論 文

佐賀におけるエアロゾル光学特性の長期観測結果に基づく ASTER/VNIR センサの代替校正

新井康平*

Vicarious Calibration of ASTER/VNIR Onboard Terra Satellite Based on Measurements and Characterization of Aerosol Refractive Index and Size Distribution

Kohei ARAI*

Abstract

A method for the after-launch verification of the linearity of the satellite based visible near-infrared radiometer using two or more earth surfaces where reflection factors differ is proposed. Through the check by experiment were performed and confirmed validity. Moreover, validity of the empirical refractive index for vicarious calibration determined from our four year observation data of the solar direct, diffuse and aureole was checked through a comparison to the vicarious calibration with the directly measured refractive index using solar direct and diffuse irradiance measurement data. As a result of applying the aforementioned empirical aerosol parameters to vicarious calibration of ASTER/VNIR, validity of the empirical aerosol parameters are confirmed for 7.5 years of ASTER/VNIR data. It is also found that linearity of VNIR response (input to output characteristic) is confirmed.

Keywords : Vicarious calibration, Refractive index, Size distribution, Linearity, Solar reflectance wavelength channels

1. まえがき

フィールド実験を伴う代替校正は殆どの衛星搭載可視近 赤外放射計に対して実施されている。例えば、ランドサッ ト MSS, TM, ETM+では Barker 達¹⁾が, SeaWiFS では Barnes igestimesが, SPOT/HRV, HRVIR では Gellman igestimesが, そして, MODIS, 等 Earth Observing System 計画における ミッション機器の代替校正では Thome 達4) が砂漠等の反 射率の高い地表面を用いた代替校正の方法を提案し、その 代替校正結果を報告している。それらの方法は地表面反射 率(直下視でない場合は Bi-Directional Reflectance Distribution Function: BRDF⁵⁾)の計測およびこの波長帯におい て消散に寄与する水蒸気、エアロゾル、オゾン、空気分子 の光学的厚さの計測を行い、これらを基に放射伝達式を解 いて大気上端放射輝度を推定し,衛星搭載可視近赤外放射 計データと比較することによって校正する「反射率に基づ く代替校正」が殆どである⁶。また、大気の影響を考慮しな くても済む「月」を校正源とした代替校正も実施されてい る²⁾⁷⁾。さらに、同じ、または、他の衛星に搭載された観測 波長のオーバーラップしている同種のセンサデータの相互 比較による校正等も行われている⁸⁾⁹⁾。

衛星搭載可視近赤外放射計の軌道上でのセンサ特性の評価のひとつに線形性の評価がある。また,信号対雑音特

* Saga University, 1 Honjo, Saga, 840-8502, Japan

反射率に基づく代替校正においてエアロゾルの複素屈折 率は実測値よりも経験的な値を用いることが多かった。エ アロゾルの複素屈折率の推定には太陽の直達, 散乱, 周縁 光の計測が必要であり10,これには少なからず規模の大き な,携行が困難な装置が必要であることから経験値にて実 測値を代用していた。しかし,一般に実測値が経験値より もより現実に近く、複素屈折率が代替校正精度に及ぼす影 響11)は少なくないことも事実である。したがって、本研究 では、まず、複素屈折率の経験値を代替校正に用いること の影響を MODerate resolution atmospheric TRANsmission: MODTRAN¹²⁾によって明らかにし、次にASTER/VNIR (Advanced Spaceborne Thermal Emission and Reflection radiometer / Visible and Near-Infrared Radiometer)^{13) 14)} の代 替校正における実測値と経験値の差として評価した¹⁵⁾。こ の時,4年間にわたる佐賀大学周辺のエアロゾルの太陽直 達および散乱光の観測を通じたエアロゾルパラメータの特 性化を行った結果としてエアロゾル複素屈折率の経験値を 導出し¹⁶⁾,用いた。複素屈折率の実測値および経験値を用 いた場合の代替校正を行い、両者を比較することによりこ の影響を定量的に明らかにした。

^{(2007.5.17} 受付,2008.1.28 改訂受理) * 佐賀大学

^{〒840-8502} 佐賀市本庄1番地

Fig. 1 Parameterization of optical depth of total atmosphere, water vapor, ozone, molecule and aerosol with the observed optical depth (cross mark).
AOD : Atmospheric optical depth, OD_H₂O : Optical depth of water vapor, OD_O₃ : Optical depth of ozone, OD_MOL : Optical depth of molecule, OD_OBS : Observed atmospheric optical depth, OD_AER : Optical depth of aerosol

性¹⁷⁾や校正精度は入力放射輝度に依存する。特に後者を評価 するため、本研究では反射率の異なる複数の地表被覆物を用 いて代替校正を行う方法を提案する。この方法をASTER/ VNIR に適用し、妥当性を確認したのでここに報告する。

2. エアロゾル複素屈折率および粒径分布の 実測に基づく代替校正法

2.1 代替校正法

代替校正では、まず、衛星に同期した地上実験を行う。 地上実験では、(1) 地表面反射率計測 (Spectra Vista Co. 社 製 GER-2600 および英弘精機社製 MS-720), (2) 太陽直達 光, 散乱光, 周縁光 (プリード社製 POM-I) および偏光 (オ プトリサーチ社製 PSR-1000)の観測を行う。太陽直達光観 測では MICROTOPS-II(オゾン・水蒸気チャンネル仕様) によるオゾン吸収,水蒸気吸収を用いたオゾン全量,全気 柱水蒸気の計測も行う。これらオゾンと水蒸気の吸収特性 は既知であり、オゾン全量および水蒸気量の計測値を与えて これらの光学的厚さを推定する。また、別仕様の MICRO-TOPS-II(光学的厚さ計測仕様)による(368, 500, 675, 778,862,1020nmの波長における)全大気の光学的厚さの 計測も同時に行う。これらは大気組成分子の吸収が少ない波 長である。これらの波長における光学的厚さを MODTRAN 4.0 の中緯度夏期および冬期(観測時期に合わせる)の標準 大気における光学的厚さに、最小二乗の意味で最良となる ようにフィッとさせ、オゾン、水分子以外の大気組成分子 の光学的厚さを推定する。Fig.1に離散的な波長における 光学的厚さの計測値(図中x印)から連続波長における光 学的厚さを推定した結果を示す。ここで AOD, OD H₂O,

OD_O₃, OD_AER はそれぞれ, MODTRAN によって推定 した全大気,水分子,オゾン,エアロゾルの光学的厚さ, OD_OBS は離散波長で観測した全大気の光学的厚さを示 す。この時,空気分子による散乱(レイリー散乱寄与成分) は気圧(大気空気密度)と波長の関数として推定し,全大 気の光学的厚さからこれらを差し引くことにより,エアロ ゾルのみの光学的厚さを求める。さらに,太陽直達,散乱, 周縁光および偏光の観測データを用い,エアロゾルの複素 屈折率および粒径分布を同時推定法¹⁸⁾に基づき推定する。 これら推定大気パラメータおよび地表面反射率から多重散 乱を考慮した放射伝達式の解法である MODTRAN, 6S, ガウスザイデルモデル⁵⁾等にて大気上端放射輝度を推定す る。これを衛星搭載可視近赤外放射計の入力放射輝度と比 較することにより代替校正による校正係数とする。

2.2 佐賀大学周辺のエアロゾル複素屈折率と粒径分布 の推定

粒径分布は光学的厚さの波長特性からオングストローム 指数+2により推定することができるが¹⁹⁾,エアロゾル複 素屈折率は光学的厚さのみの計測では推定できない。代替 校正に用いるエアロゾル複素屈折率は、太陽直達、散乱、 周縁光の計測を直接行い、これらに基づき推定することが 望ましいが、これらの特性化を行って経験値を導出して用 いる方法もある。本研究は、経験値の妥当性を評価するこ とを目的としている。すなわち、経験値を導出するために 用いた太陽直達、散乱、周縁光の計測期間が経験値の信頼 性に及ぼす影響を評価する。大気状態は時々刻々変化して いるので直接計測することが最良である。しかし、太陽直 達、散乱、周縁光の計測を可能にする計測器は重量、形状 の観点から代替校正のためのテストサイトに展開すること

Fig. 2 Changes in Top Of the Atmosphere : (TOA) radiance when ± 5 and 10% of errors are added to the estimated real and imaginary parts of refractive index and the Junge parameter of aerosol size distribution for the data observed at Saga university on December 13 2003.

が困難な場合がある。

一方, AERONET*1, SKYNET*2等によりエアロゾル複 素屈折率、粒径分布の時間・空間分布が全球規模にて取得 されているが、代替校正のためのテストサイトのエアロゾ ル局所性には必ずしも対処できない。したがって、長期間 にわたる太陽直達, 散乱, 周縁光の計測に基づき, 複素屈 折率の経験値を導出し、代替校正に用いることがよく行わ れている。この経験値の良否は、当然、代替校正精度に影 響を与える。たとえば、複素屈折率の実部、虚部および粒 径分布を表すユンゲパラメータに故意に誤差を重畳させた 場合の大気上端放射輝度推定値の変化を Fig. 2 に示す。こ れは, 2003 年 12 月 13 日に佐賀テストサイトにおいて測定 した大気の光学的厚さ,太陽直達,散乱,周縁光等より推 定したエアロゾル複素屈折率と粒径分布をユンゲ分布と仮 定したときのパラメータに基づき, MODTRAN (中緯度冬 期モデル)を用いて ASTER/VNIR バンド1 (550 nm), バ ンド2 (650 nm), バンド3 (810 nm) に対する大気上端放 射輝度を求めたものに基づいている。複素屈折率およびユ ンゲパラメータに故意に±5 および 10%の誤差を与えて 感度解析を行った結果,複素屈折率の実部が±10%変化す ると、大気上端放射輝度は Fig. 2 に示すように-1.7 から 2.8%変化しており、これと同様の虚部の変化に対しては -0.19から0.28%に相当しており、また、この変化はユン ゲパラメータに対しては-0.94から1.7%の変化である。

経験値の良否はこの推定に用いる太陽直達,散乱,周縁 光の計測期間に依存すると考えられる。そのため、本研究 は2003 年から2007 年までの4年間の佐賀大学周辺におけ る太陽直達,散乱,周縁光の計測に基づき,エアロゾル複 素屈折率および粒径分布の特性化を行い,それらの経験値 を導出し,代替校正に用いる場合と実測値から直接推定し た場合とを比較することによって,経験値の良否を評価す

*2 http://atmos.cr.chiba-u.ac.jp/

ることにした。

2.3 反射率の異なる複数テストサイトを用いた可視近 赤外放射計の線形性の代替評価

反射率の異なる地表被覆物を観測した可視近赤外放射計 データから放射計の線形性を評価することができる。この 時,大気の影響を考慮した大気上端放射輝度によって評価 する。

3. 実験結果

3.1 代替校正係数のトレンド解析

ASTER/VNIR は校正光源(ハロゲン球),校正光源の光 量モニタ(シリコンフォトダイオード)および校正光学系 を2系統搭載している。この搭載校正系によって17日に1 回の頻度で取得される校正データに基づきラジオメトリッ ク校正係数(Radiometric Calibration Coefficient: RCC)を 算出している²⁰⁾。この係数は打ち上げ前校正データ(地上 試験により定点黒体によって値付けられた積分球を光源と した校正光に基づき, VNIR の校正系の出力との関係から 導出した校正データ)との比を示しており, VNIR のゲイ ンの打ち上げ前試験時点からの劣化を表している。

Fig. 3 に搭載校正系による RCC(搭載校正 RCC)のトレンドを破線によって示す。打ち上げに伴う諸現象(真空シフト等による校正光量の変化等の影響)により,打ち上げ直後の搭載校正 RCC は 2.5% 程度変化している。その後の経過はほぼ負の指数関数にしたがって変化し続けている。このような指数関数的変化は,光学系前面に微小粒子(例えば,軌道・姿勢制御のためのヒドラジン等の燃料)が時空間的にランダムに付着するような場合や,太陽フレアの高エネルギー粒子が光学系の透過率を減少させるような場合等に相当するが,原因は特定できていない。同図には,また,代替校正によって求めた RCC (代替校正 RCC)をプロットしてある。代替校正に伴う地上実験は米国ネバダ

^{*1} http://rapidfire.sci.gsfc.nasa.gov/aeronet/

Fig. 3 Trend of the ASTER/VNIR Radiometric Calibration Coefficients (RCC) for 7.5 years since launch (Three vicarious RCC are estimated for the data acquired on December 15 2004, January 3 2006 and January 22 2007).
 OBC stands for Onboard Calibration Coefficient, Saga (E) and Saga (M) denote Vicarious calibration coefficient with field data measured at Saga with empirical refractive index and those with directly measured refractive index.

州とカリフォルニア州の境に位置する Ivanpah プラヤ (IV) およびネバダ州に位置する Railroad Valley プラヤ (RRV) において実施した。これらテストサイトは比較的 大気が薄く(高地に存在),地表被覆が広域にわたり一様で あることを条件に選定した。Fig. 4 (a), (b) にこれらテス トサイトの位置を示す。

打ち上げ後2年程度までの期間は、地表面反射率計測の ために使用した分光放射計の種類が異なり、反射率計測の ばらつきが主な原因となって代替校正 RCC がばらついて いる。後半は分光放射計を MS-720 に統一し、反射率計測 が安定して行えるようになり、代替校正 RCC のばらつき が減少している。2003年12月13日,2004年12月15日, 2006年1月3日および2007年1月22日に佐賀テストサイ ト (Fig. 4 (c)) において地上実験を行った。2003 年 12 月 13日の衛星通過時刻においてうろこ雲の影響があったが テストサイトにおいては観測データが得られた。その結果, Fig. 3 に示すように代替校正 RCC を求めることができた。 代替校正 RCC は(E)および(M)の2種類がある。前者 は経験的複素屈折率を用いる場合であり、後者は実測値か ら推定した複素屈折値を用いる場合である。両者とも傾向 を同じくするが、経験的複素屈折率は4年間における平均 的な値であるので観測日による気象条件等が変動の影響に より、実測に基づく複素屈折率と異なる。そのため、経験 的複素屈折率を用いる代替校正 RCC はばらついている。 各観測日における複素屈折率は、(1) 2003 年: 1.521-0.022i, (2) 2004年: 1.488-0.018i, (3) 2006年: 1.493-0.019i, (4) 2007 年: 1.542-0.023i であった。Fig. 3 の代替校正 RCC は それらを反映した結果となっている。

以上のことから,適切な期間にわたってエアロゾルパラ メータの特性化を行って求めた複素屈折率の経験値なら ば,実測値からさほど乖離せずに代替校正に用いることが

できるといえる。

3.2 佐賀テストサイトにおけるエアロゾルの特性評価

佐賀大学運動グランド (Fig. 4 (c)) を主なテストサイト とし、エアロゾルの特性化を試みた。2003年から2007年 までの4年間の太陽直達,散乱,周縁光の観測に基づき, 波長 550 nm におけるエアロゾルの光学的厚さ, 複素屈折 率の実部および虚部,非対称性因子,単散乱アルベドを推 定した。それらの月平均値の4年間にわたる変動,四季そ れぞれの日変化を調べた。日変化は毎正時±30分における 平均値を毎正時の値として図示している。また、エアロゾ ルの粒径分布は四季それぞれの時間平均値としてその変化 を調べた。これらの結果を Fig. 5, 6, 7 にそれぞれ示す。 Fig. 5(a)から、光学的厚さは季節の移り変わりによって 大きく傾向を異にすることが分かる。すなわち,春,秋, 冬の光学的厚さは時刻とともに漸増傾向にあり、0.1から 0.35程度で推移しているが、夏のそれは7から9時頃と 16から18時頃にピークが見られる。これらは陸風海風に 伴う有明海からの潮風の影響と考えられる。Fig. 5(b)の 単散乱アルベドの変化は 0.72 から 0.95 程度であり,朝晩 が比較的大きく、南中時付近で小さくなる傾向が見られ る。したがって、日中は散乱に寄与する成分よりも吸収に 寄与する成分が大きくなっていることが分かる。Fig. 5 (c) の非対称性因子は単散乱アルベドと同様な傾向を示してお り, 0.62 から 0.8 程度を推移しているが、全体に時刻とと もに漸減傾向にある。これは粒径が大きくなるほどミー散 乱による前方散乱が卓越することに起因していると考えら れる。Fig. 5(d)の複素屈折率の実部は1.4から1.63程度 で変化しており、漸増傾向にある。また、朝晩に比べ南中 時付近において大きくなる。Fig. 5(e)の複素屈折率の虚 部は 0.002 から 0.058 と比較的大きく変化し、実部の変化 と傾向を同じくしている。

(a)A portion of ASTER/VNIR image of Ivanpah Playa near by root#15, in U.S.A.(35:56.920N, 115:39.733W 800ff) which was acquired on June 4 2000.

(b) A portion of ASTER/VNIR image of Railroad Valley Playa near by state root#6 in U.S.A.,(38:30.264N, 115:41.486W, 4730ft) which was acquired on June 17 2002.

(c)A portion of ASTER/VNIR image of Saga test site near by Saga University in Japan (33:14.459N, 130:17.325E, 80ff) which was acquired on December of 13 2003.

Fig. 4 Three designated test sites for vicarious calibration of ASTER/VNIR.

Fig. 6から月平均値の推移を見ると, Fig. 6 (a) の光学的 厚さは 0.22 から 0.42 の間で変化し, 8 月をピークに単峰 特性を呈している。Fig. 6 (b) の単散乱アルベドは 7, 9 月 をピークとした双峰特性であり, 0.815 から 0.885 の間で 変化している。また, 同図 (c) の非対称性因子は 7 月を ピークにした単峰特性であり, 0.665 から 0.722 の間で変 化している。同図 (d), (e) の複素屈折率実部および虚部は それぞれ 7 月および 9 月を極小値とする下に凸の特性を示 し, 前者が 1.38 から 1.54, 後者が 0.012 から 0.035 の間で 推移している。

Fig. 7 に示した季節別の粒径分布に特徴的なことは、季

節を問わず,双峰特性となっていることにある。最初の ピークは 0.2µm,二つ目のピークは 2 から 3µm にある。 夏,春,冬,秋の順にエアロゾルの体積粒径分布が大きい。 佐賀平野においては冬の季節風を遮るほどの高山がなく,湿 度の高い風が平野を吹き抜けるため、冬におけるエアロゾ ル量が大きくなる。また,この粒径分布からエアロゾル組 成は比較的粒径の大きな海塩粒子および比較的粒径が小さ い水溶性粒子性エアロゾルの混合であることも分かる。さ らに,海塩粒子および水溶性粒子性エアロゾルの複素屈折 率は 1.381-0.000000042i および 1.55-0.006i であり、煤性 エアロゾルは 1.75-0.44i であることから²¹⁾ Maxwell Garnet

(e)Imaginary Part of Refractive Index

8

10

12

Local time (hr)

14

16

0

6

Fig. 5 Diurnal change of (a) Aerosol Optical Depth, (b) Single Scattering Albedo, (c) Asymmetric Factor, (d) Real Part, and (e) Imaginary Part of the Refractive Index of aerosol.

エアロゾル混合モデル²²⁾を用いて解析すると,海塩粒子が 29%,水溶性粒子性エアロゾルが71%に多少の煤性エア ロゾルが混合されたものであると考えられる。

3.3 ASTER/VNIR の線形性の検証

2007 年 1 月 22 日に, 佐賀大学グランド周辺で 7 箇所の地 表面反射率の異なる裸地をテストサイトとして代替校正を 実施し,実験値から推定した大気上端放射輝度と ASTER/ VNIR データから導出した輝度値とを比較した。このテス トサイトは,地表面反射率が比較的低いので代替校正には 不利であるが,大気状態が比較的安定している冬期に実施 した。衛星通過時刻付近(地方降交時 11 時)におけるエア ロゾル複素屈折率の 2003-2007 年の観測期間の平均値(実 部:1.5, 虚部:0.02)を経験値として用いることとした。 また,この経験値に基づき代替校正係数(RCC)を求め, 直接計測した複素屈折率を用いて求めた代替校正係数 RCCと比較することによって,経験値の不確定性を評価 した。

Fig. 8 (a), (b), (c) にそれぞれ, 実測地表面反射率と推定大気上端放射輝度との関係, 推定大気上端放射輝度と VNIR データから求めた放射輝度との関係および両者間のパーセント偏差と地表面反射率の関係を示す。線形回帰分析により回帰係数を求めてみると, Table 2 に示すスロープとバイアスであることが分かった。また, 同表には両者の相関係数も示す。Fig. 8 (b) と Table 2 から, ASTER/

Fig. 6 Monthly change of (a) the aerosol optical depth, (b) Single scattering albedo, (c) asymmetric factor, (d) real part and (e) imaginary part of the refractive index.

VNIR の各バンドのリニアリティは極めて良好であること が確認できた。さらに, Table 1 には Fig. 3 の搭載校正 RCC と代替校正 RCC との間の 2007 年 1 月 22 日時点における ゲインとオフセットも併せて示した。これらゲインとオフ セットを,線形性を検証するために求めたスロープとバイ アスと比較すると, Fig. 9 となっている。同図では, スロー プの変化をバイアスのオーダーに合わせるため, ゲインと スロープを 10 倍にして示している。ゲインとスロープ, オ フセットとバイアスの傾向は, それぞれ,極めてよく一致 しており,提案手法の有効性が改めて確認できた。

4. あとがき

本論文は,特定地域(佐賀大学周辺)におけるエアロゾ ル複素屈折率および粒径分布を長期にわたる太陽直達,散 乱,周縁光および大気光学的厚さの計測から特性化し,そ れらの経験値を導出することができることを示した。ま た,経験値および実測値を用いた代替校正結果を比較し,次に示す知見を得た。

(1) 十分な期間にわたってエアロゾルパラメータの特性 化を行って求めた複素屈折率の経験値は、実測値か らさほど乖離せずに代替校正に用いることができる。

Fig. 7 Volume spectra (Diurnal change of the aerosol size distribution) in (a) winter, (b) spring, (c) summer and (d) fall seasons.

(a)Estimated TOA rudiance as the function of surface reflectance.

(c)Percent difference between estimated and ASTER/VNIR derived radiance as the function of surface reflectance.

(b)Relation between estimated and ASTER/VNIR derived radiance.

Fig. 8 ASTER/VNIR linearity validation results with the different surface reflectance of the bare soil fields measured at Saga University on January 22 2007.

B1				B2				B3N			
Ref	%Dif	TOA	ASTER	Ref	%Dif	TOA	ASTER	Ref	%Dif	TOA	ASTER
0.17	-1.6	60.7	61.67	0.22	11.2	61.4	54.52	0.35	17.7	67.0	55.14
0.097	-9.8	43.1	47.32	0.13	10.6	38.8	34.69	0.18	12.8	35.6	31.04
0.13	-2.2	51.6	52.74	0.16	18	47.5	38.95	0.23	16.7	44.5	37.07
0.14	-0.9	55.6	56.10	0.16	14.9	47.4	40.34	0.19	4.5	38.8	37.05
0.16	-2.5	58.7	60.17	0.17	14.8	50.7	43.20	0.23	7.9	46.8	43.10
0.079	-10.2	38.7	42.65	0.089	10.9	30.7	27.35	0.12	12	25.2	22.18
0.060	-84	34.2	37.07	0.071	10.1	26.5	23.82	0.094	14.3	21.0	18.00

 Table 1
 Estimated and ASTER/VNIR data derived radiance and their percent difference for the different surface reflectance (Ref) of seven test sites in the vicinity of Saga University.

Ref: Surface reflectance, %Diff:: percent difference between estimated TOA: Top of Atmosphere radiance and ASTER/VNIR data derived radiance(ASTER) in unit of W/cm²/str for both radiances

Table 2 Gain, offset of the VNIR band 1,2,3N and correlation, bias and slope of the relation between estimated and VNIR data derived radiance.

	Band 1	Band 2	Band 3N
Slope	1.12	1.17	1.2
Bias(%)	-8.42	-0.7	-1.8
Correlation	0.995	0.992	0.987
Gain	0.73	0.78	0.85
Offset(%)	-1.0	5.0	2.5

- (2) 搭載校正系データによる校正係数と代替校正による 値とのトレンド解析を行い,両者は傾向を同じくし ているが,バイアス的偏差があることを確認した。
- (3) 反射率の異なる複数地表面を用いた代替校正を通じ て ASTER/VNIR の線形性を評価し,極めて良好な 線形性が確認できた。

VNIR バンド 1, 2, 3N のそれぞれの搭載校正 RCC と 代替校正 RCC との間の-1.0, 5.0, 2.5 (%)の偏差が生じ ている原因については特定できていない。代替校正は筆者 の他,筆者が客員教授を務めているアリゾナ大学光科学研 究センター,(独)産業技術総合研究所においても同じ時 期,場所において実施しており,同様の結果を得ている。 この偏差の原因究明は今後の検討課題としたい。

謝辞:本研究は(独)産業総合技術研究所および(財)資源・ 環境観測解析センター殿との共同研究によって得られた成 果の一部から派生しており,また,衛星搭載校正系による ラジオメトリック校正係数は(財)資源探査用観測システム・ 宇宙環境利用研究開発機構殿より提供を受けた。当該団体 の関係各位のご支援に感謝いたします。

筆者がリーダを務めている ASTER サイエンスチーム/ ラジオメトリックキャリブレーションチームの構成メン バー,特に,アリゾナ大学光科学研究センターの Stuart Biggar, Kurtis Thome 両博士,(独)産業総合技術研究所土 田 聡,亀井秋秀両博士に日頃のご討論,ご助言に対し, 深謝いたします。さらに,スカイラジオメータによる計測, エアロゾルの複素屈折率および粒径分布推定においてご助 言を頂戴した東京大学気候システム研究センター中島映至

Fig. 9 Gain (x10): G, offset: O of the VNIR band 1,2,3N and correlation: C, bias: B and slope (x 10): S of the relation between estimated and VNIR data derived radiance.

教授および実験に協力して貰った梁 興明(現NOAA/ NESDIS),陳 華慧両博士,寺山康教助教,丁 雅柳博士 を始めとする佐賀大学新井研究室の学生に深甚なる感謝の 意を表します。

引用文献

- J. L. Barker, S. K. Dolan, K. Sabelhaus, A. Phillip, D. L. Williams, J. R. Irons, B. L. Markham, J. T. Bolek, T. Joseph, S. S. Scott, Landsat-7 mission and early results, Proceedings of SPIE, 3870, 299–311, 1999.
- R. A. Barnes, E. E. Eplee, F. S. Patt and C. R. McClain, Changes in the radiometric sensitivity of SeaWiFS determined from lunar and solar-based measurements, Appl.Opt., 38, 4649–4664, 1999.
- D. I. Gellman, S. F. Biggar, M. C. Dinguirard, P. J. Henry, K. J. Thome, P. Slater, Review of SPOT-1 an d-2 calibration at White Sands from launch to the present, Proc.,SPIE Conf. #1938, 118-125, 1993.
- 4) K. J. Thome, S. Schiller, J. Conel, K. Arai and S. Tsuchida, Results of the 1996 Earth Observing System vicarious

calibration campaign at Lunar lake playa, Nevada (USA), Metrologia, 35, 631-638, 1998.

- 5) 新井康平, 独習リモートセンシング, 森北出版, 2001.
- 6) P. N. Slater, S. F. Biggar, R. G. Holm, R. D. Jackson, Y. Mao, M. S. Moran, J. M. Palmer and B. Yuan, Reflectanceand radiance-based methods for the in-flight absolute calibration of multispectral sensors, Remote Sensing of Environment, 22, 11–37, 1987.
- H. H. Kieffer and R. L. Wildey, Establishing the moon as a spectral radiance standard, J., Atmosphere and Oceanic Technologies, 13, 360–375, 1996.
- K. Arai, Atmospheric Correction and Residual Errors in Vicarious Cross-Calibration of AVNIR and OCTS Both Onboard ADEOS, Advances in Space Research, 25, 5, 1055– 1058, 1999.
- J. I, Liu ; Z. Li, Y.-L. Qiao, Y.-J. Liu, and Y.-X. Zhang, A new method for cross-calibration of two satellite sensors, Int. J. of Remote Sensing, 25, 23 5267–5281, 2004.
- 10)新井康平,梁 興明,上向き,下向き放射輝度の偏光を考 慮した大気上端放射輝度の推定方法,日本写真測量学会誌, 44,3,4-12,2005.
- 新井康平, K. J. Thome, 反射率に基づく衛星搭載可視近 赤外放射計の代替校正の誤差解析, 日本写真測量学会誌, 39, 2, 99-105, 2000.
- 12) A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Muratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd, Jr., L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, C. C. Borel, P. E. Lewis, E. P. Shettle, MODTRAN5 : update, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII. Edited by Shen, Sylvia S. ; Lewis, Paul E. Proceedings of the SPIE, 6233, 62331, 2006.
- 13) P. Slater, K. J. Thome, A. Ono, F. Sakuma, K. Arai, F. Palluconi, H. Fujisada, Y. Yamaguchi and H. Kieffer, Radiometric Calibration of ASTER Data, Journal of Remote Sensing Society of Japan, Vol. 15, No. 2, pp. 16–23, Jun. 1994.
- 14) A. Ono, F. Sakuma, K. Arai, Y. Yamaguchi, H. Fujisada, P. Slater, K. Thome, F. Palluconi and H. Kieffer, Pre-flight and In-flight Calibration Plan for ASTER, Journal of Atmospheric and Oceanic Technology, Vol. 13, No. 2, pp. 321–335, Apr. 1995.
- 15) K. Arai and X. Liang, Characterization of aerosols in Saga

city areas, Japan withy direct and diffuse solar irradiance and aureole observations, Advances in Space Research, 39, 1, 23–27, 2006.

- 16) K. Arai, Vicarious calibration for solar reflection channels of radiometers onboard satellites with deserted area of data, Advances in Space Research, 39, 1, 13–19, 2006.
- 17) K. Arai and H. Tonooka, Radiometric performance evaluation of ASTER/VNIR, SWIR and TIR, IEEE Trans. on GeoScience and Remote Sensing, 43, 12, 2725–2732, 2005.
- 18)梁 興明,新井康平,太陽直達光,散乱光,周縁光及び偏光の地上観測によるエアロゾルの複素屈折率及び粒径分布の同時推定法,日本リモートセンシング学会誌,25,4,357-366,2005.
- 19) T. Nakajima, M.Tanaka and T. Yamauchi, Retrieval of the optical properties of aerosols from aureole and extinction data, Applied Optics, 22, 19, 2951–2959, 1983.
- 20) ASTER Science Team (K. Arai, et.al.), Algorithm Theoretical Basis Document for ASTER Level 1 Data Processing (Ver 3.0), ERSDAC, 1996.
- 21) J. Lenoble, Edt. Radiative transfer in scattering and absorbing atmospheres : Standard computational procedures, A. Deepak Publishing Co., Ltd.,
- 22) V. N. Bringi and V. Chandrasekar, Polarimetric Doppler Weather Radar : Principles and Applications, Cambridge University Press0521623847, 2001.

〔著者紹介〕

●新井 康平(アライ コウヘイ)

1949年生。1974年日本大学大学院理工学 研究科修士課程修了1982年工学博士。 1974-78年東京大学生産技術研究所,1979-90年宇宙開発事業団(現JAXA),1985-87年カナダ政府給費留学生,90年から現 職佐賀大学教授。1998-2000年科学技術庁 航空電子等技術審議会委員,1998年から

アリゾナ大学客員教授,当学会地球環境研究会幹事,1998-2003 年当学会九州支部長,2003-04 年当学会理事等歴任。 受賞歴:当学会論文賞 2 回(1991,1999 年)等受賞 著書:新井「独習リモートセンシング」森北出版(単著)等 24 編 E-mail: arai@is.saga-u.ac.jp