uch that their intersection is trivial?

Theoren{]l reduces both parts of the Problem to investigafiinite almost simple groups.

2 Notation and preliminary results

By |G| and|g| we denote the cardinality ¢& and the order ofy € G, respectively. ByA : B, A'B,
andA. B we denote a split, a nonsplit, and an arbitrary extensiongrbapA by a groupB. For a
groupG and a subgrouf of Sym, by G : S we always denote the permutation wreath product. We
identify G M with the natural split extensiosg x ... x Gp) : M, whereG; =~ ... ~ G, ~ G andM
permutess,, ..., G,. Given groupG, we denote byb(G), F(G), F*(G), E(G), andS(G) the Frattini
subgroup ofG, the Fitting subgroup dB, the generalized Fitting subgroup @f the socle ofs, and
the maximal normal solvable subgroup®frespectively. We denote l®the identity element of.

LetA, B, H be subgroups @b such thaB < A. ThenNy(A/B) := Ny (A)NNg(B) is thenormalizer
of A/Bin H. If x € Ny(A/B), thenx induces an automorphism 8§ B by Ba— Bx'ax Thus there
exists a homomorphisidy (A/B) — Aut(A/B). The image oNy(A/B) under this homomorphism is
denoted by Aut(A/B) and is called aroup of induced automorphisna$ A/B, while the kernel of
this homomorphism is denoted By (A/B) and is called theentralizerof A/B in H. By definition,
Auty(A) = Auty(A/{e}).

The following statement is evident.

Lemma2. If S is a maximal solvable subgroup of G, theg(8) = S .

Lemma 3. [[], Lemma 1.2] et H be a normal subgroup of a finite group G=5(A/H)/(B/H) be a
composition factor of 3H and L be a subgroup of G.
ThenAut (A/B) ~ Aut y/n((A/H)/(B/H)).

Lemmad4. Let S be a maximal solvable subgroup of G and let N be a norniigrsup of G contain-
ing S(G). Then N\(NN'S)=NNS.

Proof. Assume that the claim is false a@lis a counter example of minimal order. Assume that
S(G) # {e} and consider the natural homomorphism

"~ G — G/S(G).

= {e}. Moreover|G| < |G|. SinceG
= NN S. Now S(G) lies in bothN

ClearlyS is a maximal solvable subgroup GfandS(G) = S(
is a counter example of minimal order it follows thé(N N S

00

~



73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

andS, henceNy(N N S) is a complete preimage &(NN'S) = NN'S, and soONy(NN'S) = NN S.
ThusS(G) = {€}.

SetM = Ng(NNS),L = N\(NNS) =Nn M. Inview of [g], Proposition 3]N NS # {e}, so
S(M) > SN M # {e} andM is a proper subgroup @. ClearlyS(M) < S < M andL is normal in
M. SoLS(M) is normal inM. Since|M| < |G|, we obtain

NLsany (S N LS(M))) = SN LS(M) = (SN L)S(M) < S.

Now suppose that € L. By constructionL NS = NNS andL = Ny(LNS), soLNS < L. Moreover
L < M, hencex normalizesS(M), and sox normalizes § N L)S(M) = Nigmw)(S N LS(M))), in
particular,x € S. ThusL = S n N. A contradiction withG being counter example. O

Let L be a nonabelian finite simple group and®be such that there exists a normal subgroup
T =L; x...xL, of G satisfying the following conditions:

QDLy=...=Lg=L;

(2) subgroups.,, ..., Lx are conjugate iG;

(3) Ce(T) = {e}.

Condition (2) implies thalNg(L1), ..., Ng(Lx) are conjugate irs. We have thaG acts on the
right cosets ofNg(L;) by right multiplication, leto : G — Sym, be the corresponding permutation
representation. Since the action by right multiplicatiérGoon the right cosets dfig(L;) coincide

with the action by conjugation @& on the sefL,, ..., L,} we obtain thatGp is a transitive subgroup
of Sym,. By [B, Hauptsatz 1.4, p. 413] there exists a monomorphism

¢ G — (Ng(L1) X...x Ng(Ln)) : (Gp) = Na(L1) 2 (Gp) = M.

SinceCg(L;) is a normal subgroup dds (L), it follows thatCg(L1) X. ..xCg(L,) is a normal subgroup
of M. Consider the natural homomorphism

/8 M— M/(Cg(l_l) X...X Cc;(l_n))
Denoting Aug(Li) = Ng(Li)/Cs(Li) by A; we obtain a homomorphism
oy :G - (AL x...xA): (Gp) =~ A (Gp) =: G.

The kernel of the homomorphismis equal3g(Ly, . . ., Ln) = {€}, i. €., oy is @ monomorphism and
we identify G with the subgroui(y o ) of G.

Lemmab. Let T = L; x... X Ly be a normal subgroup of G, ar(d), (2), (3) are fulfilled. Assume
also that GT is solvable and S is a maximal solvable subgroup of G sudiGhaS T. We identify
G, S, and T with their images under y. ThenG, defined above, possesses a solvable subgoup
withS > S andG = ST.

Proof. By constructionA; = Autg(Li) = Autg(Li) ~ Autg(L,) for all i. Since L, Lj] = 1 fori # |
andG = ST, we obtain that

A = Autg(Li) = Na(Li)/Cs(Li) = Ns(Li)T/Cs(L),

and soA /L =~ Ns(Li)/(Ns(Li) N LiCg(L))) is solvable. Therefor&/(L, x ... x Ln) = (A1/L1) ¢ (Gp)
is solvable. Denot& N T by H, thenH is solvable and, by Lemma & (H) = H. Moreover, if

~
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Hi = H N L, thenN, (H;) = H; (otherwise we would obtaihy(H) # H). It follows thatA; is equal
to Na (Hi)Li andNg, (H;) is solvable. Hence,

Al X...X An = (NAl(Hl) X...X N/_\n(Hn))T = NA1><...><AH(H)T

gnd Na,x..xa,(H) is solvable. Sinc& = (A, x ... x Ay)S, and sinceS normalizesH, it follows
G = Ng(H)T. MoreoverNg(H) is solvable and lies in Ng(H). |

Lemma 6. Let G be a transitive subgroup 8ym,. DenoteQ = {1,...,n}. Let H be the stabilizer of
1linG.

@ (Liy,...,i)and(d, jo,..., jx) are in the same G-orbit if and only (i, ..., i) and(j, ..., jk)
are in the same H-orbit;

(b) every G-orbit ofQ¥ contains an elemergl, i, . . ., iy);
(c) (L iy, ..., Iy is a G-regular point if and only ifi,, . . ., ix) is an H-regular point;
(d) the number of G-orbits i®* is equal to the number of H-orbits (& \ {1})<*;

Proof. (a) Evident.

(b) Follows from the fact thab is transitive.

() If (1,1y,...,ix) is aG-regular point, then (1,,...,iYg = (1,1,...,ix) impliesg = e. Assume
thath € H is chosen so that4...,ix)h = (i2,...,ix). SinceH is the stabilizer of 1, it follows
that (1ip,...,ikh = (L,i,,...,1x), henceh = eand {,,...,Ix) is anH-regular point. Conversely, if
(ip, .. .,Ix) isanH-regular pointand (d, ..., ixg = (L,i5,...,ik), we obtaing € H,and (5, .. ., ix)g =
(ip,...,Ix), henceg = eand (1i,,...,Ix) is aG-regular point.

(d) Clear from (a), (b) and (c). |

Recall thatG is called almost simple if there exists a nonabelian simpbeigL such thatL ~
Inn(L) < G < Aut(L).

Let G be a subgroup of Sym A partition {P1, Py, ..., Py} of {1,...,n} is called anasymmetric
partition for G, if only the identity element o6 fixes the partition, i. e., the equalify;x = P; for
all j =1,...,mimpliesx = e. Clearly for everyG the partitionP; = {1},P, = {2},...,P, = {n}is
always asymmetric.

Lemma 7. [B, Theorem 1.2] et G be a solvable group of permutations{®f2, ...,n}. Then there
exists an asymmetric partitigiy, Py, . . ., P} of this set with mx 5.

Lemma 8. Let G be a finite group and let M be a solvable subgroufwtf),. Assume that for every
maximal solvable subgroup S of G the inequalities

Base(G) < kand Reg;(G,k) =s>5
hold. Then, for every maximal solvable subgroup L ofNEwe haveBase (G M) < k. Moreover
Req (G:M,k) > s.

Proof. We haveG: M = (G; X...xGp) : M. MoreoverS(G: M) = S(Gy) X ... x S(Gy), since
Cu(G: x...xGy) = {e}. Assume by contradiction th&: M is a counter example to the lemma with
|G : M| minimal. Then clearh5(G: M) = {e}, i.e.,S(G) = {€}, otherwise we substitud by G/S(G)
and proceed by induction.
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SinceG : M is a counter example to the lemma, there exists a maximaaklawsubgrous
of G M such that for every,,...,x € G M we haveS* n ... N S* = {e}. Itis clear that
(G1 % ...xG,)S = G M, otherwise consider the imageof S under the natural homomorphism
G!M - Gt M/(Gy % ...xG,). We obtain that®; x ... x G,)S ~ G S, so we substitut& : M
by G S and proceed by induction. The fact ti@t M is a minimal counter example implies also
that M is transitive, otherwise we would obtain tHat M < (G M;) x (G M,) and proceed by
induction. Indeed denote the projectiong®f M ontoG: M; andG: M, by 7, andn, respectively.
Up to renumbering we may suppose that there exisssich thatG: M; = (G; x ... x Gy) : M; and
Gi!M; = (Gpy1 X ... X Gy) : My, DenoteG; X ... x Gy, by E; andGp,1 X ... X G, by E,. Since
G!M = (G x...xGp)S, E; < Ker(r,) andE, < Ker(ry), it follows that G M)z = Ei(Sx;) (we
identify E;jx; with E;, sinceEjx; ~ E;). Then, by induction for eache {1, 2} there exist elements
X1, - - -» X Of Ei(Sm;) such that

(ST N...N (Sm)y“ = {g). )

SinceGn; = E;j(Sx;), we may assume thadj, ..., X are inEj. Considerx; = X31X12,..., % =
X1Xk2- Since [R) is true for every for elementsy, ... ., X, we have

SN...NnSX* ={e},

andG is not a counter example.

Consider. = SN Gy x ... x G, and denote by; the natural projectio; X ... x G, — G;. Put
Li = L™. ClearlyL < Ly x...xL,. If xe SandG! = G;, thenL* = L;, sinceL is normal inS. Hence
S normalized; x...x Lyand soL = L; X ... X Ly, by the maximality ofS.

ClearlyNg, .. xc, (L1X...XLn) = Ng,(L1)X...XNg,(Ln). By Lemmg# we obtain thdg g, (L1X¥
...XLp) = Lix...xLy, henceNg, (Li) = Lj fori = 1,...,n. Denote byQ; the sefL* | x € G}, thenG;
acts ont; by conjugation. Sincdlg, (L) = L;, it follows thatL; is the point stabilizer under this action.
SetQ = Q) x...xQ,. Foreveryx € G:M and for every we havel.X < G; for somej. We show that
L e L(j;j, i.e., there existg € G; such thaﬂ_? =L Since G1 X ... xGp) : M = (Gy x ... x Gy)S,
it follows that there exists € S with G° = G;. We also have.® = L;, sinceL is normal inS. Thus
L= LJ.Sflx. Nowsix=gs-...-gn-h whereg; € G fori = 1,...,nandh € M. SinceM permutes
theG;-s, it follows that forevery = 1,...,n, eitherGihmGi = {e}, orh centralizes5;. Thus we obtain
that Lf’lx = Lﬁ”. SoG M acts by conjugation of2 andS is the stabilizer of the pointg, ..., Ly).
Therefore we need to show thaf possesses at leas(G : M)-regular orbits.

Now there existG;-regular pointsw;,...,ws € Q'; lying in distinct G;-orbits. If we choose
hy = ehy,....h, € M sothatG} = Gj, thenw},...,wd € QF areGi-regular points, and, as we
noted above, they are in distir@f-orbits. We sety; ; = w:‘j. By Lemmd} there exists an asymmetric
partitionP, LU P, LIP3 P, LIPs = {1,. .., n} for M. If we choosev = (wi, 1, . . ., wi,n) SO that; = ij if
and only ifi, j lie in the samé;, thenw is a (G:M)-regular point in¥. Clearly we can choose such
simces > 5. Indeed, considey = (g; ...gn)h, Whereg; € G fori = 1,...,nandh € M, and assume
thatwg = w. It follows thatwh™ = w(g; ...gn). We obtain that; jh™ = w; jh-1 = Wy jni-1gjhi-1 for
somem. Since for every = 1,...,npointsw, ' € Q are in the sam& : M-orbit if and only if w, ’
are in the sam&;-orbit, it follows thati = m. By construction,j and jh~? lie in the sameP;, hence
h~! stabilizes the asymmetric partitiéh LIP, LIP3 LIP,LIPs, and sch™ = h = eandg € G, x...xG,,.
By constructionw is aG; x ... x G,-regular point, i.e.g = e. Moreover, distinct point constructed
in this way are in distinct® : M)-regular orbits. Clearly we can construct at lesgbints in this way
(at least one 0Py, P,, P3, P4, Ps is nonempty) and the lemma follows. O
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3 Proof of the main theorem

Assume that the claim is false a@ds a counter example of minimal order.

Assume thaB(G) # 1. Then there exists a minimal elementary abelian normasupK of G.
Since elements from distinct minimal normal subgroups comemwve may suppose that < K and
there existd such thaiG, = K, i.e., composition serie$](1) is a refinement of a chief sestarting
with K. In this case, if

G- G/K=G

is a natural homomorphism, then
8=G <G,1<...<G, =G

is a composition series @ that is a refinement of a chief series®f Moreover, for every non-
abelianG;/G;_;, Lemma[B implies Au(G;/Gi_1) ~ Auts(Gi/Gi_1), and so Aug(Gi/G;_;) satisfies
(Orb-solv). ThusG satisfies conditions of the theorem. In view of the mininyatif G, there exist
X1, ..., X € G such that _ _

S“Nn...nS*=3(G).
Now K < S(G), henceS(G) = S(G). ThereforeS N ... N S* = S(G) and the claim holds, i.eG is
not a counter example.

Thus we may assume th8(G) = {e}. Consider the generalized Fitting subgraudG) of G.
SinceS(G) = {e}, we obtain thaF*(G) = E(G) = L1>< XL is aproduct ofnonabellan simple groups
and, by [1, Theorem 9.8 (F*(G)) = Z(F*(G)) = {€}. In particularS(E(G)S) = {€}. If E(G)S < G,
then, in vrew of the minimality ofG, there eX|stx1, ..., X € E(G)S such thath1 N...NS% =
S(E(G)S) = {e}. Thus the claim holds in this case, i.&.,is not a counter example. It follows that
G = E(G)S. Moreover sincd.y, ..., L, are nonabelian simpl€][5, Theorem 3.3.10] implies tat
acting by conjugation, interchanges the elementéqf. .., L,}.

SetE;, = <Lf>. SinceE(G) = L; x ... X Lk, we obtain thate(G) = E; x E,, whereE; and
E, areS-invariant subgroups. By Remak theordi [4, Theorem 4.8&jt exists a homomorphism
G — G/Cg(E;1) x G/Cg(Ey), such that the image d& is a subdirect product o6/Cs(E;) and
G/Cs(E>), while the kernel is equal t6g(E;) N Cs(E2) = Cs(E(G)) = {e}. Denote the projections
of G ontoG/Cg(E;) andG/Cg(E,) by n; andn, respectively. Sinc& = E(G)S E; < Ker(r,) and
E, < Ker(m,), it follows thatGr, = E;(Sm) andGr, = E,(Sxnp) (we identify Ejzrj and E; since
Eiﬂ'i = Ei).

Suppose thdE; # E(G). Then, by induction for eache {1, 2} there exist elementsj, . . ., X; of
Ei(Sr;) such that

(Sm)“ N...Nn(Sm)% = {e}. 3)

SinceGn; = E;j(Sx;), we may assume thadj, ..., X are inEj. Considerx; = Xj1X12,..., % =
X1 2. Since [B) is true for every for elements«, . . ., X we have

SN...NnS* ={e},

andG is not a counter example.

ThereforeE; = E(G) andS acts transitively oL, ..., Ln}. Since Aug(L,) satisfieqOrb-solv),
we may assume that > 1. By Lemmdp, we may assume th@at= (A; x ... X A) : K = Aj K,
whereA; = Autg(Li) andK = Gp = Sp < Sym, (in particular,K is solvable). Lemmp 8 implies that
Base(G) < k for every maximal solvable subgrodof G. This final contradiction completes the
proof.
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4 Final notes

In this section we discuss the meaning of R€&j k) and lower bounds for Re¢G, k), whereS is a
solvable subgroup o andk > Basg(G). If we have a groufs and a solvable subgroup of G,
then Theorenfi]1 gives us an idea, how to find B&S# or, at least, how to find an upper bound for
Base(G). However, for computation purposes one need to find alsdaise ofG with respect to
S, i.e., elementxq, ..., X such thatS* n ... N S* = Sg. In general there is no way to find these
elements and we can suggest just a probabilistic approaittisinlirection. Denote by the set of
right cosets ofs in G. If one knows that RegG, k) > sand|G : S| = |Q| = n, then|QX| = n¥, while
QX possesses at lea#/Sg| regular points. So the probability thatandomly chosen elements from
Q form a base o6 with respect t&5 is not less than

s-|G/Sg| S
€= K > 1
In Theorent]L the conditio(Orb-solv) demands that

Base(Autg(Gi, Gi_1)) < kand Reg(Auts(Gi, Gi_1), k) > 5.

We show that ik > 6, then we can guarantee that Reuts(Gi, Gi-1), K) > 5. More precisely,
the following lemma holds.

Lemma 9. Let G be a transitive permutation group acting On= {1,...,n} and let the stabilizer S
of 1 be solvable. Assume thatkmaxBase(), 6}. ThenReg(G, k) > 5.

Proof. In view of Lemmgp, we have th&acts on® = Q\ {1} and the number db-regular orbits on
QK is equal to the number @&-regular orbits or®*1. Thus we need to prove that R&gk — 1) > 5,
whereS acts or®. By the conditions of the lemma there exigts. . ., 6.1 € ® such thatd, ..., 0 1)
is anS-regular point in@%1,

ConsiderA = {6,...,06¢_1}, let T be the stabilizeroA in S, i.e.,,T = {xe€ S| AXx = A}. ltis
clear that €y, . . ., 6k-1)-) iS anS-regular point for everyr € Sym_,. Moreover ifo,7 € Sym_,,
then @y, ..., Ok-1),) and @i, . . ., O-1).) are in the sam8-orbit if and only if there existx € T such
that @1y, . . ., O-10)" = (b1, . .., O-1):). Consider the restriction homomorphigm T — Sym(@).
Since 01, ..., 6« 1) is anS-regular point (and so &-regular point), it follows thaKer(y) = {€}, i.e.,
@ is injective.

Assume thak > 9 first. Consider the asymmetric partiti®L P, LIP3 LIP4LIPs = {61,605, ..., 6k 1}
for T¥. Without loss of generality we may assume tfat > |P,| > |P3| > |P4| > |Ps|. Sincek > 9 it
follows that eitheltP,| > 3, or|P4| = |P,| = |P3| = 2.

If |P1] > 3, then, up to renumbering, we may assume thal,, 83 € P;. In this case for every
distincto, T € Sym; we have thati,, 62, 035, 64 . . ., Ok-1) and Q1r, O2;, O3, b4, . . ., O_1) are in distinct
T¢-orbits, thus these points are in distifictorbits, and so in distincg-orbits. So Redd, k — 1) >
| Sym;| = 6 in this case.

If |P1] = |P,| = |P3| = 2, then, up to renumbering, we may assume éhat € P4, 03,6, € P,, and
0s, 05 € P3. In this case for every distinet, 7 € Sym(1, 2}) x Sym(3, 4}) x Sym(5, 6}) we have that

(010" 020" 030" 940" 950" 960" 07 ey ek—l) and Gl‘r’ 02‘” 03‘” 04‘” 957? HGT? 67 ey ek—l)

are in distinctT¥-orbits, thus these points are in distifictorbits, and so in distinc-orbits. So
Reg, k—1) > | Sym(1, 2}) x Sym(3, 4}) x Sym(5, 6})| = 8 in this case.
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Now assume that & k < 8. Denote byE the subset(fy,, .. .,0k 1),) | o € Sym,_,} of AKL.
ThenT¢ acts on= and every point oE is T¢-regular. Moreovelg| = | Sym_, | = (k- 1)!. We also
have thafl¢ is a solvable subgroup of Sym. It is immediate (from[[B], for example), that?| < 12
fork = 6,|T¥ < 36 fork = 7, and|T¥| < 72 fork = 8. Now the number oT #-orbits onZ is equal

=22 and direct computations show that this number is at least 10. O
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