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Abstract

We present in this paper a rigorous method to derive the nonlinear
Fokker-Planck (FP) equation of anomalous diffusion directly from a
generalization of the principle of least action of Maupertuis proposed
byWang [1] for smooth or quasi-smooth irregular dynamics evolving in
Markovian process. The FP equation obtained may take two different
but equivalent forms. It was also found that the diffusion constant
may depend on both q (the index of Tsallis entropy [2]) and the time
t.

PACS : 02.50.-r; 05.20.-y; 05.70.-a

The Fokker-Planck equation is a differential equation describing the time
evolution of probability distribution of state during stochastic processes.
The FP equation and its generalizations play very crucial roles in statis-
tical physics. The FP equation is not only applicable to the systems near the
thermal equilibrium, but to the systems far from the thermal equilibrium as
well. This latter application has special meaning in dealing with a large class
of self-organized, complex dynamical systems. In this sense, the FP equation
not only describes stationary properties but also the dynamics of evolving
systems.
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The FP equation was first derived by Fokker [3] and [4] as one to describe
Brownian motion. Later on, many books and review articles were published
[5, 6, 7, 8, 9]. The usual way of deriving the FP equation starts from calculat-
ing the transition probability P (x, t+ τ |x′, t) for small τ , where the particle
travels from x to x′. There are various ways to derive the expression of the
transition probability [10]. In this paper, we employ the concept of max-
imum path information, related to non-extensive Tsallis entropy, to derive
the expression of the transition probability for the motion of particle under
the influence of external forces. On the basis of the transition probability,
an nonlinear FP equation can be obtained.

A path information based on Shannon entropy [11] has been defined as
[1]

Hs(a, b) = −
w
∑

i=1

pab(i) ln pab(i), (1)

where pab(i) is called the transition probability that a system moving from
point a to point b will choose path i among all possibly existed w paths.
In the case of non-extensive statistics, the corresponding path information
naturally adopts the formula of Tsallis entropy [2]

Ht(a, b) = −k
w
∑

i=1

pab(i)− pqab(i)

1− q
, (2)

where q, the entropy index, specifies a particular statistics. In general, the
larger the path information, the less we know about paths states of the
system.

Of course, the transition probability pab(i) satisfies the following normal-
ization condition

w
∑

i=1

pab(i) = 1. (3)

For classical dynamical systems we also suppose each possible path is char-
acterized by its action Aab(i)

Aab(i) =
∫

tab

Li(t)dt, (4)

where Li(t) is the Lagrangian of the system at time t via the path i. The
average action is represented by

〈Aab〉 =
w
∑

i=1

Aab(i)pab(i). (5)
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In order to obtain the form of path probability, we seek to optimize the
path information Ht(a, b) under the constraints of Eqs. (3) and (5). That is,

δ(Ht(a, b) + α
w
∑

i=1

pab(i) + η
w
∑

i=1

Aab(i)pab(i)) = 0 (6)

Through a simple algebra, the optimization yields the following expression
of path probability

pab(i) =
1

Zq

[1− (1− q)ηAab(i)]
1

1−q , (7)

where Zq =
∑w

i=1[1− (1− q)ηAab(i)]
1

1−q .
In order to obtain a general derivation of FP equation at the existence

of any form of external forces (drifts), we adopt here the Euler’s method to
calculate the action. The detailed method is as follows. The path through
which the particle travels from point a to point b is cut into N segments with
each having a spatial length ∆xk = (xk−xk−1) (k = 1, 2, ..., N). t = tk− tk−1

is the time interval spent by the system on every segment. According to the
theorem of large numbers, the fluctuation of calculation will go to 0 as N
approaches infinity. The action Ak on the segment k is simply

Ak =
m(∆xk)

2

2t
+

∆xk

2
Fk − U(xk−1)t, (8)

where Fk = −(∂U
∂x
)k and U(xk−1) is the potential energy at the point xk−1.

Here in this paper Fk and U(xk−1) will be considered as constant. From now
on, we will write U(xk−1) as U for simplicity.

By using Eq. (7) the transition probability pk/k−1 from point k − 1 to
point k via the path i can be written as

pk/k−1(i) =
1

Zq(k, k − 1)
{1− (1− q)η[

m(∆xk)
2

2t

+
Fkt

2
∆xk − Ut]}

1

1−q , (9)

where Zq(k, k−1) can be calculated from the normalization condition
∫+∞
−∞ pk/k−1(i)dxk =

1

Zq(k, k − 1) =
∫ +∞

−∞
dxk{1− (1− q)η[

m(∆xk)
2

2t

+
Fkt

2
∆xk − Ut]}

1

1−q . (10)
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Introducing the methods by Tsallis and Prato [12, 13], after a tedious
calculation, we obtain the exact form of Zq(k, k − 1)

Zq(k, k − 1) = A(q)

√

2πt

ηm
[1− (q − 1)η(

F 2
k t

3

8m
+ Ut)]

q−3

2q−2 , (11)

where A(q) can be written as

A(q) =







Γ−1( 1
q−1

)Γ( q−3
2q−2

)
√

1
q−1

, q > 1;

Γ(2−q
1−q

)Γ−1( 3−q
2−2q

)
√

1
1−q

, 0 < q < 1.

It is not difficult to prove that Zq(k, k − 1) restores to Z1(k, k − 1) at the
q → 1 limit, which is

Z1(k, k − 1) = exp[η(
F 2
k t

3

8m
+ Ut)]

√

2πt

ηm
. (12)

Hence the transition probability pk/k−1(i) has the form

pk/k−1(i) = B(q)t−1/2[1− (q − 1)η(
F 2
k t

3

8m
+ Ut)]

3−q

2q−2 {1−

(1− q)η[
m(∆xk)

2

2t
+

Fkt

2
∆xk − Ut]}

1

1−q , (13)

where B(q) = A−1(q)
√

mη
2π
.

Now we are ready to derive the FP equation for the system travelling
through the k-th segment of path i connecting points a and b. It is readily
that

∂pk/k−1(i)

∂t
= pk/k−1(i){−

1

2
t−1 + A−1

1

(q − 3)η

2
(
3F 2

k t
2

8m
+

U) + A−1
2 η[

m

2t2
(∆xk)

2 −
Fk∆xk

2
+ U ]}, (14)

where A1 = 1−(q−1)η(
F 2

k
t3

8m
+Ut), and A2 = 1−(1−q)η[m

2t
(∆xk)

2+ Fk∆xk

2
t−

Ut]. We also have

∂pk/k−1(i)

∂xk

= −pk/k−1(i)A
−1
2 η(mt−1∆xk +

Fkt

2
), (15)
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and

∂2[pk/k−1(i)]
γ

∂x2
k

= −γηA−1
2 [pk/k−1(i)]

γ [mt−1 − (γ − 1 + q)

×ηA−1
2 (mt−1∆xk +

Fkt

2
)2], (16)

where γ is a constant that might depend on q.
Combining the equations (14) and (15), one obtains the following expres-

sion

(
∂

∂t
+ Fk

∂

∂xk
)pk/k−1(i) = −

pk/k−1(i)

2m
[u1(xk, t, q) + v(xk, t, q)], (17)

where

u1(xk, t, q) = mt−1 − ηA−1
2 (mt−1∆xk +

Fkt

2
)2 (18)

and

v(xk, t, q) = (
3F 2

k t
2

8m
+ U)(3 − q)ηmA−1

1 + 2ηmA−1
2 (

F 2
k t

2

+
F 2
k t

2

8m
+

mFk∆xk

t
+ Fk∆xk − U). (19)

Writing (16) in another form one gets

∂2[pk/k−1(i)]
γ

∂x2
k

= −γηA−1
2 [pk/k−1(i)]

γu2(x, t, q, γ), (20)

where

u2(xk, t, q, γ) = mt−1 − (γ − 1 + q)ηA−1
2 (mt−1∆xk +

Fkt

2
)2. (21)

It is obvious that u2(xk, t, q, 2− q) = u1(xk, t, q).
Relating Eqs.(17) and (20), together with u2(xk, t, q, 2− q) = u1(xk, t, q),

one obtains the following equation

(
∂

∂t
+ Fk

∂

∂xk

)pk/k−1(i) = D(q, t)
∂2[pk/k−1(i)]

2−q

∂x2
k

, (22)

where

D(q, t) =
1

2ηm
Bq−1A

(3−q)/2
1 t(1−q)/2[1−

v(xk, t, q)

u1(xk, t, q)(2− q)
]. (23)
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One can check that D(1, t) = 1/2ηm, which is consistent with the results
in [1]. Apparently, Eq. (22) is the exact FP equation for the system in an
infinitesimally interval in the existence of external forces.

Besides Eq. (22), the FP equation can also take another form,

∂

∂t
[pk/k−1(i)]

2−q = −
∂

∂xk
{Fk[pk/k−1(i)]

2−q)}+D′(q, t)

×
∂2

∂x2
k

[pk/k−1(i)]
2−q, (24)

where

D′(q, t) =
A2

2ηm
[1−

v(xk, t, q)

u1(xk, t, q)(2− q)
]. (25)

We note that D(q, t) in Eq. (22) and D′(q, t) in Eq. (24) are both q
and t dependent. The dependence on q is a direct consequence of the non-
extensive statistics where q is the identity of the system described. It has
been shown above that when q = 1, the normal diffusion constant can be
restored. The dependence on t is also quite natural because we are now
dealing with evolutionary processes where the phase space through which
the diffusion occurs is changing with time. As t → ∞, one readily obtains
the diffusion constant for the stationary state.

The nonlinear FP equation derived above, Eq. (22) and Eq. (24), is well
applied to describing the evolutionary processes and stochastic processes of a
large class of self-organized systems that are far from thermal equilibrium, as
well as chemical equilibrium, such as transportation and diffusion occurred
in fractal or curved space. For example, it can be employed to describe
the broad range of markets and exchanges characterized by the anomalous
(super) diffusion and power-law distributions [15]. Another hope is that this
equation can be applied to the complex biological systems where evolution
and anomalous diffusion are taking place from time to time. Compared to
the normal FP equation and some of its other nonlinear forms [16], our FP
equation is more general because it can describe both regular dynamics and
irregular dynamics that occurred in a large category of non-equilibrium and
chaotic systems [17, 18]. Another important feature of our FP equation is
that the diffusion coefficient is both q and t dependent.

This work was in part supported by the National Natural Science Foun-
dation of China (Grant Nos. 70401020, 70571027, 10647125, and 10635020)
and the Ministry of Education of China (Grant No. 306022).
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Méhauté A 2008 Chaos, Solitons & Fractals in press

[15] Michael F and Johnson M D 2003 Physica A 324 359

[16] Tsallis C and Bukman D J 1996 Phys. Rev. E 54 2197

[17] Wang Q A 2004 Chaos, Solitons & Fractals 19 639
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