論 文

リモートセンシングによる農作物畑の分布解析

脇田英治*

Distribution Analysis of Farm Product Field by Remote Sensing

Eiji WAKITA*

Abstract

This paper proposes a new method to estimate the distribution of farm product fields by analyzing the satellite image. In this study the konjac field is dealt with mainly as the farm product field. However, it is expected that the result of this study is applicable to the other farm products as well as the konjac. The procedure of the land cover classification by the proposed method is as follows.

- 1) The likelihood values are estimated by using the pixel values of the band 1–3 of the satellite image, the NDVI and the NDCI as the evaluation index.
- The land cover classification is performed by judging the likelihood values with the standard likelihood value corresponding to the reliability.

The field survey and satellite image photography were executed simultaneously in the region where the farm product fields crowd. The proposed method and the maximum likelihood method were applied to the obtained satellite image, and the classification analysis of the satellite image was executed. It was confirmed that the both method results correspond with the field survey result with a fair degree of precision. It became clear that the proposed method gives more satisfactory result than the maximum likelihood method by comparing the both methods.

Keywords : farm product field, satellite image, land cover classification, NDVI, maximum likelihood method

1. はじめに

群馬県はわが国における代表的な農業生産県であり,中 でも蒟蒻の生産量は全国一である。蒟蒻畑をはじめ,農作 物畑が群馬県内にどのような分布を示し,どの程度の規模 で栽培されているか,を知ることは効率的な生産計画・生 産管理を実現する上で重要である。しかし,現状ではこれ らに関する正確な情報は明らかとなっていない。

広範な地域における農作物畑の分布を調べる方法とし て、リモートセンシングデータを用いる土地被覆分類は有 効な手段の一つである。これに関する既往の研究状況は次 のとおりである。

小麦やトウモロコシなどの収穫予測に関する研究¹⁾²⁾は 多いが、大規模農地における収穫予測である点で本研究と 相違する。それに対して、比較的小規模な点在する畑を対 象とした研究は数少ないが次のようなものがある。

a) キャベツの NDVI と生長(地上緑被率)との相関性を 求め、それに基づいて、キャベツの収穫時期・面積を推定 した研究³⁾、b) DVVI と呼ばれる植生指数に基づいてキャ

• 国立群馬工業高等専門学校環境都市工学科

ベッの生育状況を推定した研究⁴, c) 最尤法により農作物 の分布を推定した研究⁵⁾等である。これらのうち, a), b) は1種類の作物の成長過程を対象とした研究であり本研究 の研究対象とはその点で異なる。また, c)の研究では Landsatを使用していることも影響し, 十分な大きさを持 つ畑でないと精度が悪いという結論であり, 課題が残され ている。

研究対象に関しては以上のようなとおりであるが,衛星 画像を用いた土地被覆分類手法に関する既往の研究状況は 次のとおりである。従来,土地被覆分類の手法として様々 な方法が知られているが,その中で最尤法は最も有力な方 法の1つである。最尤法による結果が他の方法による結果 よりも良好であった,という内容の研究⁶⁷⁷は数多い。最尤 法をベースとして,それに他の方法(クラスタ分析等)を 併用して良好な結果が得られたとする研究⁶⁷⁻¹⁰⁾も多い。

反面,特に高分解能衛星画像(IKONOS等)を用いた研 究例で最尤法の問題点や不調が指摘されている。その問題 点とは次のようなものである。c)画素の微妙なスペクトル のばらつきが分類精度にマイナスの影響を与える⁴⁾。d)分 解能をあげると分類クラス数も増えるが、そのクラス数の

^{(2007. 9. 18} 受付, 2008. 2. 19 改訂受理)

^{〒371-0845} 群馬県前橋市鳥羽町 580

 ^{*} Environmental Engineering Department, National Gunma College of Technology, 580 Toriba-machi, Maebashi, Gunma 371-0845, Japan

Fig. 1 Satellite image which is used for analysis.

多さに対応できない¹¹⁾。e) 高分解能画像では情報量が多く なるため、トレーニングデータの選定に関する解析者の判 断が逆に結果に大きく影響する¹²⁾。

このような状況から考えて、必ずしも高分解能である方 が、土地被覆分類上好ましいわけではない。また、高分解 能の衛星画像画像(IKONOS 等)は高価であり、広範な地 域への頻繁な利用には適していない。他方、従来、実利用 可能であった低分解能衛星画像(Landsat 等)では畑の分 布や面積の高精度な推定には適していない。それに対し て、近年、ASTER や ALOS のような中分解能衛星画像が 通常の実務で利用可能な状況となっている。以上のような 状況を踏まえて、衛星画像を用いた土地被覆分類により農 作物畑、とりわけ蒟蒻畑の分布状況(位置や面積)を推定 する新たな方法を提案する。

本研究では,解析対象作物を主に蒟蒻とするが,本研究 成果は蒟蒻に限らず,農作物一般へ適用可能であると考え られる。また,衛星画像として,価格・分解能・データ入 手の点で比較的,利便性が高いと思われる ASTER 画像を 用いる。そして,現地調査データを用いて提案法と既往の 手法(最尤法)との推定精度の比較を行い,提案法の適用 性について検討する。

最尤法については前述したように,様々な問題点は指摘 されているが,現状では最も良く用いられている手法であ るので,提案法との比較のために用いる。

2. 現地調査と衛星画像

2.1 解析に用いる衛星画像

本研究で用いる衛星画像は 2006 年 8 月 5 日 1 時 32 分 57 秒に撮影された北緯 36.068303-36.718194 度,および東経

Fig. 2 Spectral characteristic of satellite image.

138.998183-139.841728 度の範囲の衛星画像である。人工衛 星 ASTER の可視近赤外放射計(VNIR)の 3A01(地形補 正処理)画像であり,3次畳み込み内挿法による幾何補正 処理が施されている。

Fig. 1 は解析に用いた 3 バンドの衛星画像のうち, バン ド 1 画像の一部分を拡大して示している。Fig. 1 に示され ている地区は群馬県利根郡の白沢村~利根村付近であり, 域内の主要な川・国道・湖の名称を図中に表示している。 また,本研究の解析対象範囲である白沢村の地区を黒枠で 囲んで表示している。本研究ではこの黒枠で囲まれた地区 に提案法と最尤法による土地被覆分類を適用し,適用性を 検討する。

本研究で用いる ASTER 衛星画像 VNIR のスペクトル特 性を Fig. 2 に示す。図に示すように,バンド1が 0.52-0.60 µm の波長の範囲,バンド2が 0.63-0.69µm の範囲,および

Fig. 3 Aerophoto of object area (http://earth.google.co.jp/).

Fig. 4 Distribution of konjac fields.

バンド3が0.76-0.86µmの波長の範囲を分担している。本研究ではそれら3つのセンサー画像のすべてを解析に用いる。

なお, Fig. 2 には代表的な地覆物である土・水・植物の 反射特性が併せて示されている。

2.2 現地調査

Fig. 3 は前述の Fig. 1 に示した解析対象範囲(白沢村) の航空写真である。写真からわかるように解析対象地区は 大部分が畑である。Fig. 4 では Fig. 3 に示された畑のう ち,現地調査の結果,明らかとなった蒟蒻畑の部分を白く 塗色して示している。図からわかるように蒟蒻畑の割合が 非常に高い。他に蒟蒻以外の作物として,とうもろこし,う ど,稲,かぼちゃ,とまと,大豆,アスパラなどの畑もある。

これらの作物畑の分布は衛星画像撮影(2006年8月5日)の約1月半後(2006年9月21日)に現地調査を実施し、明らかとなっている。Fig.4はその調査結果のうちの 蒟蒻畑に関するものである。Fig.4には示されていない が、さらに内訳として1年生蒟蒻、2年生蒟蒻、3年生蒟蒻 の分布も現地調査の結果、明らかとなっている。

Fig. 5 は現地の写真である。写真の左半分が蒟蒻 2 年生の畑であり、右半分がうどの畑である。撮影位置は Fig. 4 に「写真撮影位置」として表示されている。この写真からも蒟蒻とうどでは明るさに大きな違いのあることがわかる。また、写真に写っているのは蒟蒻 2 年生であるが、その背丈は 50-60 cm 程度である。それに対して、蒟蒻 1 年生の場合は背丈が 25-30 cm、蒟蒻 3 年生の場合は背丈が 70-

Fig. 5 Photograph of site.

Fig. 6 Distribution of pixel values of farm products.

80 cm 程度である。

蒟蒻は冬の前に畑からすべて掘り起こされ,春に再び畑 に植えられる。その時期から次第に葉を茂らせ,今回,衛 星画像を撮影した8月の上旬は葉が最も生い茂った時期で ある。

3. 土地被覆分類に用いる指標

3.1 各種農作物のスペクトル特性

前述した現地調査の結果,地上の農作物畑の分布は明ら かとなっているので,衛星画像と現地調査図(地図上に調 査結果を記入したもの)を重ね合わせ,各作物畑と対応す る衛星画像位置のバンド1~3のピクセル値を求めること ができる。

Fig. 6 はその求めた結果を表示したものである。 バンド 1~3 のピクセル値をそれぞれ, Z 軸(縦), Y 軸(横), X 軸 (横)にとり, 各種作物のピクセル平均値の分布を表示してい る。プロット1点は1つの畑の平均値1個と対応している。

図によると、作物毎にそれぞれ群が形成されており、作 物特有の所定のスペクトル特性を示しており、かつ、それ ら群が全体にちらばり、作物群どうしの重なりは少ない。 このことからバンド 1~3 のピクセルデータはともに土地 被覆分類に用いる指標として適していると考えられる。

3.2 NDVI & NDCI

前述の Fig. 2 で衛星画像のスペクトル特性を示した。

Fig. 7 Relation between NDVI and NDCI.

Fig. 2 に示されたバンド 1~3 の帯域を考慮すれば,植生 指標 NDVI は次式により求めることができる。

さらに、バンド3とバンド1の差の値は作物のスペクト ル特性と関連のあることが予見される。つまり、Fig.2に 示すように、バンド3もバンド1も植物に反応した反射の 強さ示すので、それらの差も個々の植物の特性に応じた特 定の値を示すのではないか、と考えられる。そこで、この 特性を評価する指標として、NDCI (Normalized Difference Crop Index)という指標を新たに次式で定義し、その適用 性・妥当性について検討する。

前述の Fig. 6 に示したデータについて, NDVI, および NDCI を求め, NDCI を X 軸に, NDVI を Y 軸にとってプ ロットすると, Fig. 7 のようになる。

図によると作物毎にそれぞれまとまった特徴のある分布 特性を示すことがわかる。Fig. 7 において同じ NDVI の範 囲に複数の作物が存在しているので, NDVI のみでは作物 分類が困難であるが, NDCI も併せて考慮すれば各作物分 布の重なりは少ないことがわかる。このことから NDVI, NDCI ともに作物分類に用いる指標として適していると考 えられる。

Fig. 8 は各作物畑の位置の画像ピクセル値から求めた NDVI と NDCI のヒストグラムである。上側の図は NDVI のヒストグラム,下側の図は NDCI のヒストグラムを表し ている。全作物のうち,4種類の作物についてのヒストグ ラムが示されている。いずれの作物についても完全な正規 分布ではないが,正規分布に比較的近い分布となってい る。また,これ以外の作物についても同様の分布を示すこ とが確認できる。

3.3 土地被覆分類に用いる指標

本研究では「提案法」と「最尤法」(比較のため)の2種

Fig. 8 Histogram of NDVI and NDCI.

類の方法を土地被覆分類に用いる。以上の検討の結果,バ ンド1~3のピクセル値が土地被覆分類の指標として適して いることが明らかとなったので,それを受け,従来法として の「最尤法」ではバンド1~3のピクセル値を要素として, それらが3次元の正規分布に従うと仮定して解析を行う。

それに対して、「提案法」ではバンド 1~3 のピクセル値 の他に土地被覆分類の指標として適性が明らかとなった NDVI と NDCI も加え、それらが 5 次元の正規分布に従う と仮定して解析を実施する。

なお, Fig. 7 でわかるように NDVI と NDCI には相関性 が見られるが,多次元正規分布の仮定に基づく土地被覆分 類において,次元間の相関性は分散共分散行列(後述の式 (3)における V_c)で考慮されるので,相関性が土地被覆分 類の障害となることは無い。

「提案法」と「最尤法」の相違の一つは以上のとおりであ るが,両者の間にはもう一つ大きな相違点がある。それに ついては次章 4. で検討する。

4. 土地被覆分類に用いる尤度判定法

4.1 尤度と信頼度の関係

衛星データ上の任意地点の画素ベクトル*X*が*n*次元正 規分布に従うと仮定すると,*X*のクラス*j*に対する尤度は 次式で表すことができる。

$$f_j(\mathbf{X}) = \frac{1}{(2\pi)^{n/2} |V_c|^{1/2}} \exp\left(\frac{1}{2} \mathbf{X}_m^{\mathrm{T}} \mathbf{V}_c^{-1} \mathbf{X}_m\right)$$
(3)

ここに、 $V_{\rm c}$ はクラスjの分散共分散行列である。また、 $X_{\rm m}$ は次式で与えられる。

$$X_m = X - \overline{X}_i \tag{4}$$

ここに, X_j はクラスjの平均ベクトルである。さらに,両辺の対数を採ると,式(3)は次式となる。

$$L_{u} = -\frac{1}{2} X_{m}^{\mathrm{T}} V_{c}^{-1} X_{m} - \frac{1}{2} \ln \{ (2\pi)^{n} | V_{c} | \}$$
(5)

ここに, L_uは対数尤度である。

-259 -

Fig. 9 Threshold values of cell method and multidimensional normal distribution.

一般的に,最尤法に基づく衛星データの土地被覆分類で は,画像上の各地点において式(4)~(5)により対数尤度 を計算し,対数尤度が最大となるクラスへ各地点を分類す る方法が採られる。その際,対数尤度に信頼度区間は設定 されないので,対数尤度が信頼度区間を超えていても分類 される結果となり得る。それに対して,「提案法」では対数 尤度に相当する信頼度を求め,その信頼度が信頼度区間を 超える場合には分類を行われない。

「最尤法」において対数尤度に信頼度区間(閾値)を設定 できないのは,次の理由による。本来,尤度とはその地点 がクラス*j*に属することがどの程度確かなのかを表す指標 である。しかし,尤度は取り扱うデータの個数や次元数に よって値が変化するので,そのままでは確からしさの絶対 評価に用いる尺度とはならない。

また、「最尤法」において、±30のような閾値を設定でき ないのは、次の理由による。最尤法と同様、従来、土地被 覆分類に用いる解析法の一つである多次元レベルスライス (セル法)の場合、バンド毎に一次元正規分布を想定し、閾 値の範囲外のデータを排除する方法が採られる。これは簡 便的な処理であるが、厳密には Fig. 9に示すように、セル 法の概念に基づく閾値(たとえば±30)と多次元正規分布 の閾値とは位置や形状が異なる。セル法による推定精度が 十分期待できない原因の一つはこのような仮定の矛盾によ るものであると考えられる。

本論文では尤度と信頼度の関係式を明らかにし,各地点 の尤度に対応する信頼度をその式で求め,信頼度を尺度と してクラス分類を行う方法を提案する。ここでは,まずそ の準備として,信頼度と尤度の関係について検討する。

クラスjの確率分布に従う値が全体の R_q %入る確率を 信頼度 R_q と呼ぶ。たとえば、大豆の畑のピクセル値の正規 分布を描いた時、全体の95%のデータが入る区間は信頼 度95%の区間である。その信頼度 R_q に対応する対数尤度 を基準対数尤度 L_q と呼ぶと、両者の間には以下の関係が 成立する。

$$L_{q} = -\frac{1}{2} X_{o}^{\mathrm{T}} V_{o}^{-1} X_{o} - \frac{1}{2} \ln \{ (2\pi)^{n} | V_{o} | \}$$
(6)

$$X_o = [u_q \cdots u_q]^{\mathrm{T}} \tag{7}$$

ここに、n は次元数、V。は標準化された分散共分散行列(n

Fig. 10 Relation between reliability and logarithm likelihood criterion.

行 n 列で対角項がすべて 1.0 の行列), X。の行数は n である。

式(7)における u_q は標準化された多次元正規分布(平均 0,標準偏差1)の確率密度関数の分布における信頼度 R_q に相当する等高線(等確率密度)位置の次元座標軸方向へのクラス平均位置からの距離である。信頼度 $R_q \ge u_q$ の関係は次のとおりである。

$$R_{q} = 100 \left[1 - 2 \left\{ \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u_{q}} \left(-\frac{1}{2} x^{2} \right) dx \right\} \right]$$
(8)

式 (8) は複雑であるが,次の近似式 (Hastings の式)¹³⁾ を用いれば,任意の R_q (%)に対する u_q を容易に求めるこ とができる。

$$u_q = z - \frac{2.30753 + 0.27061z}{1 + 0.99229z + 0.04481z^2} \tag{9}$$

$$z = \sqrt{-2 \ln\left(\frac{100 - R_q}{200}\right)}$$
(10)

結局, 信頼度 R_q を最初に設定すれば(後述の解析例では R_q =99.0%)し, それに対応する u_q を式(8)~(10)より求 め, それを式(6)~(7)に代入することにより基準対数尤 度 L_q を求めることができる。これにより尤度を介して信 頼度に基づいた土地被覆分類が可能となる。

Fig. 10 は式(6)~(10)で与えられる信頼度と対数尤度 (基準対数尤度)の関係をグラフに表したものである。これ らの関係は次元数nにより異なるため,次元数n=3の場 合とn=5の場合について示している。

4.2 土地被覆分類における最尤法の問題点

最尤法による土地被覆分類においては複数のクラス間の 尤度の相対的比較で分類が行われるので,次のような問題 が生じる可能性がある。

具体例で示す。前述の Fig. 6 でわかるように,大豆と蒟 蒻1年生はピクセル分布が隣り合っている。そのため,大 豆と蒟蒻1年生の中間にある画像データはこれら2つのク ラスのいずれかに分類されることになる。蒟蒻1年生に比 べて,大豆のばらつき(分散共分散)は大きいため,位置 的には蒟蒻に近くても対数尤度では大豆の方が勝ることが 多く,そのため大豆に分類されるケースがある。Fig. 11 は その様子を表わしている。

前述の Fig. 6 における作物の分布には全体が1つの平

Fig. 11 Likelihood distribution of soybean and 1st year konjac.

面近傍に分布する傾向が見られる。その平面(X' - Y')は X-Y 平面に対して X 軸方向にも,Y 軸方向にも勾配を持 っ平面である。そこで,そのような性質を持つX' - Y'平面 上に作物分布を表したものが Fig. 11 である。Fig. 11 では 全作物のうち 2 種類の作物のみが〇印(大豆)と×印(蒟 蒻 1 年生)で表示されている。

このような平面は座標軸を回転させた時,回転後の Z'軸 方向のピクセル分布のばらつきが最小になるように回転角 を決定することにより求めることができる。実際の数値解 析は次のように実施した。すなわち,最適化手法の1つで ある準ニュートン法を適用することにより,目的関数を Z' 軸方向のピクセル値の誤差2乗和として,その目的関数値 を最小とする座標回転角を同定した。そして,座標回転角 の分だけ座標を回転させ,X'-Y'平面上の座標値を求めプ ロットしたものが Fig. 11 である。

上述した〇×印の作物分布の他に, Fig. 11 には網目状 の分布が示されているが,これは対数尤度差の分布を表し ている。すなわち, Fig. 11 の Z'軸方向は次式で与えられる 対数尤度差 D_u であり,各格子点毎に D_u を求め,曲面で表 したものが網目状の分布である。

$$D_u = |L_{ud} - L_{uc}| \tag{11}$$

ここに、 L_{ud} は大豆に対する対数尤度、 L_{uc} は蒟蒻1年生 に対する対数尤度である。 D_u が最小 (D_u =0) となるライン 上が大豆クラスと蒟蒻クラスの境界である。Fig. 11 に示 す A-B ラインはその境界線であるが、蒟蒻畑のデータが数 点、境界線を越えて大豆の領域にはみ出しており、土地被 覆分類の際に誤判定の原因となり得ることがわかる。

最尤法におけるもう一つの問題点は採用される尤度に下 限が無いことである。これを具体例で示すと次のとおりで ある。

Fig. 12 は前述の Fig. 6 のうち蒟蒻 2 年生のみを残し, 他の作物分布を消したものに, 蒟蒻 2 年生のクラスの信頼 区間周辺のピクセル分布を加えたものである。図には蒟蒻 2 年生のクラスに属する各畑のピクセルの平均位置が○印 で示されている。さらに, 蒟蒻 2 年生のクラスの信頼度区 間のうち 99.5%~99.99% の範囲にある衛星画像データの

Fig. 12 Distribution of pixels in reliability range of 2nd year konjac class.

ピクセル分布が併せて表示されている。

この区間のデータは信頼度が極めて小さいため、本来、 蒟蒻2年生のクラスに分類されることは合理的ではない。 しかし、最尤法による土地被覆分類においてはこの区間の 付近に他の作物クラスが存在しなければ、この区間の衛星 画像データは尤度の大小に関係なく、蒟蒻2年生クラスに 分類されることになる。これが最尤法による土地被覆分類 において誤分類の原因になり得ると考えられる。

4.3 尤度判定法の提案

4.2 で前述した2つの問題点を克服できる土地被覆分類 法を提案する。すなわち,複数のクラス間で尤度の相対比 較を行うのではなく,4.1 で前述した信頼度に対応する基 準尤度を尺度として,土地被覆分類を行う方法である。

具体的手順は次のとおりである。まず最初に,信頼度 R_q を設定(後述の解析例では R_q =99.0%)し,それに対応する u_q を4.1の式(9)~(10)より求め,それを4.1の式(6)~(7)に代入する。これにより指定した信頼度に対応する基準対数尤度 L_q を求めることができる。そこで,任意地点の尤度がその基準値以上であれば,その地点をクラスjに分類する。土地被覆分類におけるこの方法のメリットは次のとおり

である。

- 1) 他の地覆物クラスの影響を受けない。
- 2) 信頼度の低いクラス分類を避けることができる。
- 3) 単独のクラスのみを考慮すれば土地被覆分類できる。 そのため、処理が簡便である。これに対して、最尤 法による土地被覆分類の場合は全地覆物の情報が揃 わなければ分類を開始できないというディメリット がある。

5. 土地被覆分類解析

5.1 採用する解析法

本研究では「提案法」と「最尤法」(比較のため)の2種

類の方法を土地被覆分類に用いる。

どちらの場合も解析に用いる衛星画像は 2.1 で前述した ものであり, 3.の Fig. 6~7の作成に用いた元データをト レーニングデータとして,母集団の統計量を推定し,それ を尤度計算に用いる。

「最尤法」(最尤法に基づく衛星データを用いた土地被覆 分類)ではバンド 1~3のピクセル値を要素として,それら が3次元の正規分布に従うと仮定して尤度計算を行う。画 像上の各地点において 4.1 の式(4)~(5)により対数尤度 を計算し,対数尤度が最大となるクラスへ各地点を分類す る方法を採る。

それに対して,「提案法」ではバンド1~3のピクセル値 の他に NDVI と NDCI も加え,それらが5次元の正規分 布に従うと仮定して尤度計算を行う。そして,4.1の式(4) ~(5)により計算した任意地点の対数尤度が,4.1の式(6) で計算した基準対数尤度以上であれば,その地点をクラス *j*に分類する方法を採る。

ここで採用する解析法を2種類(「提案法」と「最尤法」) に絞ったのは次の理由による。すなわち,本論文の目的は 農作物畑の分布の推定法の提案とその適用性の検証であ る。その目的に沿って推定精度を向上させるため,解析法 に様々な工夫を加え,試行錯誤した結果,「提案法」が推定 精度・適用性の面で最も優れた方法として残った。そこで, 本節では「提案法」による農作物分布の推定精度・適用性 に関する検討結果を示す。併せて従来の方法による推定精 度・適用性との関連を示す方がより好ましいので,その代 表的な方法として最尤法を選び,「最尤法」による検討結果 を示し,比較検討を行う。

また、「最尤法」と「提案法」で解析に用いる指標の数が 異なるのは次の理由による。「提案法」によりここで対象と する農作物を分類するために有効な指標の検討を3.1で 行った。その結果として5種類の指標(バンド1~3・ NDVI・NDCI)が有効という結論が得られた。その結果に 基づいて提案法ではこの5種類の指標を採用している。そ れに対して、従来法としての「最尤法」では一般的な方法 として3種類の指標(バンド1~3)を用いる。ここで、指 標として、NDVI、NDCI等の画像間演算値を除外したの は次の理由による。すなわち、最尤法による土地被覆分類 に関する大多数の既往の研究(論文,書籍)においては、 衛星の数種類のバンド値のみが最尤法の解析用指標として 用いられており、NDVIのようなバンドの画像間演算値を 解析指標に加えているものはほとんど見あたらないからで ある。

5.2 土地被覆分類の結果

「提案法」と「最尤法」2 種類の解析のうち,「提案法」の 場合には着目する作物に対する尤度の大きさのみを判定に 用いるので, 蒟蒻のみに着目してその分布を求める解析が 可能である。Fig. 13 はそのようにして求めた蒟蒻畑の分 布を示している。図では解析の結果得られた蒟蒻(1~3 年 生)の畑を黒塗色で,現地調査結果(Fig. 4 参照)を実線で

Fig. 13 Result of land cover classification by proposed method.

Fig. 14 Result of land cover classification by maximum likelihood method.

示している。

他方、「最尤法」の場合には蒟蒻以外に可能な限りあらゆ る地覆物のクラスに対する尤度を求め、最大尤度を示す地 覆物クラスを見つける必要がある。したがって、土地被覆 分類解析の結果は蒟蒻単独の分布結果とはならないが、そ れらの中から蒟蒻(1~3年生)の畑のみを取り出し、黒塗 色し、表示したのが Fig. 14 である。Fig. 14 には現地調査 結果(Fig. 4) も併せて実線で表示されている。

どちらの図においても実線と黒塗色部は完全には一致していないが、現地調査結果 (Fig. 4) との一致度はかなり高い。両図を比較すると、「提案法」(Fig. 13)の場合、 $I \sim II$ の部分で Fig. 14 (最尤法)よりも劣っているが、 $A \sim R$ の部分で「最尤法」(Fig. 14)よりも勝っている。総じて、「提案法」の方が「最尤法」よりも誤差が少ない結果となっている。

ちなみに,解析対象区域内の実際の蒟蒻畑の全ピクセル 数に対して,正しく分類できたピクセル数の割合を「分類 正答率」として定義する。また,実際には蒟蒻畑以外であ るのに,蒟蒻畑であると誤分類されたピクセル数の蒟蒻畑 全ピクセル数に対する割合を「分類誤答率」として定義す る。この定義に基づいて Fig. 13~14の結果について「分類 正答率」と「分類誤答率」を求めると,Table 1 のようにな

Table 1 Accuracy of land cover classification.

	success rate	failure rate
	of classification	of classification
proposed method	76.0 %	6.5 %
maximum likely.	75.8 %	12.9 %
hood method		

る。この結果から「分類正答率」に関しては「提案法」も 「最尤法」も大差ないが,「分類誤答率」については「提案 法」の方が「最尤法」よりも勝っていることがわかる。

6. 誤分類の生じた原因

6.1 「最尤法」における誤分類

最尤法による土地被覆分類解析で実際に生じた誤分類の 事例を Fig. 15 は示している。Fig. 15 に示す「判定対象地 点」は前述の Fig. 14 の記号 I, および O 付近に位置する衛 星画像上の 1 点である。その地点は実際には蒟蒻 1 年生の 地点であるが,最尤法による判定では大豆のクラスに分類 されている。

図にそれらの位置関係が示されている。すなわち,図に 示す判定対象地点の蒟蒻1年生の平均位置に対する対数尤 度は L_u =-12.4 であるのに対して,大豆の平均位置に対し ては対数尤度 L_u =-12.1 であり,対数尤度で大豆が勝り, 結果として大豆に分類されている。蒟蒻1年生に比べて, 大豆のばらつき(分散共分散)は大きいため,位置的には 蒟蒻に近くても対数尤度では大豆の方が勝ることが多く, そのため大豆に分類される結果となっている。

また、別の誤分類の事例は次のとおりである。Fig. 16 は 最尤法による土地被覆分類の結果、蒟蒻(1-3 年生)に分類 された地点の対数尤度のヒストグラムを示している(ただ し、度数が1000以上の部分は省略されている)。図には信 頼度 99.0% と 99.9% の位置が矢印で示されている。この 99.0~99.9% の区間は信頼度が極めて小さいため、本来、 この区間のデータがクラスデータとして採用されることは 合理的ではない。しかし、図によると、この区間(99.0~ 99.9%)にもヒストグラムが存在し、多くのデータが採用 されていることがわかる。このようなことが原因して、最 尤法による土地被覆分類において現実には蒟蒻でない部分 まで蒟蒻と判定される現象が生じたと考えられる。前述の Fig. 14 に見られる I、および O 以外の A~R の誤分類の原 因はこのようなものであると考えられる。

6.2 「提案法」における誤分類

5.2 で前述したように「提案法」の方が「最尤法」よりも 誤分類が少ない結果が得られた。しかし, Fig. 13 において 「提案法」も現地調査結果と比べれば,完全には蒟蒻畑の位 置・面積を把握できていない。その原因としては次のよう なことが考えられる。

 衛星画像の解像度があまり高くないので、1ピクセ ルの枠内に複数の地覆物がかかり、ピクセル値が本

Fig. 15 Example of wrong classification by maximum likelihood method.

Fig. 16 Histogram of logalithm likelihood (result of land cover classification by maximum likelihood method).

来のクラス値とずれている。

- 作物(蒟蒻等)の植え方が一部の畑で通常と異なっている。たとえば、まばらな部分があるとか、手入れ不十分で草に覆われている等。これにより、ピクセル値が本来のクラス値とずれている。
- 画像解析に先立って実施したトレーニングデータの 収集時に全ての地覆物のデータを収集しきれていな いために、クラスの母集団推定値にずれやもれがあ る。

4) 現地調査のミス。作物の名前や位置の記載ミス。

考えられる原因 1)~4) のどれがどの程度どのように誤 分類・解析誤差に影響したかまでは、データが無いので明 らかではない。これについては今後の課題である。

7. まとめ

リモートセンシングデータを用いた土地被覆分類により 農作物畑の分布状況(位置や面積)を推定する新たな方法 を提案した。本研究では解析対象を主に蒟蒻としたが、本 研究成果は蒟蒻に限らず、農作物一般へ適用可能であると 考えられる。

実際に農作物畑の密集する地域において現地調査と衛星 画像撮影を同時に実施し,得られた衛星画像に提案法と最 尤法を適用して,土地被覆分類解析を実施した。そして, 現地調査データを用いて提案法と既往の手法(最尤法)との推定精度の比較を行い,提案法の適用性について検討した。研究内容,および結論をまとめると次のとおりである。

- バンド1~3のピクセル値を軸に採った3次元空間 上で各種農作物はそれぞれ特定の群を形成し、群ど うしの重なりも少ないので、バンド1~3のピクセ ルデータは土地被覆分類に用いる指標として有効と 考えられる。
- 2) 新たに定義した指標 NDCI と NDVI を軸に採った 2 次元空間平面上で各種農作物はそれぞれ特定の群 を形成し、群どうしの重なりも少ない。また、NDCI と NDVI ともに正規分布に比較的近い分布を示す。 これらのことから NDCI と NDVI も土地被覆分類 に用いる指標として有効と考えられる。
- 3) 尤度と信頼度の関係,および関係式を明らかにした。
- 4) 最尤法による土地被覆分類は複数のクラス間の尤度の相対的比較で分類が行われるので、そのことに関連して誤分類が発生する場合がある。そのしくみを具体例を交え明らかにした。
- 5) 4)の問題を克服できる土地被覆分類法を提案した。 提案法はバンド 1~3のピクセル値,NDVI,NDCI 評価指標として尤度を求め,その尤度値を信頼度に 対応する基準尤度値で判定して土地被覆分類を行う 方法である。
- 6) 衛星画像の分類解析の結果,提案法と最尤法どちらのケースも解析結果は現地調査結果とかなり一致度の高いことが確認された。両法を比較すると,提案法の方が最尤法よりも誤差が少ない結果となった。
- 7) 最尤法による土地被覆分類の結果生じた誤分類の内 容を照査した結果,4)で指摘した原因に起因する兆 候が確認できた。

謝辞:本研究は全国蒟蒻原料協同組合からの受託研究に端 を発しており,かつ,その際に現地調査,および情報の収 集に際しても,協同組合の方々に多大な協力をいただきま した。ここに深く感謝の意を表します。

引用文献

- S. K. Seelan, S. Laguette, G. M. Casady and G.A.Seielstad : Remote sensing application for precision agriculture : A leaning community approach Remote Sensing of Environment, 88 (1)-(2), pp. 157-169, 2003.
- E. A. Enclona, P. S. Thenkabali, D. Cells and J. Diekmann : Within-field wheat yield prediction from IKONOS data : a new matrix approach, Int. J. Remote Sensing, Vol. 25, No. 2,

pp. 377-388, 2004.

- 3) 雷 莉萍,斎藤元也,安田嘉純,范 海生,高須 理:衛 星観測データによる大規模生産野菜収穫予測情報の提供 に関する検討,日本リモートセンシング学会誌,27(2), pp. 129-139, 2007.
- 4) 小阪尚子,宮崎早苗,井上潮,斎藤元也,安田嘉純:高分 解能衛星画像を用いた野菜の圃場面積算出のための作付 品目及び生育ステージ推定,日本リモートセンシング学 会誌,23 (5), pp.516-529, 2003.
- 5) 福原道一, 天野哲朗, 宮地直道: ランドサット TM データ による畑作物の作付図の作成, 日本写真測量学会年次学 術講演会論文集, pp. 169-172, 1988.
- 6) 出口 聡, 斉藤郁雄, 石原 修:高分解能人工衛星(Quick Bird) データの都市環境解析への適用に関する研究, 環境の管理,第59号, pp. 77-80, 2006.
- J. R. G. Townshend, C. O. Justice C O, V. Kalb : Characterization and classification of South American land cover types using satellite data, Int. J. Remote Sensing, Vol. 8, No. 8, pp. 1189–1207, 1987.
- 8)河邑 眞, 辻野和彦, 辻子祐二:高分解能衛星画像を用いたディシジョンツリー法に基づく樹種分類法の開発,写 真測量とリモートセンシング,44 (2), pp. 54-67, 2005.
- 9)入田健一郎、出口近土、角 知憲: リモートセンシング データを用いたクラスター分析と最尤法の併用による土 地被覆分類、九州大学工学集報、第63巻、第4号、pp. 301-308, 1990.
- 10)小川 博,竹内伸之,加藤康一,細村 宰:トレーニング データのスクリーニングを用いた土地被覆分類精度の向 上に関する研究,日本写真測量学会年次学術講演会論文 集, pp. 41-44, 1998.
- 児島利治, 宝 馨, 岡 太郎: リモートセンシング画像の分解能が土地被覆分類精度に及ぼす影響,京都大学防災研究所年報,第39号, B-2, pp. 445-458, 1996.
- 小越智博,阿部信行:高分解能衛星画像を用いた災害時の被害把握,新潟大学農学部研究報告,第59巻1号,pp. 51-55,2006.
- 13) 芳賀敏郎,橋本茂司:統計解析プログラムの基礎, pp. 82-83,(株)日科技連出版社,1980.

〔著者紹介〕

● 脇田 英治 (ワキタ エイジ)

1949年5月生。名古屋大学工学部土木工 学科卒業後,清水建設(株)入社。2000年 3月,同社を退職し,同年4月より現職の 国立群馬工業高等専門学校,環境都市工 学科,教授。工学博士(名古屋大学)。日本 リモートセンシング学会会員,土木学会 会員,日本建築学会会員。

E-mail: wakita@cvl.gunma-ct.ac.jp