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A.V. Shtyka,b and M. V. Feigel’mana,b

a L. D. Landau Institute for Theoretical Physics, Kosygin str.2, Moscow 119334, Russia,b Moscow Institute of Physics and

Technology, Moscow 141700, Russia

Submitted November 17, 2010

Resubmitted November 17, 2010

We consider spin ice magnets (primarily, Dy2Ti2O7) in the vicinity of their critical point on the (H,T )

plane. We find that the longitudinal susceptibility diverges at the critical point, leading to the behaviour

qualitatively similar to the one which would result from non-zero conductance of magnetic charges. We show

that dynamics of critical fluctuations belongs to the universality class of easy-axis ferroelectric and calculate

logarithmic corrections (within two-loop approximation) to the mean-field critical behavior.

PACS: 75.40.Gb, 75.47.Lx

Spin ice [1] is a kind of geometrically frustrated mag-

netic materials with a structure of low-energy states

presenting deep similarity with usual water ice, those

H-bond structure was analized long ago by Pauling [2].

The most studied examples of spin ice include py-

rochlore oxides Dy2Ti2O7 and Ho2Ti2O7; their struc-

ture is shown in Fig. 1. Spin ice demonstrates a number

of peculiar low-temperature properties, the major of the

are: i) an extensive residual entropy, and ii) elementary

excitations resembling magnetic monopoles[3, 1]. Low

temperature dynamics of spin ice is governed almost

solely by these magnetic excitations, therefore one may

expect spin ice to demonstrate phenomena similar to

those known for the electrolytes. Indeed, it was recently

shown that some aspects of spin ice behaviour can be

described in terms of “magnetolyte” similar to the On-

sager theory [4] of electolytes [5]. It is also known [1],

that at low enough temperatures spin ice undergoes a

first-order transition as function of applied magnetic

field H . The first-order transition line in the (H,T )

plane terminates at the critical point Hc, Tc. In particu-

lar, Hc = 0.9T and Tc = 0.38K in the case of Dy2Ti2O7.

In the present Letter we calculate dynamic longitudi-

nal magnetic susceptibility of spin ice near this critical

point; our results predict the behaviour formally simi-

lar to the one expected for the media with a nonzero

“magnetoconductance”. We will explain, however, that

it would be incorrect to interpret these results in terms

of “direct current” of monopoles. Specific numerical es-

timates will be done for Dy2Ti2O7, whereas our general

scheme is applicable to any pyrochlore spin ice.

The crucial difference between spin ice and elec-

trolyte is the finite static magnetic susceptibility of

the former as opposed to the diverging dielectric low-

frequency response ǫ(ω) ∝ iσ/ω of any electrolyte with

Fig.1. Pyrochlore lattice consists of corner-sharing

tetrahedra; spins of dysprosium are siting at their ver-

tices.

a nonzero conductivity σ. The origin of this difference

can traced to the fact that magnetic monopoles of spin

ice are the sources of magnetization fieldM (or, equiva-

lently, magnetic field H), but they do not generate mag-

netic induction B, which is the proper analog of electric

field E for electrostatics [7].

Following [8], one can represent linear magnetic sus-

ceptibility of spin ice as

χ(ω, T ) =
1

χ−1
0 (T )− iω/Γ

(1)

where χ0(T ) ∼ µ2
B/(V0T ) is static susceptibility ( µB is

the Bohr magneton and V0 is the volume of an elemen-
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Fig.2. Pyrochlore lattice can be represented as a stack

of triangular and kagome lattices, with easy axis di-

rections being aligned with the bonds of diamond lat-

tice, which is dual to the pyrochlore lattice. Magnetic

monopoles are situated in the centers of tetrahedra.

tary cell). Therefore relaxation of magnetization after

the sudden switching of magnetic field is given by

M(t) = χ0H(1− exp[−Γχ−1
0 t]) (2)

At the small timescales t ≪ χ0/Γ the relaxation pro-

cess (2) resembles direct conductivity with ”magnetic

current” proportional to the external magnetic field:

jm = dM/dt = ΓH , thus the magnetic analog of con-

ductivity is σm = Γ. However, finite value of static

susceptibility χ0(T ) limits possible observation of mag-

netoconductivity to a transient regime only. Below we

consider the vicinity of the critical point (Hc, Tc) where

static susceptibility is expected to diverge, leading to

a broad timescale for the observation of magnetocon-

ductivity. We will use virial expansion in order to es-

timate the parameters of the Ginzburg-Landau free en-

ergy F{m} which describes fluctuations in the critical

region. Then we use this F{m} functional to construct

an effective Martin-Siggia-Rose functional [9, 10, 11]

which describes critical dynamics of spin ice, and study

it up to the two-loop logarithmic approximation.

The Hamiltonian of the spin ice is of the form[1]

H = −1

2

∑

i,j

Jij(ei · ej)SiSj − gµBH

∑

i

eiSi (3)

+Da3
∑

(ij)

[

ei · ej
|rij |3

− 3(ei · rij)(ej · rij)
|rij |5

]

SiSj

Here Si = ±1 is an effective Ising variable which de-

scribes sign of magnetic moment µi = Siei of the i-

th Dysprosium ion; the magnitudes |µi| = µ ≈ 10µB,

whereas ei are the unit vectors along easy axis, see

Fig. 2, the direction of axes being chosen with respect

to one of the tetrahedral sublattices, see Fig. 1. Param-

eters Jij describe exchange interactions between first-,

second- and third-order neighbours, their magnitudes

were determined [6] as J1 = −3.72K, J2 = 0.1K and

J3 = −0.03K respectively. External magnetic field H is

directed along the [111] axis, and the last term in Eq.(3)

stands for the magnetic dipole-dipole interaction, the

dipole interaction constant D = µ2/a3 = 1.41K, where

a = 3.54Å is the pyrochlore lattice constant (it is equal

to the nearest-neighbour distance, see Fig. 2).

We will study the system described by the Hamil-

tonian (3) near the critical point, where large average

magnetization M̄‖ along the field direction is induced.

Deviation m of the actual magnetization M‖ from its

average value at the critical point M̄‖(Hc, Tc) can be

considered as an order parameter which describes the

state of the system in the vicinity of the critical point.

The corresponding Ginzburg-Landau free energy func-

tional is of the form

F =

∫

dV

[

1

2
m(a+ b̂)m+

λ

4!
m4 −mh

]

(4)

where a = α(T−Tc) and h = H−γ(T−Tc). In a system

with local interactions one would find b̂ = bk2 = −b∆,

but our case is different due to the presence of strong

dipole-dipole interactions. Similar problem of second-

order phase transition in uniaxial ferroelectric was con-

sidered in the seminal paper [12], where it was shown

that in presence of dipole-dipole interaction operator b̂

should be modified as follows:

b̂ = bk2 + 4πx2 (5)

where x = kz/k and the z is [111] axis. We are inter-

ested here in the frequency-dependent susceptibility of

spin ice, and thus we need to extend the renormaliza-

tion group analysis developed in Ref. [12] for the criti-

cal dynamics. Due to absence of any locally conserved

quantities in the problem, the system can be described

by purely relaxational dynamics governed by the free

energy (4):

∂tm = −Γ
δF
δm

(6)

To obtain estimates for coefficients in (4) we use virial

expansion as described below; the estimate for the ki-

netic coefficient Γ will be provided at the end of this

Letter. At low temperatures T ≪ Tc, in the high-H

phase almost all spins are aligned with the magnetic

field, while in the low-H phase the same is valid for

the spins of triangular sublattices only; configurations

of other spins is governed by the kagome ice rules, see
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Fig. 2 and Ref.[1]. One possible way to estimate the

parameters of F near the critical point would be to con-

sider gas of interacting monopoles taking into account

their direct as well as entropic interactions [13]; similar

problem of lattice ion systems was considered in [14].

However, we prefer to start from the high-H phase and

to consider an exponentially dilute (far from the critical

point) gas of flipped spins as a lattice gas of interacting

particles. Such an approach will be approved a poste-

riori by the numerically small concentration of flipped

spins even at the critical point. Using the Hamiltonian

(3) we obtain the energy of such a particle (siting in the

site 0) in the form

E0 =
2

3
µH + 2

∑

i

J0i(e0 · ei)Si − (7)

2Da3
∑

i

[

e0 · ei
|r0i|3

− 3(e0 · r0i)(ei · r0i)
|r0i|5

]

Si

where Si = 1 on triangular sublattices and Si = −1

on kagome sublattices. The interaction of two particles

siting in the sites i and j is equal to

Uij =
4

3
Jij + 4Da3

[

ei · ej
|rij |3

− 3(ei · rij)(ej · rij)
|rij |5

]

(8)

Now we can employ virial expantion [15] in terms of

small density of particles n, to obtain free energy

F (n) = TN0[−1−n−b2n
2−(b3−2b22)n

3+
E0

T
n+n lnn]

(9)

where T -dependent functions

b2 =
1

2!

∑

i

f0i, with fij = exp

[

−Uij

T

]

− 1

b3 =
1

3!

∑

i

∑

j

[f0ifijfj0 + f0if0j + fi0fij + f0if0j ]

are ”cluster integrals” given by the summation over

the lattice. We calculate these sums numerically and

find the position of the critical point Hth
c = 1.37T ,

T th
c = 0.85K and critical concentration of “particles”

nc = 0.14 from the conditions

dF

dn
= 0,

d2F

dn2
= 0,

d3F

dn3
= 0 (10)

Smallness of nc supports qualitative validity of our

virial expansion; however, experimental values of Hc

and Tc are below our estimates by factors 1.5-2. With

the position of the critical point being determined, we

can estimate values of the parameters entering free en-

ergy functional F :

α =
da

dT
= 50K−1, λ = 1300Å

3 ·K−1, γ = 0.2T·K−1

(11)

Fig. 3. Diagrams responsible for the renormalization

of coefficients b and Γ. Solid lines represent correla-

tion function 〈m1m2〉, and mixed lines correspond to

response function 〈m1p2〉.

However, virial expansion is not useful to determine the

coefficient b entering the gradient term in (4); thus we

estimate it within nearest-neighbours approximation,

neglecting long-distance tail of the dipole-dipole inter-

action:

b ≈ 5
√
2

24

J1 + 5D

D
a2 ≈ 26Å

2
(12)

Coming back to the problem of longitudinal suscep-

tibility and considering it in the mean-field approxima-

tion, one obtains (1) with χ−1
0 = α(T − Tc), so exactly

in the critical point χ ∝ iΓ/ω. We will see below that

account of fluctuations do not change this result consid-

erably, leading to logarithmic corrections only.

With the parameters of the free energy (4) speci-

fied, we move to the analysis of critical fluctuations and

their role in the dynamics. Thus we construct, using

Eqs.(4,6), the Martin-Siggia-Rose [9, 10, 11] dynamic

action

I =

∫

dtdV [Γ−1p∂tm+apm+pb̂m+
λ

6
pm3−ph+iTΓ−1p2]

(13)

where p = p(t, r) is the dynamic field conjugated to the

magnetization field m = m(t, r), and the last term in

the action describes thermal noise. The estimate for the

kinetic coefficient Γ will be provided later. Summation

of leading logarithmic corrections with the action (13)

up to one-loop approximation can be done in complete

analogy with the paper of Larkin and Khmelnitsky [12],

as it refers to the static quantities only:

dλ

dξ
= −gλ,

da

dξ
= −1

3
ga

g =
3T

16π
√
4πb3

λ, ξ =
1

2
ln

bΛ2

bk2 + 4πx2
(15)

where Λ ∼ a−1 is an ultraviolet cutoff. Renormaliza-

tion of the gradient term b and the kinetic coefficient

Γ appears in the second-loop approximation only. The

corresponding diagrams are represented in Fig.3. Cal-

culation of these diagrams leads to the renormalization-

group equations
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− dΓ

dξ
=

2C

33π6
g2Γ,

db

dξ
=

22

35
g2b, C =

∞
∫

0

dpds

p3s2
f3(s, p)(16)

f(s, p) =

∫

q>0

q2dqdξdϕ

q2 + ξ2
exp[−q2 + ξ2

s
+ i

q

p
cosϕ+ iqξ]

where the constant C ≈ 400. The solution of equations

(16) is as follows:

g =
g0

1 + g0ξ
, a =

a0

(1 + g0ξ)
1

3

(17)

b = b0 exp[
4

35
g20

1 + g0ξ
]

Γ = Γ0 exp

[

− 2C

33π6

g20
1 + g0ξ

]

ξ =
1

2
ln

bΛ2

|a|+ bk2 + 4πx2 + |ω|/Γ

Using Eqs.(11,15) we find that initially value of coupling

constant is g0 = 0.15 ≪ 1. Then renormalization of b

and Γ is very small numerically and we neglect it, so the

susceptibility takes the form

χ =
1

a(k, x, ω) + bk2 + 4πx2 − iω/Γ
(18)

and in the uniform field

χ =
1

a− iω/Γ
, a(T ) =

α(T − Tc)

(1 + 1
2g0 ln

bΛ2

α|T−Tc|+|ω|/Γ)
1

3

(19)

This is the result in the absence of effective field h which

is defined after Eq.(4). If the temperature T = Tc, then

the renormalization cutoff will be determined by h, i.e.

by the deviation H −Hc

χ =

(

9

2
λ0h

2

)− 1

3

(

1 +
1

2
g0 ln

bΛ2

(λ0h2)
1

3 + |ω|/Γ

)− 1

3

(20)

Exactly at the critical point a = 0 and χ ∼ iω−1.

However, in this system there is no conductivity in the

usual sense. The point is that our lattice consists of a

stack of interchanging kagome and triangular layers. In

moderate magnetic fields (in particular, in the vicinity

of the critical point), orientation of spins on the triangu-

lar layers are almost fixed. This results in the situation

when monopoles are bound to theirs kagome layers and

thus there is no direct motion of monopoles in the direc-

tion of the field. In fact, monopoles of one kagome layer

reside in centers of tetrahedra, i. e. on two sublattices

that are separated by a finite distance h = ad/3 in the

direction (1, 1, 1) of the applied field. Thus positive-

charge and negative-charge monopoles will be siting,

preferably, on the ”upper” and ”lower” sublattices cor-

respondingly, with the energy difference µH/3 between

them. As a result, magnetization is primarily deter-

mined by the concentration of the monopoles.

Finally, we need to estimate relaxation rate Γ. Dy-

namical processes in spin ice at low temperatures and in

low-field phase are governed almost solely by monopoles.

Ground state doublet of each spin is separated by large

energy gap ∆ ∼ 300K from higher-energy states([1]).

Thus, at temperatures T ≤ 1K, processes of spins flips

are solely quantum. Then, the dependence of magneto-

conductivity on temperature follows Arrhenius law with

activation energy Em ≈ 1K corresponding to the cre-

ation of one monopole. Reminding the relation between

Γ and σ, we find

Γ(T,H = 0) = Γ0e
−Em/T (21)

where Γ0 is temperature-independent. Low-field dy-

namical magnetic susceptibility of Dy2Ti2O7 was mea-

sured in Ref. [16]. Using the results [16] for the imagi-

nary part of susceptibility together with Eq.(1), we ob-

tain

Γ(T = 1.8K, H = 0) ∼ 100s−1

Comparing it with Eq.(21) and the estimate for Em. we

conclude that Γ0 ∼ 100s−1 as well.

The nature of spin relaxation in spin ice near critical

point is not quite clear. As we already mentioned above,

in presence of magnetic field∼ 1T , positive and negative

magnetic charges reside on different sublattices and the

tunneling processes become essentially modified, as the

positions of monopoles on the kagome lattices are not

equivalent. There are two possible scenarios for tun-

neling processes: sequential and simultaneous flips of

two spins. Below we estimate the rate of sequential

process, which will provide the lower bound for the re-

laxation rate near critical point. Energy difference for

the monopoles of the same sign siting in two kagome

sublattices leads to the exponential ratio of their con-

centration: N2 = N1 exp[−µH/3T ]. On the other hand,

detailed balance condition reads N1Γ1 = N2Γ2 where

subscript “1” refers to monopoles situated on ”native”

sublattice, and subscript “2” to ”foreign” ones. Assum-

ing Γ2 ∼ Γ0 since no additional barrier exists for the

hopping of monopole from a “foreign” site to a “native

one”, we come to the estimate

Γupper(H,T ) ∼ Γ0(0, T ) exp[−µH/3T ] (23)

and eventually Γc ∼ (0.1÷ 100)s−1.

In conclusions, we calculated dynamic spin suscep-

tibility of spin ice material Dy2Ti2O7 near the critical
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point. Logarithmic corrections due to critical fluctua-

tions are found to be small. The response of the form

χ(ω) ∼ (iω)−1 is predicted in the broad range of low

frequencies. Measurement of the prefactor in this de-

pendence would allow to determine the nature of ele-

mentary spin flip processes near critical point.
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